Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43
44 == 2.1 Installation ==
45
46
47 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
48
49
50 [[image:1656041948552-849.png]]
51
52
53 (% style="color:blue" %)** Wiring:**
54
55 ~1. WSC1-L and sensors all powered by solar power via MPPT
56
57 2. WSC1-L and sensors connect to each other via RS485/Modbus.
58
59 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
60
61
62 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
63
64
65 [[image:1656042136605-251.png]]
66
67
68 (% style="color:red" %)**Notice 1:**
69
70 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
71 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
72 * Weather sensors won't work if solar panel and storage battery fails.
73
74
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86
87
88
89 == 2.2 How it works? ==
90
91
92 (((
93 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
94 )))
95
96
97 (((
98 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
99 )))
100
101 [[image:1656042192857-709.png]]
102
103
104 (% style="color:red" %)**Notice:**
105
106 1. WSC1-L will auto scan available weather sensors when power on or reboot.
107 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
108
109
110
111
112 == 2.3 Example to use for LoRaWAN network ==
113
114
115 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
116
117
118 [[image:1656042612899-422.png]]
119
120
121
122 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
123
124
125 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
126
127 Each WSC1-L is shipped with a sticker with the default device EUI as below:
128
129 [[image:image-20220624115043-1.jpeg]]
130
131
132 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
133
134 **Add APP EUI in the application.**
135
136 [[image:1656042662694-311.png]]
137
138 [[image:1656042673910-429.png]]
139
140
141
142
143 **Choose Manually to add WSC1-L**
144
145 [[image:1656042695755-103.png]]
146
147
148
149 **Add APP KEY and DEV EUI**
150
151 [[image:1656042723199-746.png]]
152
153
154
155 (((
156 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
157 )))
158
159
160 [[image:1656042745346-283.png]]
161
162
163
164 == 2.4 Uplink Payload ==
165
166
167 Uplink payloads include two types: Valid Sensor Value and other status / control command.
168
169 * Valid Sensor Value: Use FPORT=2
170 * Other control command: Use FPORT other than 2.
171
172
173
174
175 === 2.4.1 Uplink FPORT~=5, Device Status ===
176
177
178 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
179
180
181 (((
182 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
183 )))
184
185 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
186 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
187 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
188
189 [[image:1656043061044-343.png]]
190
191
192 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
193
194
195
196 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
197
198
199 For WSC1-L, this value is 0x0D.
200
201
202
203 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
204
205
206 0x0100, Means: v1.0.0 version.
207
208
209
210 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
211
212
213 *0x01: EU868
214
215 *0x02: US915
216
217 *0x03: IN865
218
219 *0x04: AU915
220
221 *0x05: KZ865
222
223 *0x06: RU864
224
225 *0x07: AS923
226
227 *0x08: AS923-1
228
229 *0x09: AS923-2
230
231 *0x0a: AS923-3
232
233
234
235 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
236
237
238 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
239
240
241
242 ==== (% style="color:#037691" %)**BAT:**(%%) ====
243
244
245 (((
246 shows the battery voltage for WSC1-L MCU.
247 )))
248
249 (((
250 Ex1: 0x0BD6/1000 = 3.03 V
251 )))
252
253
254
255 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
256
257
258 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
259 |Byte3|Byte2|Byte1
260
261 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
262
263 [[image:image-20220624134713-1.png]]
264
265
266 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
267
268 External sensors detected by WSC1-L include :
269
270 custom sensor A1,
271
272 PAR sensor (WSS-07),
273
274 Total Solar Radiation sensor (WSS-06),
275
276 CO2/PM2.5/PM10 (WSS-03),
277
278 Wind Speed/Direction (WSS-02)
279
280
281 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
282
283 (% style="color:#037691" %)**Downlink:0x26 01**
284
285 [[image:1656049673488-415.png]]
286
287
288
289 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
290
291
292 (((
293 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
294 )))
295
296 (((
297 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
298 )))
299
300
301 (((
302 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
303 )))
304
305
306 (% style="color:#4472c4" %)** Uplink Payload**:
307
308 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
309 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
310
311 (% style="color:#4472c4" %)** Sensor Segment Define**:
312
313 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
314 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
315
316 (% style="color:#4472c4" %)**Sensor Type Table:**
317
318 [[image:image-20220706154434-1.png]]
319
320
321 (((
322 Below is an example payload:  [[image:image-20220624140615-3.png]]
323 )))
324
325 (((
326
327 )))
328
329 (((
330 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
331 )))
332
333 * (((
334 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624140735-4.png]]
339 )))
340
341 (((
342
343 )))
344
345 (((
346 Uplink 2:  [[image:image-20220624140842-5.png]]
347 )))
348
349 (((
350
351 )))
352
353 * (((
354 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
355 )))
356
357 (((
358 Uplink 1:  [[image:image-20220624141025-6.png]]
359 )))
360
361 (((
362
363 )))
364
365 Uplink 2:  [[image:image-20220624141100-7.png]]
366
367
368
369 === 2.4.3 Decoder in TTN V3 ===
370
371
372 (((
373 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
374 )))
375
376 (((
377
378 )))
379
380 (((
381 Download decoder for suitable platform from: [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
382 )))
383
384 (((
385
386 )))
387
388 (((
389 and put as below:
390
391
392 )))
393
394 [[image:1656051152438-578.png]]
395
396
397
398 == 2.5 Show data on Application Server ==
399
400
401 (((
402 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
403 )))
404
405 (((
406
407 )))
408
409 (((
410 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
411 )))
412
413 (((
414 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
415 )))
416
417 [[image:1656051197172-131.png]]
418
419
420
421 **Add TagoIO:**
422
423 [[image:1656051223585-631.png]]
424
425
426
427 **Authorization:**
428
429 [[image:1656051248318-368.png]]
430
431
432
433 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
434
435
436 [[image:1656051277767-168.png]]
437
438
439
440 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
441
442
443 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
444
445 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
446 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
447
448 There are two kinds of commands to configure WSC1-L, they are:
449
450 * (% style="color:#4472c4" %)**General Commands**.
451
452 These commands are to configure:
453
454 * General system settings like: uplink interval.
455 * LoRaWAN protocol & radio related command.
456
457 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
458
459 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
460
461
462 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
463
464 These commands only valid for WSC1-L, as below:
465
466
467
468 == 3.1 Set Transmit Interval Time ==
469
470
471 Feature: Change LoRaWAN End Node Transmit Interval.
472
473 (% style="color:#037691" %)**AT Command: AT+TDC**
474
475 [[image:image-20220624142619-8.png]]
476
477
478 (% style="color:#037691" %)**Downlink Command: 0x01**
479
480 Format: Command Code (0x01) followed by 3 bytes time value.
481
482 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
483
484 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
485 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
486
487
488
489
490 == 3.2 Set Emergency Mode ==
491
492
493 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
494
495 (% style="color:#037691" %)**AT Command:**
496
497 [[image:image-20220624142956-9.png]]
498
499
500 (% style="color:#037691" %)**Downlink Command:**
501
502 * 0xE101     Same as: AT+ALARMMOD=1
503 * 0xE100     Same as: AT+ALARMMOD=0
504
505
506
507
508 == 3.3 Add or Delete RS485 Sensor ==
509
510
511 (((
512 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
513 )))
514
515 (((
516 (% style="color:#037691" %)**AT Command: **
517 )))
518
519 (((
520 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
521 )))
522
523 * (((
524 Type_Code range:  A1 ~~ A4
525 )))
526 * (((
527 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
528 )))
529 * (((
530 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
531 )))
532 * (((
533 Read_Length:  RS485 response frame length supposed to receive. Max can receive
534 )))
535 * (((
536 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
537 )))
538 * (((
539 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
540 )))
541 * (((
542 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
543 )))
544
545 (((
546 **Example:**
547 )))
548
549 (((
550 User need to change external sensor use the type code as address code.
551 )))
552
553 (((
554 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
555 )))
556
557 [[image:image-20220624143553-10.png]]
558
559
560 The response frame of the sensor is as follows:
561
562 [[image:image-20220624143618-11.png]]
563
564
565
566 **Then the following parameters should be:**
567
568 * Address_Code range: A1
569 * Query_Length: 8
570 * Query_Command: A103000000019CAA
571 * Read_Length: 8
572 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
573 * has_CRC: 1
574 * timeout: 1500 (Fill in the test according to the actual situation)
575
576
577
578 **So the input command is:**
579
580 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
581
582
583 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
584
585 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
586 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
587 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
588
589 **Related commands:**
590
591 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
592
593 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
594
595
596 (% style="color:#037691" %)**Downlink Command:  **
597
598 **delete custom sensor A1:**
599
600 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
601
602 **Remove all custom sensors**
603
604 * 0xE5FF  
605
606
607
608
609 == 3.4 RS485 Test Command ==
610
611
612 (% style="color:#037691" %)**AT Command:**
613
614 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
615 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
616 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
617 (((
618 Send command to 485 sensor
619 )))
620
621 (((
622 Range : no more than 10 bytes
623 )))
624 )))|(% style="width:85px" %)OK
625
626 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
627
628 AT+RSWRITE=0103000001840A
629
630
631 (% style="color:#037691" %)**Downlink Command:**
632
633 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
634
635
636
637
638 == 3.5 RS485 response timeout ==
639
640
641 Feature: Set or get extended time to receive 485 sensor data.
642
643 (% style="color:#037691" %)**AT Command:**
644
645 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
646 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
647 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
648 (((
649 Set response timeout to:
650 )))
651
652 (((
653 Range : 0~~10000
654 )))
655 )))|(% style="width:85px" %)OK
656
657 (% style="color:#037691" %)**Downlink Command:**
658
659 Format: Command Code (0xE0) followed by 3 bytes time value.
660
661 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
662
663 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
664 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
665
666
667
668
669 == 3.6 Set Sensor Type ==
670
671
672 (((
673 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
674 )))
675
676 (((
677 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
678 )))
679
680 [[image:image-20220624144904-12.png]]
681
682
683 (% style="color:#037691" %)**AT Command:**
684
685 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
686 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
687 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
688
689
690 Eg: The setting command **AT+STYPE=802212** means:
691
692 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
693 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
694 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
695 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
696 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
697 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
698 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
699
700 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
701
702
703 (% style="color:#037691" %)**Downlink Command:**
704
705 * 0xE400802212     Same as: AT+STYPE=80221
706
707
708
709 (% style="color:red" %)**Note:**
710
711 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
712
713
714
715 = 4. Power consumption and battery =
716
717 == 4.1 Total Power Consumption ==
718
719 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
720
721
722 == 4.2 Reduce power consumption ==
723
724 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
725
726
727 == 4.3 Battery ==
728
729 (((
730 All sensors are only power by external power source. If external power source is off. All sensor won't work.
731 )))
732
733 (((
734 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
735 )))
736
737
738 = 5. Main Process Unit WSC1-L =
739
740 == 5.1 Features ==
741
742 * Wall Attachable.
743 * LoRaWAN v1.0.3 Class A protocol.
744 * RS485 / Modbus protocol
745 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
746 * AT Commands to change parameters
747 * Remote configure parameters via LoRaWAN Downlink
748 * Firmware upgradable via program port
749 * Powered by external 12v battery
750 * Back up rechargeable 1000mAh battery
751 * IP Rating: IP65
752 * Support default sensors or 3rd party RS485 sensors
753
754
755
756 == 5.2 Power Consumption ==
757
758 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
759
760
761 == 5.3 Storage & Operation Temperature ==
762
763 -20°C to +60°C
764
765
766 == 5.4 Pin Mapping ==
767
768 [[image:1656054149793-239.png]]
769
770
771 == 5.5 Mechanical ==
772
773 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
774
775
776 == 5.6 Connect to RS485 Sensors ==
777
778 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
779
780
781 [[image:1656054389031-379.png]]
782
783
784 Hardware Design for the Converter Board please see:
785
786 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
787
788
789 = 6. Weather Sensors =
790
791 == 6.1 Rain Gauge ~-~- WSS-01 ==
792
793
794 (((
795 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
796 )))
797
798 (((
799 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
800 )))
801
802 (((
803 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
804 )))
805
806 (((
807 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
808 )))
809
810 (((
811 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
812 )))
813
814
815 === 6.1.1 Feature ===
816
817 * RS485 Rain Gauge
818 * Small dimension, easy to install
819 * Vents under funnel, avoid leaf or other things to avoid rain flow.
820 * ABS enclosure.
821 * Horizontal adjustable.
822
823
824
825 === 6.1.2 Specification ===
826
827 * Resolution: 0.2mm
828 * Accuracy: ±3%
829 * Range: 0 ~~ 100mm
830 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
831 * Input Power: DC 5~~24v
832 * Interface: RS485
833 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
834 * Working Humidity: <100% (no dewing)
835 * Power Consumption: 4mA @ 12v.
836
837
838
839 === 6.1.3 Dimension ===
840
841 [[image:1656054957406-980.png]]
842
843
844 === 6.1.4 Pin Mapping ===
845
846 [[image:1656054972828-692.png]]
847
848
849 === 6.1.5 Installation Notice ===
850
851 (((
852 Do not power on while connect the cables. Double check the wiring before power on.
853 )))
854
855 (((
856 Installation Photo as reference:
857 )))
858
859
860 (((
861 (% style="color:#4472c4" %)** Install on Ground:**
862 )))
863
864 (((
865 WSS-01 Rain Gauge include screws so can install in ground directly .
866 )))
867
868
869 (((
870 (% style="color:#4472c4" %)** Install on pole:**
871 )))
872
873 (((
874 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
875 )))
876
877 [[image:image-20220624152218-1.png||height="526" width="276"]]
878
879 WS-K2: Bracket Kit for Pole installation
880
881
882 WSSC-K2 dimension document, please see:
883
884 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
885
886
887 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
888
889 [[image:1656055444035-179.png]]
890
891 (((
892 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
893 )))
894
895 (((
896 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
897 )))
898
899 (((
900 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
901 )))
902
903
904 === 6.2.1 Feature ===
905
906 * RS485 wind speed / direction sensor
907 * PC enclosure, resist corrosion
908
909
910
911 === 6.2.2 Specification ===
912
913 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
914 * Wind direction range: 0 ~~ 360°
915 * Start wind speed: ≤0.3m/s
916 * Accuracy: ±(0.3+0.03V)m/s , ±1°
917 * Input Power: DC 5~~24v
918 * Interface: RS485
919 * Working Temperature: -30℃~70℃
920 * Working Humidity: <100% (no dewing)
921 * Power Consumption: 13mA ~~ 12v.
922 * Cable Length: 2 meters
923
924
925
926 === 6.2.3 Dimension ===
927
928 [[image:image-20220624152813-2.png]]
929
930
931 === 6.2.4 Pin Mapping ===
932
933 [[image:1656056281231-994.png]]
934
935
936 === 6.2.5  Angle Mapping ===
937
938 [[image:1656056303845-585.png]]
939
940
941 === 6.2.6  Installation Notice ===
942
943 (((
944 Do not power on while connect the cables. Double check the wiring before power on.
945 )))
946
947 (((
948 The sensor must be installed with below direction, towards North.
949 )))
950
951 [[image:image-20220624153901-3.png]]
952
953
954 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
955
956
957 (((
958 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
959 )))
960
961 (((
962 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
963 )))
964
965 (((
966 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
967 )))
968
969
970 === 6.3.1 Feature ===
971
972 * RS485 CO2, PM2.5, PM10 sensor
973 * NDIR to measure CO2 with Internal Temperature Compensation
974 * Laser Beam Scattering to PM2.5 and PM10
975
976
977
978 === 6.3.2 Specification ===
979
980 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
981 * CO2 resolution: 1ppm
982 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
983 * PM2.5/PM10 resolution: 1μg/m3
984 * Input Power: DC 7 ~~ 24v
985 * Preheat time: 3min
986 * Interface: RS485
987 * Working Temperature:
988 ** CO2: 0℃~50℃;
989 ** PM2.5/PM10: -30 ~~ 50℃
990 * Working Humidity:
991 ** PM2.5/PM10: 15~80%RH (no dewing)
992 ** CO2: 0~95%RH
993 * Power Consumption: 50mA@ 12v.
994
995
996
997 === 6.3.3 Dimension ===
998
999 [[image:1656056708366-230.png]]
1000
1001
1002
1003 === 6.3.4 Pin Mapping ===
1004
1005 [[image:1656056722648-743.png]]
1006
1007
1008 === 6.3.5 Installation Notice ===
1009
1010 Do not power on while connect the cables. Double check the wiring before power on.
1011
1012 [[image:1656056751153-304.png]]
1013
1014 [[image:1656056766224-773.png]]
1015
1016
1017 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1018
1019
1020 (((
1021 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1022 )))
1023
1024 (((
1025 WSS-04 has auto heating feature, this ensures measurement more reliable.
1026 )))
1027
1028 (((
1029 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1030 )))
1031
1032
1033
1034 === 6.4.1 Feature ===
1035
1036 * RS485 Rain/Snow detect sensor
1037 * Surface heating to dry
1038 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1039
1040
1041
1042 === 6.4.2 Specification ===
1043
1044 * Detect if there is rain or snow
1045 * Input Power: DC 12 ~~ 24v
1046 * Interface: RS485
1047 * Working Temperature: -30℃~70℃
1048 * Working Humidity: 10~90%RH
1049 * Power Consumption:
1050 ** No heating: 12mA @ 12v,
1051 ** heating: 94ma @ 12v.
1052
1053
1054
1055 === 6.4.3 Dimension ===
1056
1057 [[image:1656056844782-155.png]]
1058
1059
1060 === 6.4.4 Pin Mapping ===
1061
1062 [[image:1656056855590-754.png]]
1063
1064
1065 === 6.4.5 Installation Notice ===
1066
1067 Do not power on while connect the cables. Double check the wiring before power on.
1068
1069
1070 (((
1071 Install with 15°degree.
1072 )))
1073
1074 [[image:1656056873783-780.png]]
1075
1076
1077 [[image:1656056883736-804.png]]
1078
1079
1080 === 6.4.6 Heating ===
1081
1082 (((
1083 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1084 )))
1085
1086
1087 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1088
1089
1090 (((
1091 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1092 )))
1093
1094 (((
1095 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1096 )))
1097
1098
1099 === 6.5.1 Feature ===
1100
1101 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1102
1103
1104
1105 === 6.5.2 Specification ===
1106
1107 * Input Power: DC 12 ~~ 24v
1108 * Interface: RS485
1109 * Temperature Sensor Spec:
1110 ** Range: -30 ~~ 70℃
1111 ** resolution 0.1℃
1112 ** Accuracy: ±0.5℃
1113 * Humidity Sensor Spec:
1114 ** Range: 0 ~~ 100% RH
1115 ** resolution 0.1 %RH
1116 ** Accuracy: 3% RH
1117 * Pressure Sensor Spec:
1118 ** Range: 10~1100hPa
1119 ** Resolution: 0.1hPa
1120 ** Accuracy: ±0.1hPa
1121 * Illuminate sensor:
1122 ** Range: 0~2/20/200kLux
1123 ** Resolution: 10 Lux
1124 ** Accuracy: ±3%FS
1125 * Working Temperature: -30℃~70℃
1126 * Working Humidity: 10~90%RH
1127 * Power Consumption: 4mA @ 12v
1128
1129
1130
1131 === 6.5.3 Dimension ===
1132
1133 [[image:1656057170639-522.png]]
1134
1135
1136 === 6.5.4 Pin Mapping ===
1137
1138 [[image:1656057181899-910.png]]
1139
1140
1141 === 6.5.5 Installation Notice ===
1142
1143 Do not power on while connect the cables. Double check the wiring before power on.
1144
1145 [[image:1656057199955-514.png]]
1146
1147
1148 [[image:1656057212438-475.png]]
1149
1150
1151 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1152
1153
1154 (((
1155 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1156 )))
1157
1158 (((
1159 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1160 )))
1161
1162 (((
1163 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1164 )))
1165
1166
1167
1168 === 6.6.1 Feature ===
1169
1170 * RS485 Total Solar Radiation sensor
1171 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1172 * Measure Reflected Radiation if sense area towards ground.
1173
1174
1175
1176 === 6.6.2 Specification ===
1177
1178 * Input Power: DC 5 ~~ 24v
1179 * Interface: RS485
1180 * Detect spectrum: 0.3~3μm(300~3000nm)
1181 * Measure strength range: 0~2000W/m2
1182 * Resolution: 0.1W/m2
1183 * Accuracy: ±3%
1184 * Yearly Stability: ≤±2%
1185 * Cosine response: ≤7% (@ Sun angle 10°)
1186 * Temperature Effect: ±2%(-10℃~40℃)
1187 * Working Temperature: -40℃~70℃
1188 * Working Humidity: 10~90%RH
1189 * Power Consumption: 4mA @ 12v
1190
1191
1192
1193 === 6.6.3 Dimension ===
1194
1195 [[image:1656057348695-898.png]]
1196
1197
1198 === 6.6.4 Pin Mapping ===
1199
1200 [[image:1656057359343-744.png]]
1201
1202
1203 === 6.6.5 Installation Notice ===
1204
1205 Do not power on while connect the cables. Double check the wiring before power on.
1206
1207 [[image:1656057369259-804.png]]
1208
1209
1210 [[image:1656057377943-564.png]]
1211
1212
1213 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1214
1215
1216 (((
1217 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1218 )))
1219
1220 (((
1221 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1222 )))
1223
1224 (((
1225 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1226 )))
1227
1228
1229 === 6.7.1 Feature ===
1230
1231 (((
1232 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1233 )))
1234
1235 (((
1236 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1237 )))
1238
1239
1240 === 6.7.2 Specification ===
1241
1242 * Input Power: DC 5 ~~ 24v
1243 * Interface: RS485
1244 * Response Spectrum: 400~700nm
1245 * Measure range: 0~2500μmol/m2•s
1246 * Resolution: 1μmol/m2•s
1247 * Accuracy: ±2%
1248 * Yearly Stability: ≤±2%
1249 * Working Temperature: -30℃~75℃
1250 * Working Humidity: 10~90%RH
1251 * Power Consumption: 3mA @ 12v
1252
1253
1254
1255 === 6.7.3 Dimension ===
1256
1257 [[image:1656057538793-888.png]]
1258
1259
1260 === 6.7.4 Pin Mapping ===
1261
1262 [[image:1656057548116-203.png]]
1263
1264
1265 === 6.7.5 Installation Notice ===
1266
1267 Do not power on while connect the cables. Double check the wiring before power on.
1268
1269
1270 [[image:1656057557191-895.png]]
1271
1272
1273 [[image:1656057565783-251.png]]
1274
1275
1276 = 7. FAQ =
1277
1278 == 7.1 What else do I need to purchase to build Weather Station? ==
1279
1280 Below is the installation photo and structure:
1281
1282 [[image:1656057598349-319.png]]
1283
1284
1285 [[image:1656057608049-693.png]]
1286
1287
1288
1289 == 7.2 How to upgrade firmware for WSC1-L? ==
1290
1291 (((
1292 Firmware Location & Change log:
1293 )))
1294
1295 (((
1296 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1297 )))
1298
1299
1300 (((
1301 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1302 )))
1303
1304
1305 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1306
1307 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1308
1309
1310 == 7.4 Can I add my weather sensors? ==
1311
1312 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1313
1314
1315 = 8. Trouble Shooting =
1316
1317 == 8.1 AT Command input doesn't work ==
1318
1319 (((
1320 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1321 )))
1322
1323
1324 = 9. Order Info =
1325
1326 == 9.1 Main Process Unit ==
1327
1328 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1329
1330 (% style="color:blue" %)**XX**(%%): The default frequency band
1331
1332 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1333 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1334 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1335 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1336 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1337 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1338 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1339 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1340
1341
1342
1343 == 9.2 Sensors ==
1344
1345 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1346 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1347 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1348 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1349 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1350 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1351 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1352 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1353 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1354 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1355
1356
1357 = 10. Support =
1358
1359 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1360 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1361
1362
1363
1364 = 11. Appendix I: Field Installation Photo =
1365
1366
1367 [[image:1656058346362-132.png||height="685" width="732"]]
1368
1369 **Storage Battery**: 12v,12AH li battery
1370
1371
1372
1373 **Wind Speed/Direction**
1374
1375 [[image:1656058373174-421.png||height="356" width="731"]]
1376
1377
1378
1379 **Total Solar Radiation sensor**
1380
1381 [[image:1656058397364-282.png||height="453" width="732"]]
1382
1383
1384
1385 **PAR Sensor**
1386
1387 [[image:1656058416171-615.png]]
1388
1389
1390
1391 **CO2/PM2.5/PM10 3 in 1 sensor**
1392
1393 [[image:1656058441194-827.png||height="672" width="523"]]
1394
1395
1396
1397 **Rain / Snow Detect**
1398
1399 [[image:1656058451456-166.png]]
1400
1401
1402
1403 **Rain Gauge**
1404
1405 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0