Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
107
108
109 [[image:1656042612899-422.png]]
110
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20220624115043-1.jpeg]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 **Add APP EUI in the application.**
126
127 [[image:1656042662694-311.png]]
128
129 [[image:1656042673910-429.png]]
130
131
132
133
134 **Choose Manually to add WSC1-L**
135
136 [[image:1656042695755-103.png]]
137
138
139
140 **Add APP KEY and DEV EUI**
141
142 [[image:1656042723199-746.png]]
143
144
145
146 (((
147 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
148 )))
149
150
151 [[image:1656042745346-283.png]]
152
153
154
155 == 2.4 Uplink Payload ==
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162
163
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
175 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190
191 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
192
193 0x0100, Means: v1.0.0 version.
194
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 *0x01: EU868
200
201 *0x02: US915
202
203 *0x03: IN865
204
205 *0x04: AU915
206
207 *0x05: KZ865
208
209 *0x06: RU864
210
211 *0x07: AS923
212
213 *0x08: AS923-1
214
215 *0x09: AS923-2
216
217 *0x0a: AS923-3
218
219
220
221 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
222
223 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
224
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229 (((
230 shows the battery voltage for WSC1-L MCU.
231 )))
232
233 (((
234 Ex1: 0x0BD6/1000 = 3.03 V
235 )))
236
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
242 |Byte3|Byte2|Byte1
243
244 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
245
246 [[image:image-20220624134713-1.png]]
247
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 [[image:image-20220706154434-1.png]]
301
302
303 (((
304 Below is an example payload:  [[image:image-20220624140615-3.png]]
305 )))
306
307 (((
308
309 )))
310
311 (((
312 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
313 )))
314
315 * (((
316 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
317 )))
318
319 (((
320 Uplink 1:  [[image:image-20220624140735-4.png]]
321 )))
322
323 (((
324
325 )))
326
327 (((
328 Uplink 2:  [[image:image-20220624140842-5.png]]
329 )))
330
331 (((
332
333 )))
334
335 * (((
336 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
337 )))
338
339 (((
340 Uplink 1:  [[image:image-20220624141025-6.png]]
341 )))
342
343 (((
344
345 )))
346
347 Uplink 2:  [[image:image-20220624141100-7.png]]
348
349
350
351 === 2.4.3 Decoder in TTN V3 ===
352
353 (((
354 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
355 )))
356
357 (((
358
359 )))
360
361 (((
362 Download decoder for suitable platform from:
363 )))
364
365 (((
366 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
367 )))
368
369 (((
370 and put as below:
371 )))
372
373 [[image:1656051152438-578.png]]
374
375
376
377 == 2.5 Show data on Application Server ==
378
379 (((
380 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
381 )))
382
383 (((
384
385 )))
386
387 (((
388 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
389 )))
390
391 (((
392 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
393 )))
394
395 [[image:1656051197172-131.png]]
396
397
398 **Add TagoIO:**
399
400 [[image:1656051223585-631.png]]
401
402
403 **Authorization:**
404
405 [[image:1656051248318-368.png]]
406
407
408 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
409
410 [[image:1656051277767-168.png]]
411
412
413
414 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
415
416 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
417
418 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
419 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
420
421 There are two kinds of commands to configure WSC1-L, they are:
422
423 * (% style="color:#4472c4" %)**General Commands**.
424
425 These commands are to configure:
426
427 * General system settings like: uplink interval.
428 * LoRaWAN protocol & radio related command.
429
430 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
431
432 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
433
434
435 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
436
437 These commands only valid for WSC1-L, as below:
438
439
440
441 == 3.1 Set Transmit Interval Time ==
442
443 Feature: Change LoRaWAN End Node Transmit Interval.
444
445 (% style="color:#037691" %)**AT Command: AT+TDC**
446
447 [[image:image-20220624142619-8.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command: 0x01**
451
452 Format: Command Code (0x01) followed by 3 bytes time value.
453
454 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
455
456 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
457 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
458
459
460
461
462 == 3.2 Set Emergency Mode ==
463
464 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
465
466 (% style="color:#037691" %)**AT Command:**
467
468 [[image:image-20220624142956-9.png]]
469
470
471 (% style="color:#037691" %)**Downlink Command:**
472
473 * 0xE101     Same as: AT+ALARMMOD=1
474 * 0xE100     Same as: AT+ALARMMOD=0
475
476
477
478
479 == 3.3 Add or Delete RS485 Sensor ==
480
481 (((
482 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
483 )))
484
485 (((
486 (% style="color:#037691" %)**AT Command: **
487 )))
488
489 (((
490 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
491 )))
492
493 * (((
494 Type_Code range:  A1 ~~ A4
495 )))
496 * (((
497 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
498 )))
499 * (((
500 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
501 )))
502 * (((
503 Read_Length:  RS485 response frame length supposed to receive. Max can receive
504 )))
505 * (((
506 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
507 )))
508 * (((
509 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
510 )))
511 * (((
512 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
513 )))
514
515 (((
516 **Example:**
517 )))
518
519 (((
520 User need to change external sensor use the type code as address code.
521 )))
522
523 (((
524 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
525 )))
526
527 [[image:image-20220624143553-10.png]]
528
529
530 The response frame of the sensor is as follows:
531
532 [[image:image-20220624143618-11.png]]
533
534
535
536 **Then the following parameters should be:**
537
538 * Address_Code range: A1
539 * Query_Length: 8
540 * Query_Command: A103000000019CAA
541 * Read_Length: 8
542 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
543 * has_CRC: 1
544 * timeout: 1500 (Fill in the test according to the actual situation)
545
546 **So the input command is:**
547
548 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
549
550
551 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
552
553 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
554 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
555 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
556
557 **Related commands:**
558
559 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
560
561 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
562
563
564 (% style="color:#037691" %)**Downlink Command:  **
565
566 **delete custom sensor A1:**
567
568 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
569
570 **Remove all custom sensors**
571
572 * 0xE5FF  
573
574
575
576
577 == 3.4 RS485 Test Command ==
578
579 (% style="color:#037691" %)**AT Command:**
580
581 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
582 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
583 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
584 (((
585 Send command to 485 sensor
586 )))
587
588 (((
589 Range : no more than 10 bytes
590 )))
591 )))|(% style="width:85px" %)OK
592
593 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
594
595 AT+RSWRITE=0103000001840A
596
597
598 (% style="color:#037691" %)**Downlink Command:**
599
600 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
601
602
603
604
605 == 3.5 RS485 response timeout ==
606
607 Feature: Set or get extended time to receive 485 sensor data.
608
609 (% style="color:#037691" %)**AT Command:**
610
611 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
612 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
613 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
614 (((
615 Set response timeout to:
616 )))
617
618 (((
619 Range : 0~~10000
620 )))
621 )))|(% style="width:85px" %)OK
622
623 (% style="color:#037691" %)**Downlink Command:**
624
625 Format: Command Code (0xE0) followed by 3 bytes time value.
626
627 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
628
629 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
630 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
631
632
633
634
635 == 3.6 Set Sensor Type ==
636
637 (((
638 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
639 )))
640
641 (((
642 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
643 )))
644
645 [[image:image-20220624144904-12.png]]
646
647
648 (% style="color:#037691" %)**AT Command:**
649
650 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
651 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
652 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
653
654 Eg: The setting command **AT+STYPE=802212** means:
655
656 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
657 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
658 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
659 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
660 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
661 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
662 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
663
664 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
665
666
667 (% style="color:#037691" %)**Downlink Command:**
668
669 * 0xE400802212     Same as: AT+STYPE=80221
670
671 (% style="color:red" %)**Note:**
672
673 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
674
675
676
677 = 4. Power consumption and battery =
678
679 == 4.1 Total Power Consumption ==
680
681 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
682
683
684 == 4.2 Reduce power consumption ==
685
686 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
687
688
689 == 4.3 Battery ==
690
691 (((
692 All sensors are only power by external power source. If external power source is off. All sensor won't work.
693 )))
694
695 (((
696 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
697 )))
698
699
700 = 5. Main Process Unit WSC1-L =
701
702 == 5.1 Features ==
703
704 * Wall Attachable.
705 * LoRaWAN v1.0.3 Class A protocol.
706 * RS485 / Modbus protocol
707 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
708 * AT Commands to change parameters
709 * Remote configure parameters via LoRaWAN Downlink
710 * Firmware upgradable via program port
711 * Powered by external 12v battery
712 * Back up rechargeable 1000mAh battery
713 * IP Rating: IP65
714 * Support default sensors or 3rd party RS485 sensors
715
716
717
718
719 == 5.2 Power Consumption ==
720
721 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
722
723
724 == 5.3 Storage & Operation Temperature ==
725
726 -20°C to +60°C
727
728
729 == 5.4 Pin Mapping ==
730
731 [[image:1656054149793-239.png]]
732
733
734 == 5.5 Mechanical ==
735
736 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
737
738
739 == 5.6 Connect to RS485 Sensors ==
740
741 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
742
743
744 [[image:1656054389031-379.png]]
745
746
747 Hardware Design for the Converter Board please see:
748
749 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
750
751
752 = 6. Weather Sensors =
753
754 == 6.1 Rain Gauge ~-~- WSS-01 ==
755
756
757 (((
758 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
759 )))
760
761 (((
762 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
763 )))
764
765 (((
766 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
767 )))
768
769 (((
770 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
771 )))
772
773 (((
774 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
775 )))
776
777
778 === 6.1.1 Feature ===
779
780 * RS485 Rain Gauge
781 * Small dimension, easy to install
782 * Vents under funnel, avoid leaf or other things to avoid rain flow.
783 * ABS enclosure.
784 * Horizontal adjustable.
785
786
787
788
789 === 6.1.2 Specification ===
790
791 * Resolution: 0.2mm
792 * Accuracy: ±3%
793 * Range: 0 ~~ 100mm
794 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
795 * Input Power: DC 5~~24v
796 * Interface: RS485
797 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
798 * Working Humidity: <100% (no dewing)
799 * Power Consumption: 4mA @ 12v.
800
801
802
803
804 === 6.1.3 Dimension ===
805
806 [[image:1656054957406-980.png]]
807
808
809 === 6.1.4 Pin Mapping ===
810
811 [[image:1656054972828-692.png]]
812
813
814 === 6.1.5 Installation Notice ===
815
816 (((
817 Do not power on while connect the cables. Double check the wiring before power on.
818 )))
819
820 (((
821 Installation Photo as reference:
822 )))
823
824
825 (((
826 (% style="color:#4472c4" %)** Install on Ground:**
827 )))
828
829 (((
830 WSS-01 Rain Gauge include screws so can install in ground directly .
831 )))
832
833
834 (((
835 (% style="color:#4472c4" %)** Install on pole:**
836 )))
837
838 (((
839 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
840 )))
841
842 [[image:image-20220624152218-1.png||height="526" width="276"]]
843
844 WS-K2: Bracket Kit for Pole installation
845
846
847 WSSC-K2 dimension document, please see:
848
849 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
850
851
852 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
853
854 [[image:1656055444035-179.png]]
855
856 (((
857 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
858 )))
859
860 (((
861 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
862 )))
863
864 (((
865 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
866 )))
867
868
869 === 6.2.1 Feature ===
870
871 * RS485 wind speed / direction sensor
872 * PC enclosure, resist corrosion
873
874
875
876
877 === 6.2.2 Specification ===
878
879 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
880 * Wind direction range: 0 ~~ 360°
881 * Start wind speed: ≤0.3m/s
882 * Accuracy: ±(0.3+0.03V)m/s , ±1°
883 * Input Power: DC 5~~24v
884 * Interface: RS485
885 * Working Temperature: -30℃~70℃
886 * Working Humidity: <100% (no dewing)
887 * Power Consumption: 13mA ~~ 12v.
888 * Cable Length: 2 meters
889
890
891
892
893 === 6.2.3 Dimension ===
894
895 [[image:image-20220624152813-2.png]]
896
897
898 === 6.2.4 Pin Mapping ===
899
900 [[image:1656056281231-994.png]]
901
902
903 === 6.2.5  Angle Mapping ===
904
905 [[image:1656056303845-585.png]]
906
907
908 === 6.2.6  Installation Notice ===
909
910 (((
911 Do not power on while connect the cables. Double check the wiring before power on.
912 )))
913
914 (((
915 The sensor must be installed with below direction, towards North.
916 )))
917
918 [[image:image-20220624153901-3.png]]
919
920
921 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
922
923
924 (((
925 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
926 )))
927
928 (((
929 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
930 )))
931
932 (((
933 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
934 )))
935
936
937 === 6.3.1 Feature ===
938
939 * RS485 CO2, PM2.5, PM10 sensor
940 * NDIR to measure CO2 with Internal Temperature Compensation
941 * Laser Beam Scattering to PM2.5 and PM10
942
943
944
945
946 === 6.3.2 Specification ===
947
948 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
949 * CO2 resolution: 1ppm
950 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
951 * PM2.5/PM10 resolution: 1μg/m3
952 * Input Power: DC 7 ~~ 24v
953 * Preheat time: 3min
954 * Interface: RS485
955 * Working Temperature:
956 ** CO2: 0℃~50℃;
957 ** PM2.5/PM10: -30 ~~ 50℃
958 * Working Humidity:
959 ** PM2.5/PM10: 15~80%RH (no dewing)
960 ** CO2: 0~95%RH
961 * Power Consumption: 50mA@ 12v.
962
963
964
965
966 === 6.3.3 Dimension ===
967
968 [[image:1656056708366-230.png]]
969
970
971
972 === 6.3.4 Pin Mapping ===
973
974 [[image:1656056722648-743.png]]
975
976
977 === 6.3.5 Installation Notice ===
978
979 Do not power on while connect the cables. Double check the wiring before power on.
980
981 [[image:1656056751153-304.png]]
982
983 [[image:1656056766224-773.png]]
984
985
986 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
987
988
989 (((
990 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
991 )))
992
993 (((
994 WSS-04 has auto heating feature, this ensures measurement more reliable.
995 )))
996
997 (((
998 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
999 )))
1000
1001
1002
1003 === 6.4.1 Feature ===
1004
1005 * RS485 Rain/Snow detect sensor
1006 * Surface heating to dry
1007 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1008
1009
1010
1011
1012 === 6.4.2 Specification ===
1013
1014 * Detect if there is rain or snow
1015 * Input Power: DC 12 ~~ 24v
1016 * Interface: RS485
1017 * Working Temperature: -30℃~70℃
1018 * Working Humidity: 10~90%RH
1019 * Power Consumption:
1020 ** No heating: 12mA @ 12v,
1021 ** heating: 94ma @ 12v.
1022
1023
1024
1025
1026 === 6.4.3 Dimension ===
1027
1028 [[image:1656056844782-155.png]]
1029
1030
1031 === 6.4.4 Pin Mapping ===
1032
1033 [[image:1656056855590-754.png]]
1034
1035
1036 === 6.4.5 Installation Notice ===
1037
1038 Do not power on while connect the cables. Double check the wiring before power on.
1039
1040
1041 (((
1042 Install with 15°degree.
1043 )))
1044
1045 [[image:1656056873783-780.png]]
1046
1047
1048 [[image:1656056883736-804.png]]
1049
1050
1051 === 6.4.6 Heating ===
1052
1053 (((
1054 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1055 )))
1056
1057
1058 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1059
1060
1061 (((
1062 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1063 )))
1064
1065 (((
1066 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1067 )))
1068
1069
1070 === 6.5.1 Feature ===
1071
1072 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1073
1074
1075
1076
1077 === 6.5.2 Specification ===
1078
1079 * Input Power: DC 12 ~~ 24v
1080 * Interface: RS485
1081 * Temperature Sensor Spec:
1082 ** Range: -30 ~~ 70℃
1083 ** resolution 0.1℃
1084 ** Accuracy: ±0.5℃
1085 * Humidity Sensor Spec:
1086 ** Range: 0 ~~ 100% RH
1087 ** resolution 0.1 %RH
1088 ** Accuracy: 3% RH
1089 * Pressure Sensor Spec:
1090 ** Range: 10~1100hPa
1091 ** Resolution: 0.1hPa
1092 ** Accuracy: ±0.1hPa
1093 * Illuminate sensor:
1094 ** Range: 0~2/20/200kLux
1095 ** Resolution: 10 Lux
1096 ** Accuracy: ±3%FS
1097 * Working Temperature: -30℃~70℃
1098 * Working Humidity: 10~90%RH
1099 * Power Consumption: 4mA @ 12v
1100
1101
1102
1103
1104 === 6.5.3 Dimension ===
1105
1106 [[image:1656057170639-522.png]]
1107
1108
1109 === 6.5.4 Pin Mapping ===
1110
1111 [[image:1656057181899-910.png]]
1112
1113
1114 === 6.5.5 Installation Notice ===
1115
1116 Do not power on while connect the cables. Double check the wiring before power on.
1117
1118 [[image:1656057199955-514.png]]
1119
1120
1121 [[image:1656057212438-475.png]]
1122
1123
1124 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1125
1126
1127 (((
1128 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1129 )))
1130
1131 (((
1132 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1133 )))
1134
1135 (((
1136 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1137 )))
1138
1139
1140
1141 === 6.6.1 Feature ===
1142
1143 * RS485 Total Solar Radiation sensor
1144 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1145 * Measure Reflected Radiation if sense area towards ground.
1146
1147
1148
1149
1150 === 6.6.2 Specification ===
1151
1152 * Input Power: DC 5 ~~ 24v
1153 * Interface: RS485
1154 * Detect spectrum: 0.3~3μm(300~3000nm)
1155 * Measure strength range: 0~2000W/m2
1156 * Resolution: 0.1W/m2
1157 * Accuracy: ±3%
1158 * Yearly Stability: ≤±2%
1159 * Cosine response: ≤7% (@ Sun angle 10°)
1160 * Temperature Effect: ±2%(-10℃~40℃)
1161 * Working Temperature: -40℃~70℃
1162 * Working Humidity: 10~90%RH
1163 * Power Consumption: 4mA @ 12v
1164
1165
1166
1167
1168 === 6.6.3 Dimension ===
1169
1170 [[image:1656057348695-898.png]]
1171
1172
1173 === 6.6.4 Pin Mapping ===
1174
1175 [[image:1656057359343-744.png]]
1176
1177
1178 === 6.6.5 Installation Notice ===
1179
1180 Do not power on while connect the cables. Double check the wiring before power on.
1181
1182 [[image:1656057369259-804.png]]
1183
1184
1185 [[image:1656057377943-564.png]]
1186
1187
1188 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1189
1190
1191 (((
1192 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1193 )))
1194
1195 (((
1196 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1197 )))
1198
1199 (((
1200 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1201 )))
1202
1203
1204 === 6.7.1 Feature ===
1205
1206 (((
1207 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1208 )))
1209
1210 (((
1211 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1212 )))
1213
1214
1215 === 6.7.2 Specification ===
1216
1217 * Input Power: DC 5 ~~ 24v
1218 * Interface: RS485
1219 * Response Spectrum: 400~700nm
1220 * Measure range: 0~2500μmol/m2•s
1221 * Resolution: 1μmol/m2•s
1222 * Accuracy: ±2%
1223 * Yearly Stability: ≤±2%
1224 * Working Temperature: -30℃~75℃
1225 * Working Humidity: 10~90%RH
1226 * Power Consumption: 3mA @ 12v
1227
1228
1229
1230
1231 === 6.7.3 Dimension ===
1232
1233 [[image:1656057538793-888.png]]
1234
1235
1236 === 6.7.4 Pin Mapping ===
1237
1238 [[image:1656057548116-203.png]]
1239
1240
1241 === 6.7.5 Installation Notice ===
1242
1243 Do not power on while connect the cables. Double check the wiring before power on.
1244
1245
1246 [[image:1656057557191-895.png]]
1247
1248
1249 [[image:1656057565783-251.png]]
1250
1251
1252 = 7. FAQ =
1253
1254 == 7.1 What else do I need to purchase to build Weather Station? ==
1255
1256 Below is the installation photo and structure:
1257
1258 [[image:1656057598349-319.png]]
1259
1260
1261 [[image:1656057608049-693.png]]
1262
1263
1264
1265 == 7.2 How to upgrade firmware for WSC1-L? ==
1266
1267 (((
1268 Firmware Location & Change log:
1269 )))
1270
1271 (((
1272 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1273 )))
1274
1275
1276 (((
1277 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1278 )))
1279
1280
1281 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1282
1283 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1284
1285
1286 == 7.4 Can I add my weather sensors? ==
1287
1288 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1289
1290
1291 = 8. Trouble Shooting =
1292
1293 == 8.1 AT Command input doesn't work ==
1294
1295 (((
1296 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1297 )))
1298
1299
1300 = 9. Order Info =
1301
1302 == 9.1 Main Process Unit ==
1303
1304 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1305
1306 (% style="color:blue" %)**XX**(%%): The default frequency band
1307
1308 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1309 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1310 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1311 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1312 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1313 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1314 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1315 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1316
1317
1318
1319
1320 == 9.2 Sensors ==
1321
1322 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1323 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1324 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1325 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1326 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1327 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1328 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1329 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1330 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1331 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1332
1333
1334
1335 = 10. Support =
1336
1337 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1338 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1339
1340
1341
1342
1343 = 11. Appendix I: Field Installation Photo =
1344
1345
1346 [[image:1656058346362-132.png||height="685" width="732"]]
1347
1348 **Storage Battery**: 12v,12AH li battery
1349
1350
1351
1352 **Wind Speed/Direction**
1353
1354 [[image:1656058373174-421.png||height="356" width="731"]]
1355
1356
1357
1358 **Total Solar Radiation sensor**
1359
1360 [[image:1656058397364-282.png||height="453" width="732"]]
1361
1362
1363
1364 **PAR Sensor**
1365
1366 [[image:1656058416171-615.png]]
1367
1368
1369
1370 **CO2/PM2.5/PM10 3 in 1 sensor**
1371
1372 [[image:1656058441194-827.png||height="672" width="523"]]
1373
1374
1375
1376 **Rain / Snow Detect**
1377
1378 [[image:1656058451456-166.png]]
1379
1380
1381
1382 **Rain Gauge**
1383
1384 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0