Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
101
102
103
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151
152 [[image:1656042745346-283.png]]
153
154
155
156 == 2.4 Uplink Payload ==
157
158 Uplink payloads include two types: Valid Sensor Value and other status / control command.
159
160 * Valid Sensor Value: Use FPORT=2
161 * Other control command: Use FPORT other than 2.
162
163
164
165
166 === 2.4.1 Uplink FPORT~=5, Device Status ===
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185
186 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
187
188 For WSC1-L, this value is 0x0D.
189
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 (((
231 shows the battery voltage for WSC1-L MCU.
232 )))
233
234 (((
235 Ex1: 0x0BD6/1000 = 3.03 V
236 )))
237
238
239
240 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
241
242 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 [[image:image-20220624134713-1.png]]
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301
302 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 |=(% style="width: 70px;" %)**Sensor Type**|=(% style="width: 60px;" %)**Type Code**|=(% style="width: 100px;" %)**Range**|=(% style="width: 70px;" %)**Length ( Bytes)**|=(% style="width: 200px;" %)**Example**
304 |(% style="width:126px" %)**Wind Speed**|(% style="width:104px" %)0x01|(% style="width:135px" %)(((
305 Speed: 0~60m/s
306
307 Level: 0~17
308 )))|(% style="width:147px" %)0x03 |(% style="width:295px" %)(((
309 0x0024/10=3.6m/s
310
311 (0x02FE: No Sensor, 0x02FF: Value Error)
312
313 0x02=2
314
315 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 |(% style="width:126px" %)**Wind Direction**|(% style="width:104px" %)0x02|(% style="width:135px" %)(((
318 Angel: 0~360°
319
320 Direction: 16 positions
321 )))|(% style="width:147px" %)0x03|(% style="width:295px" %)(((
322 0x029A/10=66.6°
323
324 (0x0EFE: No Sensor,0x0EFF: Value Error)
325
326 0X03=3(ENE)
327
328 (0x14: No Sensor,0x15: Value Error)
329 )))
330 |(% style="width:126px" %)**Illumination**|(% style="width:104px" %)0x03|(% style="width:135px" %)0~200000Lux|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
331 0x04D2 *10=12340Lux
332
333 (0x4EFE: No Sensor,0x4EFF: Value Error)
334 )))
335 |(% style="width:126px" %)**Rain / Snow**|(% style="width:104px" %)0x04|(% style="width:135px" %)00: No, 01 Yes.|(% style="width:147px" %)0x01|(% style="width:295px" %)(((
336 0x00 (00) No Rain or snow detected
337
338 (0x02: No Sensor,0x03: Value Error)
339 )))
340 |(% style="width:126px" %)**CO2**|(% style="width:104px" %)0x05|(% style="width:135px" %)0~5000ppm|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
341 0x0378=888ppm
342
343 (0x14FE: No Sensor,0x14FF: Value Error)
344 )))
345 |(% style="width:126px" %)**Temperature**|(% style="width:104px" %)0x06|(% style="width:135px" %)-30℃~70℃|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
346 0xFFDD/10=-3.5℃
347
348 (0x02FE: No Sensor,0x02FF: Value Error)
349 )))
350 |(% style="width:126px" %)**Humidity**|(% style="width:104px" %)0x07|(% style="width:135px" %)0~100%RH|(% style="width:147px" %)0x02|(% style="width:295px" %)0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
351 |(% style="width:126px" %)**Pressure**|(% style="width:104px" %)0x08|(% style="width:135px" %)10~1100hPa|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
352 0x2748/10=1005.6hPa
353
354 (0x00: No Sensor,0x01: Value Error)
355 )))
356 |(% style="width:126px" %)**Rain Gauge**|(% style="width:104px" %)0x09|(% style="width:135px" %)0mm~~100mm(Rainfall in the last 24 hours)|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
357 0x0050/10=8mm(Rainfall within 24 hours: 8.0mm)
358
359 (0x03FE: No Sensor,0x03FF: Value Error)
360 )))
361 |(% style="width:126px" %)**PM2.5**|(% style="width:104px" %)0x0A|(% style="width:135px" %)0~1000μg/m^^3^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
362 0x0023=35μg/m^^3 ^^
363
364 (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:126px" %)**PM10**|(% style="width:104px" %)0x0B|(% style="width:135px" %)0~1000μg/m^^3^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
367 0x002D=45μg/m^^3 ^^
368
369 (0x03FE: No Sensor,0x03FF: Value Error)
370 )))
371 |(% style="width:126px" %)**PAR**|(% style="width:104px" %)0x0C|(% style="width:135px" %)0~2500μmol/m^^2^^•s|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
372 0x00B3=179μmol/m^^2^^•s
373
374 (0x09FE: No Sensor,0x9FF: Value Error)
375 )))
376 |(% style="width:126px" %)(((
377 **Total Solar**
378
379 **Radiation**
380 )))|(% style="width:104px" %)0x0D|(% style="width:135px" %)0~2000W/m^^2^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
381 0x0073/10=11.5W/m^^2^^
382
383 (0x4EFE: No Sensor,0x4EFF: Value Error)
384 )))
385
386
387 (((
388 Below is an example payload:  [[image:image-20220624140615-3.png]]
389 )))
390
391 (((
392
393 )))
394
395 (((
396 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
397 )))
398
399 * (((
400 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
401 )))
402
403 (((
404 Uplink 1:  [[image:image-20220624140735-4.png]]
405 )))
406
407 (((
408
409 )))
410
411 (((
412 Uplink 2:  [[image:image-20220624140842-5.png]]
413 )))
414
415 (((
416
417 )))
418
419 * (((
420 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
421 )))
422
423 (((
424 Uplink 1:  [[image:image-20220624141025-6.png]]
425 )))
426
427 (((
428
429 )))
430
431 Uplink 2:  [[image:image-20220624141100-7.png]]
432
433
434
435 === 2.4.3 Decoder in TTN V3 ===
436
437 (((
438 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
439 )))
440
441 (((
442
443 )))
444
445 (((
446 Download decoder for suitable platform from:
447 )))
448
449 (((
450 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
451 )))
452
453 (((
454 and put as below:
455 )))
456
457 [[image:1656051152438-578.png]]
458
459
460
461 == 2.5 Show data on Application Server ==
462
463 (((
464 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
465 )))
466
467 (((
468
469 )))
470
471 (((
472 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
473 )))
474
475 (((
476 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
477 )))
478
479 [[image:1656051197172-131.png]]
480
481
482 **Add TagoIO:**
483
484 [[image:1656051223585-631.png]]
485
486
487 **Authorization:**
488
489 [[image:1656051248318-368.png]]
490
491
492 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
493
494 [[image:1656051277767-168.png]]
495
496
497
498 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
499
500 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
501
502 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
503 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
504
505 There are two kinds of commands to configure WSC1-L, they are:
506
507 * (% style="color:#4472c4" %)**General Commands**.
508
509 These commands are to configure:
510
511 * General system settings like: uplink interval.
512 * LoRaWAN protocol & radio related command.
513
514 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
515
516 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
517
518
519 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
520
521 These commands only valid for WSC1-L, as below:
522
523
524
525 == 3.1 Set Transmit Interval Time ==
526
527 Feature: Change LoRaWAN End Node Transmit Interval.
528
529 (% style="color:#037691" %)**AT Command: AT+TDC**
530
531 [[image:image-20220624142619-8.png]]
532
533
534 (% style="color:#037691" %)**Downlink Command: 0x01**
535
536 Format: Command Code (0x01) followed by 3 bytes time value.
537
538 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
539
540 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
541 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
542
543 == 3.2 Set Emergency Mode ==
544
545 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
546
547 (% style="color:#037691" %)**AT Command:**
548
549 [[image:image-20220624142956-9.png]]
550
551
552 (% style="color:#037691" %)**Downlink Command:**
553
554 * 0xE101     Same as: AT+ALARMMOD=1
555 * 0xE100     Same as: AT+ALARMMOD=0
556
557 == 3.3 Add or Delete RS485 Sensor ==
558
559 (((
560 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
561 )))
562
563 (((
564 (% style="color:#037691" %)**AT Command: **
565 )))
566
567 (((
568 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
569 )))
570
571 * (((
572 Type_Code range:  A1 ~~ A4
573 )))
574 * (((
575 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
576 )))
577 * (((
578 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
579 )))
580 * (((
581 Read_Length:  RS485 response frame length supposed to receive. Max can receive
582 )))
583 * (((
584 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
585 )))
586 * (((
587 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
588 )))
589 * (((
590 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
591 )))
592
593 (((
594 **Example:**
595 )))
596
597 (((
598 User need to change external sensor use the type code as address code.
599 )))
600
601 (((
602 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
603 )))
604
605 [[image:image-20220624143553-10.png]]
606
607
608 The response frame of the sensor is as follows:
609
610 [[image:image-20220624143618-11.png]]
611
612
613
614 **Then the following parameters should be:**
615
616 * Address_Code range: A1
617 * Query_Length: 8
618 * Query_Command: A103000000019CAA
619 * Read_Length: 8
620 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
621 * has_CRC: 1
622 * timeout: 1500 (Fill in the test according to the actual situation)
623
624 **So the input command is:**
625
626 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
627
628
629 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
630
631 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
632 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
633 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
634
635 **Related commands:**
636
637 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
638
639 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
640
641
642 (% style="color:#037691" %)**Downlink Command:  **
643
644 **delete custom sensor A1:**
645
646 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
647
648 **Remove all custom sensors**
649
650 * 0xE5FF  
651
652 == 3.4 RS485 Test Command ==
653
654 (% style="color:#037691" %)**AT Command:**
655
656 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
657 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
658 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
659 (((
660 Send command to 485 sensor
661 )))
662
663 (((
664 Range : no more than 10 bytes
665 )))
666 )))|(% style="width:85px" %)OK
667
668 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
669
670 AT+RSWRITE=0103000001840A
671
672
673 (% style="color:#037691" %)**Downlink Command:**
674
675 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
676
677 == 3.5 RS485 response timeout ==
678
679 Feature: Set or get extended time to receive 485 sensor data.
680
681 (% style="color:#037691" %)**AT Command:**
682
683 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
684 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
685 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
686 (((
687 Set response timeout to:
688 )))
689
690 (((
691 Range : 0~~10000
692 )))
693 )))|(% style="width:85px" %)OK
694
695 (% style="color:#037691" %)**Downlink Command:**
696
697 Format: Command Code (0xE0) followed by 3 bytes time value.
698
699 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
700
701 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
702 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
703
704 == 3.6 Set Sensor Type ==
705
706 (((
707 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
708 )))
709
710 (((
711 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
712 )))
713
714 [[image:image-20220624144904-12.png]]
715
716
717 (% style="color:#037691" %)**AT Command:**
718
719 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
720 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
721 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
722
723 Eg: The setting command **AT+STYPE=802212** means:
724
725 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
726 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
727 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
728 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
729 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
730 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
731 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
732
733 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
734
735
736 (% style="color:#037691" %)**Downlink Command:**
737
738 * 0xE400802212     Same as: AT+STYPE=80221
739
740 (% style="color:red" %)**Note:**
741
742 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
743
744
745
746
747 = 4. Power consumption and battery =
748
749 == 4.1 Total Power Consumption ==
750
751 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
752
753
754 == 4.2 Reduce power consumption ==
755
756 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
757
758
759 == 4.3 Battery ==
760
761 (((
762 All sensors are only power by external power source. If external power source is off. All sensor won't work.
763 )))
764
765 (((
766 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
767 )))
768
769
770 = 5. Main Process Unit WSC1-L =
771
772 == 5.1 Features ==
773
774 * Wall Attachable.
775 * LoRaWAN v1.0.3 Class A protocol.
776 * RS485 / Modbus protocol
777 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
778 * AT Commands to change parameters
779 * Remote configure parameters via LoRaWAN Downlink
780 * Firmware upgradable via program port
781 * Powered by external 12v battery
782 * Back up rechargeable 1000mAh battery
783 * IP Rating: IP65
784 * Support default sensors or 3rd party RS485 sensors
785
786 == 5.2 Power Consumption ==
787
788 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
789
790
791 == 5.3 Storage & Operation Temperature ==
792
793 -20°C to +60°C
794
795
796 == 5.4 Pin Mapping ==
797
798 [[image:1656054149793-239.png]]
799
800
801 == 5.5 Mechanical ==
802
803 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
804
805
806 == 5.6 Connect to RS485 Sensors ==
807
808 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
809
810
811 [[image:1656054389031-379.png]]
812
813
814 Hardware Design for the Converter Board please see:
815
816 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
817
818
819 = 6. Weather Sensors =
820
821 == 6.1 Rain Gauge ~-~- WSS-01 ==
822
823
824 (((
825 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
826 )))
827
828 (((
829 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
830 )))
831
832 (((
833 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
834 )))
835
836 (((
837 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
838 )))
839
840 (((
841 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
842 )))
843
844
845 === 6.1.1 Feature ===
846
847 * RS485 Rain Gauge
848 * Small dimension, easy to install
849 * Vents under funnel, avoid leaf or other things to avoid rain flow.
850 * ABS enclosure.
851 * Horizontal adjustable.
852
853 === 6.1.2 Specification ===
854
855 * Resolution: 0.2mm
856 * Accuracy: ±3%
857 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
858 * Input Power: DC 5~~24v
859 * Interface: RS485
860 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
861 * Working Humidity: <100% (no dewing)
862 * Power Consumption: 4mA @ 12v.
863
864 === 6.1.3 Dimension ===
865
866 [[image:1656054957406-980.png]]
867
868
869 === 6.1.4 Pin Mapping ===
870
871 [[image:1656054972828-692.png]]
872
873
874 === 6.1.5 Installation Notice ===
875
876 (((
877 Do not power on while connect the cables. Double check the wiring before power on.
878 )))
879
880 (((
881 Installation Photo as reference:
882 )))
883
884
885 (((
886 (% style="color:#4472c4" %)** Install on Ground:**
887 )))
888
889 (((
890 WSS-01 Rain Gauge include screws so can install in ground directly .
891 )))
892
893
894 (((
895 (% style="color:#4472c4" %)** Install on pole:**
896 )))
897
898 (((
899 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
900 )))
901
902 [[image:image-20220624152218-1.png||height="526" width="276"]]
903
904 WS-K2: Bracket Kit for Pole installation
905
906
907 WSSC-K2 dimension document, please see:
908
909 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
910
911
912 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
913
914 [[image:1656055444035-179.png]]
915
916 (((
917 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
918 )))
919
920 (((
921 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
922 )))
923
924 (((
925 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
926 )))
927
928
929 === 6.2.1 Feature ===
930
931 * RS485 wind speed / direction sensor
932 * PC enclosure, resist corrosion
933
934 === 6.2.2 Specification ===
935
936 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
937 * Wind direction range: 0 ~~ 360°
938 * Start wind speed: ≤0.3m/s
939 * Accuracy: ±(0.3+0.03V)m/s , ±1°
940 * Input Power: DC 5~~24v
941 * Interface: RS485
942 * Working Temperature: -30℃~70℃
943 * Working Humidity: <100% (no dewing)
944 * Power Consumption: 13mA ~~ 12v.
945 * Cable Length: 2 meters
946
947 === 6.2.3 Dimension ===
948
949 [[image:image-20220624152813-2.png]]
950
951
952 === 6.2.4 Pin Mapping ===
953
954 [[image:1656056281231-994.png]]
955
956
957 === 6.2.5  Angle Mapping ===
958
959 [[image:1656056303845-585.png]]
960
961
962 === 6.2.6  Installation Notice ===
963
964 (((
965 Do not power on while connect the cables. Double check the wiring before power on.
966 )))
967
968 (((
969 The sensor must be installed with below direction, towards North.
970 )))
971
972 [[image:image-20220624153901-3.png]]
973
974
975 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
976
977
978 (((
979 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
980 )))
981
982 (((
983 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
984 )))
985
986 (((
987 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
988 )))
989
990
991 === 6.3.1 Feature ===
992
993 * RS485 CO2, PM2.5, PM10 sensor
994 * NDIR to measure CO2 with Internal Temperature Compensation
995 * Laser Beam Scattering to PM2.5 and PM10
996
997 === 6.3.2 Specification ===
998
999 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1000 * CO2 resolution: 1ppm
1001 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1002 * PM2.5/PM10 resolution: 1μg/m3
1003 * Input Power: DC 7 ~~ 24v
1004 * Preheat time: 3min
1005 * Interface: RS485
1006 * Working Temperature:
1007 ** CO2: 0℃~50℃;
1008 ** PM2.5/PM10: -30 ~~ 50℃
1009 * Working Humidity:
1010 ** PM2.5/PM10: 15~80%RH (no dewing)
1011 ** CO2: 0~95%RH
1012 * Power Consumption: 50mA@ 12v.
1013
1014 === 6.3.3 Dimension ===
1015
1016 [[image:1656056708366-230.png]]
1017
1018
1019 === 6.3.4 Pin Mapping ===
1020
1021 [[image:1656056722648-743.png]]
1022
1023
1024 === 6.3.5 Installation Notice ===
1025
1026 Do not power on while connect the cables. Double check the wiring before power on.
1027
1028 [[image:1656056751153-304.png]]
1029
1030 [[image:1656056766224-773.png]]
1031
1032
1033 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1034
1035
1036 (((
1037 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1038 )))
1039
1040 (((
1041 WSS-04 has auto heating feature, this ensures measurement more reliable.
1042 )))
1043
1044 (((
1045 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1046 )))
1047
1048
1049
1050 === 6.4.1 Feature ===
1051
1052 * RS485 Rain/Snow detect sensor
1053 * Surface heating to dry
1054 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1055
1056 === 6.4.2 Specification ===
1057
1058 * Detect if there is rain or snow
1059 * Input Power: DC 12 ~~ 24v
1060 * Interface: RS485
1061 * Working Temperature: -30℃~70℃
1062 * Working Humidity: 10~90%RH
1063 * Power Consumption:
1064 ** No heating: 12mA @ 12v,
1065 ** heating: 94ma @ 12v.
1066
1067 === 6.4.3 Dimension ===
1068
1069 [[image:1656056844782-155.png]]
1070
1071
1072 === 6.4.4 Pin Mapping ===
1073
1074 [[image:1656056855590-754.png]]
1075
1076
1077 === 6.4.5 Installation Notice ===
1078
1079 Do not power on while connect the cables. Double check the wiring before power on.
1080
1081
1082 (((
1083 Install with 15°degree.
1084 )))
1085
1086 [[image:1656056873783-780.png]]
1087
1088
1089 [[image:1656056883736-804.png]]
1090
1091
1092 === 6.4.6 Heating ===
1093
1094 (((
1095 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1096 )))
1097
1098
1099 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1100
1101
1102 (((
1103 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1104 )))
1105
1106 (((
1107 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1108 )))
1109
1110
1111 === 6.5.1 Feature ===
1112
1113 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1114
1115 === 6.5.2 Specification ===
1116
1117 * Input Power: DC 12 ~~ 24v
1118 * Interface: RS485
1119 * Temperature Sensor Spec:
1120 ** Range: -30 ~~ 70℃
1121 ** resolution 0.1℃
1122 ** Accuracy: ±0.5℃
1123 * Humidity Sensor Spec:
1124 ** Range: 0 ~~ 100% RH
1125 ** resolution 0.1 %RH
1126 ** Accuracy: 3% RH
1127 * Pressure Sensor Spec:
1128 ** Range: 10~1100hPa
1129 ** Resolution: 0.1hPa
1130 ** Accuracy: ±0.1hPa
1131 * Illuminate sensor:
1132 ** Range: 0~2/20/200kLux
1133 ** Resolution: 10 Lux
1134 ** Accuracy: ±3%FS
1135 * Working Temperature: -30℃~70℃
1136 * Working Humidity: 10~90%RH
1137 * Power Consumption: 4mA @ 12v
1138
1139 === 6.5.3 Dimension ===
1140
1141 [[image:1656057170639-522.png]]
1142
1143
1144 === 6.5.4 Pin Mapping ===
1145
1146 [[image:1656057181899-910.png]]
1147
1148
1149 === 6.5.5 Installation Notice ===
1150
1151 Do not power on while connect the cables. Double check the wiring before power on.
1152
1153 [[image:1656057199955-514.png]]
1154
1155
1156 [[image:1656057212438-475.png]]
1157
1158
1159 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1160
1161
1162 (((
1163 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1164 )))
1165
1166 (((
1167 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1168 )))
1169
1170 (((
1171 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1172 )))
1173
1174
1175
1176 === 6.6.1 Feature ===
1177
1178 * RS485 Total Solar Radiation sensor
1179 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1180 * Measure Reflected Radiation if sense area towards ground.
1181
1182 === 6.6.2 Specification ===
1183
1184 * Input Power: DC 5 ~~ 24v
1185 * Interface: RS485
1186 * Detect spectrum: 0.3~3μm(300~3000nm)
1187 * Measure strength range: 0~2000W/m2
1188 * Resolution: 0.1W/m2
1189 * Accuracy: ±3%
1190 * Yearly Stability: ≤±2%
1191 * Cosine response: ≤7% (@ Sun angle 10°)
1192 * Temperature Effect: ±2%(-10℃~40℃)
1193 * Working Temperature: -40℃~70℃
1194 * Working Humidity: 10~90%RH
1195 * Power Consumption: 4mA @ 12v
1196
1197 === 6.6.3 Dimension ===
1198
1199 [[image:1656057348695-898.png]]
1200
1201
1202 === 6.6.4 Pin Mapping ===
1203
1204 [[image:1656057359343-744.png]]
1205
1206
1207 === 6.6.5 Installation Notice ===
1208
1209 Do not power on while connect the cables. Double check the wiring before power on.
1210
1211 [[image:1656057369259-804.png]]
1212
1213
1214 [[image:1656057377943-564.png]]
1215
1216
1217 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1218
1219
1220 (((
1221 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1222 )))
1223
1224 (((
1225 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1226 )))
1227
1228 (((
1229 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1230 )))
1231
1232
1233 === 6.7.1 Feature ===
1234
1235 (((
1236 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1237 )))
1238
1239 (((
1240 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1241 )))
1242
1243
1244 === 6.7.2 Specification ===
1245
1246 * Input Power: DC 5 ~~ 24v
1247 * Interface: RS485
1248 * Response Spectrum: 400~700nm
1249 * Measure range: 0~2500μmol/m2•s
1250 * Resolution: 1μmol/m2•s
1251 * Accuracy: ±2%
1252 * Yearly Stability: ≤±2%
1253 * Working Temperature: -30℃~75℃
1254 * Working Humidity: 10~90%RH
1255 * Power Consumption: 3mA @ 12v
1256
1257 === 6.7.3 Dimension ===
1258
1259 [[image:1656057538793-888.png]]
1260
1261
1262 === 6.7.4 Pin Mapping ===
1263
1264 [[image:1656057548116-203.png]]
1265
1266
1267 === 6.7.5 Installation Notice ===
1268
1269 Do not power on while connect the cables. Double check the wiring before power on.
1270
1271
1272 [[image:1656057557191-895.png]]
1273
1274
1275 [[image:1656057565783-251.png]]
1276
1277
1278 = 7. FAQ =
1279
1280 == 7.1 What else do I need to purchase to build Weather Station? ==
1281
1282 Below is the installation photo and structure:
1283
1284 [[image:1656057598349-319.png]]
1285
1286
1287 [[image:1656057608049-693.png]]
1288
1289
1290
1291 == 7.2 How to upgrade firmware for WSC1-L? ==
1292
1293 (((
1294 Firmware Location & Change log:
1295 )))
1296
1297 (((
1298 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1299 )))
1300
1301
1302 (((
1303 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1304 )))
1305
1306
1307 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1308
1309 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1310
1311
1312 == 7.4 Can I add my weather sensors? ==
1313
1314 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1315
1316
1317 = 8. Trouble Shooting =
1318
1319 == 8.1 AT Command input doesn't work ==
1320
1321 (((
1322 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1323 )))
1324
1325
1326 = 9. Order Info =
1327
1328 == 9.1 Main Process Unit ==
1329
1330 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1331
1332 (% style="color:blue" %)**XX**(%%): The default frequency band
1333
1334 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1335 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1336 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1337 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1338 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1339 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1340 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1341 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1342
1343 == 9.2 Sensors ==
1344
1345 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1346 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1347 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1348 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1349 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1350 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1351 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1352 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1353 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1354 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1355
1356 = 10. Support =
1357
1358 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1359 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1360
1361 = 11. Appendix I: Field Installation Photo =
1362
1363
1364 [[image:1656058346362-132.png||height="685" width="732"]]
1365
1366 **Storage Battery**: 12v,12AH li battery
1367
1368
1369
1370 **Wind Speed/Direction**
1371
1372 [[image:1656058373174-421.png||height="356" width="731"]]
1373
1374
1375
1376 **Total Solar Radiation sensor**
1377
1378 [[image:1656058397364-282.png||height="453" width="732"]]
1379
1380
1381
1382 **PAR Sensor**
1383
1384 [[image:1656058416171-615.png]]
1385
1386
1387
1388 **CO2/PM2.5/PM10 3 in 1 sensor**
1389
1390 [[image:1656058441194-827.png||height="672" width="523"]]
1391
1392
1393
1394 **Rain / Snow Detect**
1395
1396 [[image:1656058451456-166.png]]
1397
1398
1399
1400 **Rain Gauge**
1401
1402 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0