Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (((
146 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
147 )))
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161
162
163 === 2.4.1 Uplink FPORT~=5, Device Status ===
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
173 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
174 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182
183 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
184
185 For WSC1-L, this value is 0x0D.
186
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 *0x01: EU868
198
199 *0x02: US915
200
201 *0x03: IN865
202
203 *0x04: AU915
204
205 *0x05: KZ865
206
207 *0x06: RU864
208
209 *0x07: AS923
210
211 *0x08: AS923-1
212
213 *0x09: AS923-2
214
215 *0x0a: AS923-3
216
217
218
219 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
220
221 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
222
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220706154434-1.png]]
299
300
301 (((
302 Below is an example payload:  [[image:image-20220624140615-3.png]]
303 )))
304
305 (((
306
307 )))
308
309 (((
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311 )))
312
313 * (((
314 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
315 )))
316
317 (((
318 Uplink 1:  [[image:image-20220624140735-4.png]]
319 )))
320
321 (((
322
323 )))
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327 )))
328
329 (((
330
331 )))
332
333 * (((
334 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624141025-6.png]]
339 )))
340
341 (((
342
343 )))
344
345 Uplink 2:  [[image:image-20220624141100-7.png]]
346
347
348
349 === 2.4.3 Decoder in TTN V3 ===
350
351 (((
352 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
353 )))
354
355 (((
356
357 )))
358
359 (((
360 Download decoder for suitable platform from:
361 )))
362
363 (((
364 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
365 )))
366
367 (((
368 and put as below:
369 )))
370
371 [[image:1656051152438-578.png]]
372
373
374
375 == 2.5 Show data on Application Server ==
376
377 (((
378 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
379 )))
380
381 (((
382
383 )))
384
385 (((
386 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
387 )))
388
389 (((
390 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
391 )))
392
393 [[image:1656051197172-131.png]]
394
395
396 **Add TagoIO:**
397
398 [[image:1656051223585-631.png]]
399
400
401 **Authorization:**
402
403 [[image:1656051248318-368.png]]
404
405
406 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
407
408 [[image:1656051277767-168.png]]
409
410
411
412 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
413
414 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
415
416 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
417 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
418
419 There are two kinds of commands to configure WSC1-L, they are:
420
421 * (% style="color:#4472c4" %)**General Commands**.
422
423 These commands are to configure:
424
425 * General system settings like: uplink interval.
426 * LoRaWAN protocol & radio related command.
427
428 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
429
430 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
431
432
433 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
434
435 These commands only valid for WSC1-L, as below:
436
437
438
439 == 3.1 Set Transmit Interval Time ==
440
441 Feature: Change LoRaWAN End Node Transmit Interval.
442
443 (% style="color:#037691" %)**AT Command: AT+TDC**
444
445 [[image:image-20220624142619-8.png]]
446
447
448 (% style="color:#037691" %)**Downlink Command: 0x01**
449
450 Format: Command Code (0x01) followed by 3 bytes time value.
451
452 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
453
454 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
455 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
456
457
458 == 3.2 Set Emergency Mode ==
459
460 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
461
462 (% style="color:#037691" %)**AT Command:**
463
464 [[image:image-20220624142956-9.png]]
465
466
467 (% style="color:#037691" %)**Downlink Command:**
468
469 * 0xE101     Same as: AT+ALARMMOD=1
470 * 0xE100     Same as: AT+ALARMMOD=0
471
472
473 == 3.3 Add or Delete RS485 Sensor ==
474
475 (((
476 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
477 )))
478
479 (((
480 (% style="color:#037691" %)**AT Command: **
481 )))
482
483 (((
484 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
485 )))
486
487 * (((
488 Type_Code range:  A1 ~~ A4
489 )))
490 * (((
491 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
492 )))
493 * (((
494 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
495 )))
496 * (((
497 Read_Length:  RS485 response frame length supposed to receive. Max can receive
498 )))
499 * (((
500 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
501 )))
502 * (((
503 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
504 )))
505 * (((
506 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
507 )))
508
509 (((
510 **Example:**
511 )))
512
513 (((
514 User need to change external sensor use the type code as address code.
515 )))
516
517 (((
518 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
519 )))
520
521 [[image:image-20220624143553-10.png]]
522
523
524 The response frame of the sensor is as follows:
525
526 [[image:image-20220624143618-11.png]]
527
528
529
530 **Then the following parameters should be:**
531
532 * Address_Code range: A1
533 * Query_Length: 8
534 * Query_Command: A103000000019CAA
535 * Read_Length: 8
536 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
537 * has_CRC: 1
538 * timeout: 1500 (Fill in the test according to the actual situation)
539
540 **So the input command is:**
541
542 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
543
544
545 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
546
547 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
548 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
549 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
550
551 **Related commands:**
552
553 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
554
555 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
556
557
558 (% style="color:#037691" %)**Downlink Command:  **
559
560 **delete custom sensor A1:**
561
562 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
563
564 **Remove all custom sensors**
565
566 * 0xE5FF  
567
568
569 == 3.4 RS485 Test Command ==
570
571 (% style="color:#037691" %)**AT Command:**
572
573 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
574 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
575 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
576 (((
577 Send command to 485 sensor
578 )))
579
580 (((
581 Range : no more than 10 bytes
582 )))
583 )))|(% style="width:85px" %)OK
584
585 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
586
587 AT+RSWRITE=0103000001840A
588
589
590 (% style="color:#037691" %)**Downlink Command:**
591
592 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
593
594
595 == 3.5 RS485 response timeout ==
596
597 Feature: Set or get extended time to receive 485 sensor data.
598
599 (% style="color:#037691" %)**AT Command:**
600
601 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
602 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
603 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
604 (((
605 Set response timeout to:
606 )))
607
608 (((
609 Range : 0~~10000
610 )))
611 )))|(% style="width:85px" %)OK
612
613 (% style="color:#037691" %)**Downlink Command:**
614
615 Format: Command Code (0xE0) followed by 3 bytes time value.
616
617 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
618
619 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
620 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
621
622
623 == 3.6 Set Sensor Type ==
624
625 (((
626 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
627 )))
628
629 (((
630 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
631 )))
632
633 [[image:image-20220624144904-12.png]]
634
635
636 (% style="color:#037691" %)**AT Command:**
637
638 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
639 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
640 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
641
642 Eg: The setting command **AT+STYPE=802212** means:
643
644 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
645 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
646 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
647 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
648 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
649 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
650 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
651
652 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
653
654
655 (% style="color:#037691" %)**Downlink Command:**
656
657 * 0xE400802212     Same as: AT+STYPE=80221
658
659 (% style="color:red" %)**Note:**
660
661 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
662
663
664
665 = 4. Power consumption and battery =
666
667 == 4.1 Total Power Consumption ==
668
669 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
670
671
672 == 4.2 Reduce power consumption ==
673
674 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
675
676
677 == 4.3 Battery ==
678
679 (((
680 All sensors are only power by external power source. If external power source is off. All sensor won't work.
681 )))
682
683 (((
684 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
685 )))
686
687
688 = 5. Main Process Unit WSC1-L =
689
690 == 5.1 Features ==
691
692 * Wall Attachable.
693 * LoRaWAN v1.0.3 Class A protocol.
694 * RS485 / Modbus protocol
695 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
696 * AT Commands to change parameters
697 * Remote configure parameters via LoRaWAN Downlink
698 * Firmware upgradable via program port
699 * Powered by external 12v battery
700 * Back up rechargeable 1000mAh battery
701 * IP Rating: IP65
702 * Support default sensors or 3rd party RS485 sensors
703
704
705 == 5.2 Power Consumption ==
706
707 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
708
709
710 == 5.3 Storage & Operation Temperature ==
711
712 -20°C to +60°C
713
714
715 == 5.4 Pin Mapping ==
716
717 [[image:1656054149793-239.png]]
718
719
720 == 5.5 Mechanical ==
721
722 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
723
724
725 == 5.6 Connect to RS485 Sensors ==
726
727 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
728
729
730 [[image:1656054389031-379.png]]
731
732
733 Hardware Design for the Converter Board please see:
734
735 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
736
737
738 = 6. Weather Sensors =
739
740 == 6.1 Rain Gauge ~-~- WSS-01 ==
741
742
743 (((
744 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
745 )))
746
747 (((
748 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
749 )))
750
751 (((
752 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
753 )))
754
755 (((
756 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
757 )))
758
759 (((
760 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
761 )))
762
763
764 === 6.1.1 Feature ===
765
766 * RS485 Rain Gauge
767 * Small dimension, easy to install
768 * Vents under funnel, avoid leaf or other things to avoid rain flow.
769 * ABS enclosure.
770 * Horizontal adjustable.
771
772
773 === 6.1.2 Specification ===
774
775 * Resolution: 0.2mm
776 * Accuracy: ±3%
777 * Range: 0 ~~ 100mm
778 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
779 * Input Power: DC 5~~24v
780 * Interface: RS485
781 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
782 * Working Humidity: <100% (no dewing)
783 * Power Consumption: 4mA @ 12v.
784
785
786 === 6.1.3 Dimension ===
787
788 [[image:1656054957406-980.png]]
789
790
791 === 6.1.4 Pin Mapping ===
792
793 [[image:1656054972828-692.png]]
794
795
796 === 6.1.5 Installation Notice ===
797
798 (((
799 Do not power on while connect the cables. Double check the wiring before power on.
800 )))
801
802 (((
803 Installation Photo as reference:
804 )))
805
806
807 (((
808 (% style="color:#4472c4" %)** Install on Ground:**
809 )))
810
811 (((
812 WSS-01 Rain Gauge include screws so can install in ground directly .
813 )))
814
815
816 (((
817 (% style="color:#4472c4" %)** Install on pole:**
818 )))
819
820 (((
821 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
822 )))
823
824 [[image:image-20220624152218-1.png||height="526" width="276"]]
825
826 WS-K2: Bracket Kit for Pole installation
827
828
829 WSSC-K2 dimension document, please see:
830
831 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
832
833
834 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
835
836 [[image:1656055444035-179.png]]
837
838 (((
839 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
840 )))
841
842 (((
843 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
844 )))
845
846 (((
847 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
848 )))
849
850
851 === 6.2.1 Feature ===
852
853 * RS485 wind speed / direction sensor
854 * PC enclosure, resist corrosion
855
856
857 === 6.2.2 Specification ===
858
859 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
860 * Wind direction range: 0 ~~ 360°
861 * Start wind speed: ≤0.3m/s
862 * Accuracy: ±(0.3+0.03V)m/s , ±1°
863 * Input Power: DC 5~~24v
864 * Interface: RS485
865 * Working Temperature: -30℃~70℃
866 * Working Humidity: <100% (no dewing)
867 * Power Consumption: 13mA ~~ 12v.
868 * Cable Length: 2 meters
869
870
871 === 6.2.3 Dimension ===
872
873 [[image:image-20220624152813-2.png]]
874
875
876 === 6.2.4 Pin Mapping ===
877
878 [[image:1656056281231-994.png]]
879
880
881 === 6.2.5  Angle Mapping ===
882
883 [[image:1656056303845-585.png]]
884
885
886 === 6.2.6  Installation Notice ===
887
888 (((
889 Do not power on while connect the cables. Double check the wiring before power on.
890 )))
891
892 (((
893 The sensor must be installed with below direction, towards North.
894 )))
895
896 [[image:image-20220624153901-3.png]]
897
898
899 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
900
901
902 (((
903 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
904 )))
905
906 (((
907 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
908 )))
909
910 (((
911 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
912 )))
913
914
915 === 6.3.1 Feature ===
916
917 * RS485 CO2, PM2.5, PM10 sensor
918 * NDIR to measure CO2 with Internal Temperature Compensation
919 * Laser Beam Scattering to PM2.5 and PM10
920
921
922 === 6.3.2 Specification ===
923
924 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
925 * CO2 resolution: 1ppm
926 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
927 * PM2.5/PM10 resolution: 1μg/m3
928 * Input Power: DC 7 ~~ 24v
929 * Preheat time: 3min
930 * Interface: RS485
931 * Working Temperature:
932 ** CO2: 0℃~50℃;
933 ** PM2.5/PM10: -30 ~~ 50℃
934 * Working Humidity:
935 ** PM2.5/PM10: 15~80%RH (no dewing)
936 ** CO2: 0~95%RH
937 * Power Consumption: 50mA@ 12v.
938
939
940 === 6.3.3 Dimension ===
941
942 [[image:1656056708366-230.png]]
943
944
945 === 6.3.4 Pin Mapping ===
946
947 [[image:1656056722648-743.png]]
948
949
950 === 6.3.5 Installation Notice ===
951
952 Do not power on while connect the cables. Double check the wiring before power on.
953
954 [[image:1656056751153-304.png]]
955
956 [[image:1656056766224-773.png]]
957
958
959 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
960
961
962 (((
963 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
964 )))
965
966 (((
967 WSS-04 has auto heating feature, this ensures measurement more reliable.
968 )))
969
970 (((
971 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
972 )))
973
974
975
976 === 6.4.1 Feature ===
977
978 * RS485 Rain/Snow detect sensor
979 * Surface heating to dry
980 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
981
982
983 === 6.4.2 Specification ===
984
985 * Detect if there is rain or snow
986 * Input Power: DC 12 ~~ 24v
987 * Interface: RS485
988 * Working Temperature: -30℃~70℃
989 * Working Humidity: 10~90%RH
990 * Power Consumption:
991 ** No heating: 12mA @ 12v,
992 ** heating: 94ma @ 12v.
993
994
995 === 6.4.3 Dimension ===
996
997 [[image:1656056844782-155.png]]
998
999
1000 === 6.4.4 Pin Mapping ===
1001
1002 [[image:1656056855590-754.png]]
1003
1004
1005 === 6.4.5 Installation Notice ===
1006
1007 Do not power on while connect the cables. Double check the wiring before power on.
1008
1009
1010 (((
1011 Install with 15°degree.
1012 )))
1013
1014 [[image:1656056873783-780.png]]
1015
1016
1017 [[image:1656056883736-804.png]]
1018
1019
1020 === 6.4.6 Heating ===
1021
1022 (((
1023 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1024 )))
1025
1026
1027 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1028
1029
1030 (((
1031 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1032 )))
1033
1034 (((
1035 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1036 )))
1037
1038
1039 === 6.5.1 Feature ===
1040
1041 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1042
1043
1044 === 6.5.2 Specification ===
1045
1046 * Input Power: DC 12 ~~ 24v
1047 * Interface: RS485
1048 * Temperature Sensor Spec:
1049 ** Range: -30 ~~ 70℃
1050 ** resolution 0.1℃
1051 ** Accuracy: ±0.5℃
1052 * Humidity Sensor Spec:
1053 ** Range: 0 ~~ 100% RH
1054 ** resolution 0.1 %RH
1055 ** Accuracy: 3% RH
1056 * Pressure Sensor Spec:
1057 ** Range: 10~1100hPa
1058 ** Resolution: 0.1hPa
1059 ** Accuracy: ±0.1hPa
1060 * Illuminate sensor:
1061 ** Range: 0~2/20/200kLux
1062 ** Resolution: 10 Lux
1063 ** Accuracy: ±3%FS
1064 * Working Temperature: -30℃~70℃
1065 * Working Humidity: 10~90%RH
1066 * Power Consumption: 4mA @ 12v
1067
1068
1069 === 6.5.3 Dimension ===
1070
1071 [[image:1656057170639-522.png]]
1072
1073
1074 === 6.5.4 Pin Mapping ===
1075
1076 [[image:1656057181899-910.png]]
1077
1078
1079 === 6.5.5 Installation Notice ===
1080
1081 Do not power on while connect the cables. Double check the wiring before power on.
1082
1083 [[image:1656057199955-514.png]]
1084
1085
1086 [[image:1656057212438-475.png]]
1087
1088
1089 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1090
1091
1092 (((
1093 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1094 )))
1095
1096 (((
1097 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1098 )))
1099
1100 (((
1101 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1102 )))
1103
1104
1105
1106 === 6.6.1 Feature ===
1107
1108 * RS485 Total Solar Radiation sensor
1109 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1110 * Measure Reflected Radiation if sense area towards ground.
1111
1112
1113 === 6.6.2 Specification ===
1114
1115 * Input Power: DC 5 ~~ 24v
1116 * Interface: RS485
1117 * Detect spectrum: 0.3~3μm(300~3000nm)
1118 * Measure strength range: 0~2000W/m2
1119 * Resolution: 0.1W/m2
1120 * Accuracy: ±3%
1121 * Yearly Stability: ≤±2%
1122 * Cosine response: ≤7% (@ Sun angle 10°)
1123 * Temperature Effect: ±2%(-10℃~40℃)
1124 * Working Temperature: -40℃~70℃
1125 * Working Humidity: 10~90%RH
1126 * Power Consumption: 4mA @ 12v
1127
1128
1129 === 6.6.3 Dimension ===
1130
1131 [[image:1656057348695-898.png]]
1132
1133
1134 === 6.6.4 Pin Mapping ===
1135
1136 [[image:1656057359343-744.png]]
1137
1138
1139 === 6.6.5 Installation Notice ===
1140
1141 Do not power on while connect the cables. Double check the wiring before power on.
1142
1143 [[image:1656057369259-804.png]]
1144
1145
1146 [[image:1656057377943-564.png]]
1147
1148
1149 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1150
1151
1152 (((
1153 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1154 )))
1155
1156 (((
1157 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1158 )))
1159
1160 (((
1161 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1162 )))
1163
1164
1165 === 6.7.1 Feature ===
1166
1167 (((
1168 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1169 )))
1170
1171 (((
1172 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1173 )))
1174
1175
1176 === 6.7.2 Specification ===
1177
1178 * Input Power: DC 5 ~~ 24v
1179 * Interface: RS485
1180 * Response Spectrum: 400~700nm
1181 * Measure range: 0~2500μmol/m2•s
1182 * Resolution: 1μmol/m2•s
1183 * Accuracy: ±2%
1184 * Yearly Stability: ≤±2%
1185 * Working Temperature: -30℃~75℃
1186 * Working Humidity: 10~90%RH
1187 * Power Consumption: 3mA @ 12v
1188
1189
1190 === 6.7.3 Dimension ===
1191
1192 [[image:1656057538793-888.png]]
1193
1194
1195 === 6.7.4 Pin Mapping ===
1196
1197 [[image:1656057548116-203.png]]
1198
1199
1200 === 6.7.5 Installation Notice ===
1201
1202 Do not power on while connect the cables. Double check the wiring before power on.
1203
1204
1205 [[image:1656057557191-895.png]]
1206
1207
1208 [[image:1656057565783-251.png]]
1209
1210
1211 = 7. FAQ =
1212
1213 == 7.1 What else do I need to purchase to build Weather Station? ==
1214
1215 Below is the installation photo and structure:
1216
1217 [[image:1656057598349-319.png]]
1218
1219
1220 [[image:1656057608049-693.png]]
1221
1222
1223
1224 == 7.2 How to upgrade firmware for WSC1-L? ==
1225
1226 (((
1227 Firmware Location & Change log:
1228 )))
1229
1230 (((
1231 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1232 )))
1233
1234
1235 (((
1236 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1237 )))
1238
1239
1240 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1241
1242 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1243
1244
1245 == 7.4 Can I add my weather sensors? ==
1246
1247 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1248
1249
1250 = 8. Trouble Shooting =
1251
1252 == 8.1 AT Command input doesn't work ==
1253
1254 (((
1255 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1256 )))
1257
1258
1259 = 9. Order Info =
1260
1261 == 9.1 Main Process Unit ==
1262
1263 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1264
1265 (% style="color:blue" %)**XX**(%%): The default frequency band
1266
1267 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1268 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1269 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1270 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1271 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1272 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1273 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1274 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1275
1276
1277 == 9.2 Sensors ==
1278
1279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1280 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1281 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1282 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1283 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1284 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1285 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1286 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1287 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1288 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1289
1290 = 10. Support =
1291
1292 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1293 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1294
1295
1296 = 11. Appendix I: Field Installation Photo =
1297
1298
1299 [[image:1656058346362-132.png||height="685" width="732"]]
1300
1301 **Storage Battery**: 12v,12AH li battery
1302
1303
1304
1305 **Wind Speed/Direction**
1306
1307 [[image:1656058373174-421.png||height="356" width="731"]]
1308
1309
1310
1311 **Total Solar Radiation sensor**
1312
1313 [[image:1656058397364-282.png||height="453" width="732"]]
1314
1315
1316
1317 **PAR Sensor**
1318
1319 [[image:1656058416171-615.png]]
1320
1321
1322
1323 **CO2/PM2.5/PM10 3 in 1 sensor**
1324
1325 [[image:1656058441194-827.png||height="672" width="523"]]
1326
1327
1328
1329 **Rain / Snow Detect**
1330
1331 [[image:1656058451456-166.png]]
1332
1333
1334
1335 **Rain Gauge**
1336
1337 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0