Version 86.8 by Xiaoling on 2022/07/06 15:37

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99 == 2.3 Example to use for LoRaWAN network ==
100
101 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
102
103
104 [[image:1656042612899-422.png]]
105
106
107
108 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
109
110
111 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
112
113 Each WSC1-L is shipped with a sticker with the default device EUI as below:
114
115 [[image:image-20220624115043-1.jpeg]]
116
117
118 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
119
120 **Add APP EUI in the application.**
121
122 [[image:1656042662694-311.png]]
123
124 [[image:1656042673910-429.png]]
125
126
127
128
129 **Choose Manually to add WSC1-L**
130
131 [[image:1656042695755-103.png]]
132
133
134
135 **Add APP KEY and DEV EUI**
136
137 [[image:1656042723199-746.png]]
138
139
140
141 (((
142 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143 )))
144
145
146 [[image:1656042745346-283.png]]
147
148
149
150 == 2.4 Uplink Payload ==
151
152 Uplink payloads include two types: Valid Sensor Value and other status / control command.
153
154 * Valid Sensor Value: Use FPORT=2
155 * Other control command: Use FPORT other than 2.
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 (((
222 shows the battery voltage for WSC1-L MCU.
223 )))
224
225 (((
226 Ex1: 0x0BD6/1000 = 3.03 V
227 )))
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 |=(% style="width: 70px;" %)**Sensor Type**|=(% style="width: 60px;" %)**Type Code**|=(% style="width: 100px;" %)**Range**|=(% style="width: 60px;" %)**Length ( Bytes)**|=(% style="width: 200px;" %)**Example**
295 |(% style="width:126px" %)**Wind Speed**|(% style="width:104px" %)0x01|(% style="width:135px" %)(((
296 Speed: 0~60m/s
297
298 Level: 0~17
299 )))|(% style="width:147px" %)0x03 |(% style="width:295px" %)(((
300 0x0024/10=3.6m/s
301
302 (0x02FE: No Sensor, 0x02FF: Value Error)
303
304 0x02=2
305
306 (0x14: No Sensor, 0x15: Value Error)
307 )))
308 |(% style="width:126px" %)**Wind Direction**|(% style="width:104px" %)0x02|(% style="width:135px" %)(((
309 Angel: 0~360°
310
311 Direction: 16 positions
312 )))|(% style="width:147px" %)0x03|(% style="width:295px" %)(((
313 0x029A/10=66.6°
314
315 (0x0EFE: No Sensor,0x0EFF: Value Error)
316
317 0X03=3(ENE)
318
319 (0x14: No Sensor,0x15: Value Error)
320 )))
321 |(% style="width:126px" %)**Illumination**|(% style="width:104px" %)0x03|(% style="width:135px" %)0~200000Lux|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
322 0x04D2 *10=12340Lux
323
324 (0x4EFE: No Sensor,0x4EFF: Value Error)
325 )))
326 |(% style="width:126px" %)**Rain / Snow**|(% style="width:104px" %)0x04|(% style="width:135px" %)00: No, 01 Yes.|(% style="width:147px" %)0x01|(% style="width:295px" %)(((
327 0x00 (00) No Rain or snow detected
328
329 (0x02: No Sensor,0x03: Value Error)
330 )))
331 |(% style="width:126px" %)**CO2**|(% style="width:104px" %)0x05|(% style="width:135px" %)0~5000ppm|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
332 0x0378=888ppm
333
334 (0x14FE: No Sensor,0x14FF: Value Error)
335 )))
336 |(% style="width:126px" %)**Temperature**|(% style="width:104px" %)0x06|(% style="width:135px" %)-30℃~70℃|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
337 0xFFDD/10=-3.5℃
338
339 (0x02FE: No Sensor,0x02FF: Value Error)
340 )))
341 |(% style="width:126px" %)**Humidity**|(% style="width:104px" %)0x07|(% style="width:135px" %)0~100%RH|(% style="width:147px" %)0x02|(% style="width:295px" %)0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
342 |(% style="width:126px" %)**Pressure**|(% style="width:104px" %)0x08|(% style="width:135px" %)10~1100hPa|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
343 0x2748/10=1005.6hPa
344
345 (0x00: No Sensor,0x01: Value Error)
346 )))
347 |(% style="width:126px" %)**Rain Gauge**|(% style="width:104px" %)0x09|(% style="width:135px" %)0mm~~100mm(Rainfall in the last 24 hours)|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
348 0x0050/10=8mm(Rainfall within 24 hours: 8.0mm)
349
350 (0x03FE: No Sensor,0x03FF: Value Error)
351 )))
352 |(% style="width:126px" %)**PM2.5**|(% style="width:104px" %)0x0A|(% style="width:135px" %)0~1000μg/m^^3^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
353 0x0023=35μg/m^^3 ^^
354
355 (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |(% style="width:126px" %)**PM10**|(% style="width:104px" %)0x0B|(% style="width:135px" %)0~1000μg/m^^3^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
358 0x002D=45μg/m^^3 ^^
359
360 (0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |(% style="width:126px" %)**PAR**|(% style="width:104px" %)0x0C|(% style="width:135px" %)0~2500μmol/m^^2^^•s|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
363 0x00B3=179μmol/m^^2^^•s
364
365 (0x09FE: No Sensor,0x9FF: Value Error)
366 )))
367 |(% style="width:126px" %)(((
368 **Total Solar**
369
370 **Radiation**
371 )))|(% style="width:104px" %)0x0D|(% style="width:135px" %)0~2000W/m^^2^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
372 0x0073/10=11.5W/m^^2^^
373
374 (0x4EFE: No Sensor,0x4EFF: Value Error)
375 )))
376
377
378
379 (((
380 Below is an example payload:  [[image:image-20220624140615-3.png]]
381 )))
382
383 (((
384
385 )))
386
387 (((
388 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
389 )))
390
391 * (((
392 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
393 )))
394
395 (((
396 Uplink 1:  [[image:image-20220624140735-4.png]]
397 )))
398
399 (((
400
401 )))
402
403 (((
404 Uplink 2:  [[image:image-20220624140842-5.png]]
405 )))
406
407 (((
408
409 )))
410
411 * (((
412 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
413 )))
414
415 (((
416 Uplink 1:  [[image:image-20220624141025-6.png]]
417 )))
418
419 (((
420
421 )))
422
423 Uplink 2:  [[image:image-20220624141100-7.png]]
424
425
426
427 === 2.4.3 Decoder in TTN V3 ===
428
429 (((
430 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
431 )))
432
433 (((
434
435 )))
436
437 (((
438 Download decoder for suitable platform from:
439 )))
440
441 (((
442 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
443 )))
444
445 (((
446 and put as below:
447 )))
448
449 [[image:1656051152438-578.png]]
450
451
452
453 == 2.5 Show data on Application Server ==
454
455 (((
456 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
457 )))
458
459 (((
460
461 )))
462
463 (((
464 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
465 )))
466
467 (((
468 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
469 )))
470
471 [[image:1656051197172-131.png]]
472
473
474 **Add TagoIO:**
475
476 [[image:1656051223585-631.png]]
477
478
479 **Authorization:**
480
481 [[image:1656051248318-368.png]]
482
483
484 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
485
486 [[image:1656051277767-168.png]]
487
488
489
490 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
491
492 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
493
494 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
495 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
496
497 There are two kinds of commands to configure WSC1-L, they are:
498
499 * (% style="color:#4472c4" %)**General Commands**.
500
501 These commands are to configure:
502
503 * General system settings like: uplink interval.
504 * LoRaWAN protocol & radio related command.
505
506 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
507
508 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
509
510
511 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
512
513 These commands only valid for WSC1-L, as below:
514
515
516
517 == 3.1 Set Transmit Interval Time ==
518
519 Feature: Change LoRaWAN End Node Transmit Interval.
520
521 (% style="color:#037691" %)**AT Command: AT+TDC**
522
523 [[image:image-20220624142619-8.png]]
524
525
526 (% style="color:#037691" %)**Downlink Command: 0x01**
527
528 Format: Command Code (0x01) followed by 3 bytes time value.
529
530 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
531
532 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
533 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
534
535 == 3.2 Set Emergency Mode ==
536
537 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
538
539 (% style="color:#037691" %)**AT Command:**
540
541 [[image:image-20220624142956-9.png]]
542
543
544 (% style="color:#037691" %)**Downlink Command:**
545
546 * 0xE101     Same as: AT+ALARMMOD=1
547 * 0xE100     Same as: AT+ALARMMOD=0
548
549 == 3.3 Add or Delete RS485 Sensor ==
550
551 (((
552 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
553 )))
554
555 (((
556 (% style="color:#037691" %)**AT Command: **
557 )))
558
559 (((
560 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
561 )))
562
563 * (((
564 Type_Code range:  A1 ~~ A4
565 )))
566 * (((
567 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
568 )))
569 * (((
570 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
571 )))
572 * (((
573 Read_Length:  RS485 response frame length supposed to receive. Max can receive
574 )))
575 * (((
576 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
577 )))
578 * (((
579 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
580 )))
581 * (((
582 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
583 )))
584
585 (((
586 **Example:**
587 )))
588
589 (((
590 User need to change external sensor use the type code as address code.
591 )))
592
593 (((
594 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
595 )))
596
597 [[image:image-20220624143553-10.png]]
598
599
600 The response frame of the sensor is as follows:
601
602 [[image:image-20220624143618-11.png]]
603
604
605
606 **Then the following parameters should be:**
607
608 * Address_Code range: A1
609 * Query_Length: 8
610 * Query_Command: A103000000019CAA
611 * Read_Length: 8
612 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
613 * has_CRC: 1
614 * timeout: 1500 (Fill in the test according to the actual situation)
615
616 **So the input command is:**
617
618 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
619
620
621 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
622
623 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
624 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
625 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
626
627 **Related commands:**
628
629 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
630
631 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
632
633
634 (% style="color:#037691" %)**Downlink Command:  **
635
636 **delete custom sensor A1:**
637
638 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
639
640 **Remove all custom sensors**
641
642 * 0xE5FF  
643
644 == 3.4 RS485 Test Command ==
645
646 (% style="color:#037691" %)**AT Command:**
647
648 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
649 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
650 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
651 (((
652 Send command to 485 sensor
653 )))
654
655 (((
656 Range : no more than 10 bytes
657 )))
658 )))|(% style="width:85px" %)OK
659
660 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
661
662 AT+RSWRITE=0103000001840A
663
664
665 (% style="color:#037691" %)**Downlink Command:**
666
667 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
668
669 == 3.5 RS485 response timeout ==
670
671 Feature: Set or get extended time to receive 485 sensor data.
672
673 (% style="color:#037691" %)**AT Command:**
674
675 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
676 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
677 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
678 (((
679 Set response timeout to:
680 )))
681
682 (((
683 Range : 0~~10000
684 )))
685 )))|(% style="width:85px" %)OK
686
687 (% style="color:#037691" %)**Downlink Command:**
688
689 Format: Command Code (0xE0) followed by 3 bytes time value.
690
691 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
692
693 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
694 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
695
696 == 3.6 Set Sensor Type ==
697
698 (((
699 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
700 )))
701
702 (((
703 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
704 )))
705
706 [[image:image-20220624144904-12.png]]
707
708
709 (% style="color:#037691" %)**AT Command:**
710
711 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
712 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
713 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
714
715 Eg: The setting command **AT+STYPE=802212** means:
716
717 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
718 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
719 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
720 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
721 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
722 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
723 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
724
725 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
726
727
728 (% style="color:#037691" %)**Downlink Command:**
729
730 * 0xE400802212     Same as: AT+STYPE=80221
731
732 (% style="color:red" %)**Note:**
733
734 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
735
736
737
738
739 = 4. Power consumption and battery =
740
741 == 4.1 Total Power Consumption ==
742
743 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
744
745
746 == 4.2 Reduce power consumption ==
747
748 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
749
750
751 == 4.3 Battery ==
752
753 (((
754 All sensors are only power by external power source. If external power source is off. All sensor won't work.
755 )))
756
757 (((
758 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
759 )))
760
761
762 = 5. Main Process Unit WSC1-L =
763
764 == 5.1 Features ==
765
766 * Wall Attachable.
767 * LoRaWAN v1.0.3 Class A protocol.
768 * RS485 / Modbus protocol
769 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
770 * AT Commands to change parameters
771 * Remote configure parameters via LoRaWAN Downlink
772 * Firmware upgradable via program port
773 * Powered by external 12v battery
774 * Back up rechargeable 1000mAh battery
775 * IP Rating: IP65
776 * Support default sensors or 3rd party RS485 sensors
777
778 == 5.2 Power Consumption ==
779
780 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
781
782
783 == 5.3 Storage & Operation Temperature ==
784
785 -20°C to +60°C
786
787
788 == 5.4 Pin Mapping ==
789
790 [[image:1656054149793-239.png]]
791
792
793 == 5.5 Mechanical ==
794
795 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
796
797
798 == 5.6 Connect to RS485 Sensors ==
799
800 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
801
802
803 [[image:1656054389031-379.png]]
804
805
806 Hardware Design for the Converter Board please see:
807
808 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
809
810
811 = 6. Weather Sensors =
812
813 == 6.1 Rain Gauge ~-~- WSS-01 ==
814
815
816 (((
817 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
818 )))
819
820 (((
821 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
822 )))
823
824 (((
825 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
826 )))
827
828 (((
829 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
830 )))
831
832 (((
833 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
834 )))
835
836
837 === 6.1.1 Feature ===
838
839 * RS485 Rain Gauge
840 * Small dimension, easy to install
841 * Vents under funnel, avoid leaf or other things to avoid rain flow.
842 * ABS enclosure.
843 * Horizontal adjustable.
844
845 === 6.1.2 Specification ===
846
847 * Resolution: 0.2mm
848 * Accuracy: ±3%
849 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
850 * Input Power: DC 5~~24v
851 * Interface: RS485
852 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
853 * Working Humidity: <100% (no dewing)
854 * Power Consumption: 4mA @ 12v.
855
856 === 6.1.3 Dimension ===
857
858 [[image:1656054957406-980.png]]
859
860
861 === 6.1.4 Pin Mapping ===
862
863 [[image:1656054972828-692.png]]
864
865
866 === 6.1.5 Installation Notice ===
867
868 (((
869 Do not power on while connect the cables. Double check the wiring before power on.
870 )))
871
872 (((
873 Installation Photo as reference:
874 )))
875
876
877 (((
878 (% style="color:#4472c4" %)** Install on Ground:**
879 )))
880
881 (((
882 WSS-01 Rain Gauge include screws so can install in ground directly .
883 )))
884
885
886 (((
887 (% style="color:#4472c4" %)** Install on pole:**
888 )))
889
890 (((
891 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
892 )))
893
894 [[image:image-20220624152218-1.png||height="526" width="276"]]
895
896 WS-K2: Bracket Kit for Pole installation
897
898
899 WSSC-K2 dimension document, please see:
900
901 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
902
903
904 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
905
906 [[image:1656055444035-179.png]]
907
908 (((
909 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
910 )))
911
912 (((
913 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
914 )))
915
916 (((
917 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
918 )))
919
920
921 === 6.2.1 Feature ===
922
923 * RS485 wind speed / direction sensor
924 * PC enclosure, resist corrosion
925
926 === 6.2.2 Specification ===
927
928 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
929 * Wind direction range: 0 ~~ 360°
930 * Start wind speed: ≤0.3m/s
931 * Accuracy: ±(0.3+0.03V)m/s , ±1°
932 * Input Power: DC 5~~24v
933 * Interface: RS485
934 * Working Temperature: -30℃~70℃
935 * Working Humidity: <100% (no dewing)
936 * Power Consumption: 13mA ~~ 12v.
937 * Cable Length: 2 meters
938
939 === 6.2.3 Dimension ===
940
941 [[image:image-20220624152813-2.png]]
942
943
944 === 6.2.4 Pin Mapping ===
945
946 [[image:1656056281231-994.png]]
947
948
949 === 6.2.5  Angle Mapping ===
950
951 [[image:1656056303845-585.png]]
952
953
954 === 6.2.6  Installation Notice ===
955
956 (((
957 Do not power on while connect the cables. Double check the wiring before power on.
958 )))
959
960 (((
961 The sensor must be installed with below direction, towards North.
962 )))
963
964 [[image:image-20220624153901-3.png]]
965
966
967 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
968
969
970 (((
971 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
972 )))
973
974 (((
975 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
976 )))
977
978 (((
979 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
980 )))
981
982
983 === 6.3.1 Feature ===
984
985 * RS485 CO2, PM2.5, PM10 sensor
986 * NDIR to measure CO2 with Internal Temperature Compensation
987 * Laser Beam Scattering to PM2.5 and PM10
988
989 === 6.3.2 Specification ===
990
991 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
992 * CO2 resolution: 1ppm
993 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
994 * PM2.5/PM10 resolution: 1μg/m3
995 * Input Power: DC 7 ~~ 24v
996 * Preheat time: 3min
997 * Interface: RS485
998 * Working Temperature:
999 ** CO2: 0℃~50℃;
1000 ** PM2.5/PM10: -30 ~~ 50℃
1001 * Working Humidity:
1002 ** PM2.5/PM10: 15~80%RH (no dewing)
1003 ** CO2: 0~95%RH
1004 * Power Consumption: 50mA@ 12v.
1005
1006 === 6.3.3 Dimension ===
1007
1008 [[image:1656056708366-230.png]]
1009
1010
1011 === 6.3.4 Pin Mapping ===
1012
1013 [[image:1656056722648-743.png]]
1014
1015
1016 === 6.3.5 Installation Notice ===
1017
1018 Do not power on while connect the cables. Double check the wiring before power on.
1019
1020 [[image:1656056751153-304.png]]
1021
1022 [[image:1656056766224-773.png]]
1023
1024
1025 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1026
1027
1028 (((
1029 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1030 )))
1031
1032 (((
1033 WSS-04 has auto heating feature, this ensures measurement more reliable.
1034 )))
1035
1036 (((
1037 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1038 )))
1039
1040
1041
1042 === 6.4.1 Feature ===
1043
1044 * RS485 Rain/Snow detect sensor
1045 * Surface heating to dry
1046 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1047
1048 === 6.4.2 Specification ===
1049
1050 * Detect if there is rain or snow
1051 * Input Power: DC 12 ~~ 24v
1052 * Interface: RS485
1053 * Working Temperature: -30℃~70℃
1054 * Working Humidity: 10~90%RH
1055 * Power Consumption:
1056 ** No heating: 12mA @ 12v,
1057 ** heating: 94ma @ 12v.
1058
1059 === 6.4.3 Dimension ===
1060
1061 [[image:1656056844782-155.png]]
1062
1063
1064 === 6.4.4 Pin Mapping ===
1065
1066 [[image:1656056855590-754.png]]
1067
1068
1069 === 6.4.5 Installation Notice ===
1070
1071 Do not power on while connect the cables. Double check the wiring before power on.
1072
1073
1074 (((
1075 Install with 15°degree.
1076 )))
1077
1078 [[image:1656056873783-780.png]]
1079
1080
1081 [[image:1656056883736-804.png]]
1082
1083
1084 === 6.4.6 Heating ===
1085
1086 (((
1087 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1088 )))
1089
1090
1091 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1092
1093
1094 (((
1095 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1096 )))
1097
1098 (((
1099 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1100 )))
1101
1102
1103 === 6.5.1 Feature ===
1104
1105 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1106
1107 === 6.5.2 Specification ===
1108
1109 * Input Power: DC 12 ~~ 24v
1110 * Interface: RS485
1111 * Temperature Sensor Spec:
1112 ** Range: -30 ~~ 70℃
1113 ** resolution 0.1℃
1114 ** Accuracy: ±0.5℃
1115 * Humidity Sensor Spec:
1116 ** Range: 0 ~~ 100% RH
1117 ** resolution 0.1 %RH
1118 ** Accuracy: 3% RH
1119 * Pressure Sensor Spec:
1120 ** Range: 10~1100hPa
1121 ** Resolution: 0.1hPa
1122 ** Accuracy: ±0.1hPa
1123 * Illuminate sensor:
1124 ** Range: 0~2/20/200kLux
1125 ** Resolution: 10 Lux
1126 ** Accuracy: ±3%FS
1127 * Working Temperature: -30℃~70℃
1128 * Working Humidity: 10~90%RH
1129 * Power Consumption: 4mA @ 12v
1130
1131 === 6.5.3 Dimension ===
1132
1133 [[image:1656057170639-522.png]]
1134
1135
1136 === 6.5.4 Pin Mapping ===
1137
1138 [[image:1656057181899-910.png]]
1139
1140
1141 === 6.5.5 Installation Notice ===
1142
1143 Do not power on while connect the cables. Double check the wiring before power on.
1144
1145 [[image:1656057199955-514.png]]
1146
1147
1148 [[image:1656057212438-475.png]]
1149
1150
1151 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1152
1153
1154 (((
1155 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1156 )))
1157
1158 (((
1159 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1160 )))
1161
1162 (((
1163 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1164 )))
1165
1166
1167
1168 === 6.6.1 Feature ===
1169
1170 * RS485 Total Solar Radiation sensor
1171 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1172 * Measure Reflected Radiation if sense area towards ground.
1173
1174 === 6.6.2 Specification ===
1175
1176 * Input Power: DC 5 ~~ 24v
1177 * Interface: RS485
1178 * Detect spectrum: 0.3~3μm(300~3000nm)
1179 * Measure strength range: 0~2000W/m2
1180 * Resolution: 0.1W/m2
1181 * Accuracy: ±3%
1182 * Yearly Stability: ≤±2%
1183 * Cosine response: ≤7% (@ Sun angle 10°)
1184 * Temperature Effect: ±2%(-10℃~40℃)
1185 * Working Temperature: -40℃~70℃
1186 * Working Humidity: 10~90%RH
1187 * Power Consumption: 4mA @ 12v
1188
1189 === 6.6.3 Dimension ===
1190
1191 [[image:1656057348695-898.png]]
1192
1193
1194 === 6.6.4 Pin Mapping ===
1195
1196 [[image:1656057359343-744.png]]
1197
1198
1199 === 6.6.5 Installation Notice ===
1200
1201 Do not power on while connect the cables. Double check the wiring before power on.
1202
1203 [[image:1656057369259-804.png]]
1204
1205
1206 [[image:1656057377943-564.png]]
1207
1208
1209 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1210
1211
1212 (((
1213 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1214 )))
1215
1216 (((
1217 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1218 )))
1219
1220 (((
1221 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1222 )))
1223
1224
1225 === 6.7.1 Feature ===
1226
1227 (((
1228 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1229 )))
1230
1231 (((
1232 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1233 )))
1234
1235
1236 === 6.7.2 Specification ===
1237
1238 * Input Power: DC 5 ~~ 24v
1239 * Interface: RS485
1240 * Response Spectrum: 400~700nm
1241 * Measure range: 0~2500μmol/m2•s
1242 * Resolution: 1μmol/m2•s
1243 * Accuracy: ±2%
1244 * Yearly Stability: ≤±2%
1245 * Working Temperature: -30℃~75℃
1246 * Working Humidity: 10~90%RH
1247 * Power Consumption: 3mA @ 12v
1248
1249 === 6.7.3 Dimension ===
1250
1251 [[image:1656057538793-888.png]]
1252
1253
1254 === 6.7.4 Pin Mapping ===
1255
1256 [[image:1656057548116-203.png]]
1257
1258
1259 === 6.7.5 Installation Notice ===
1260
1261 Do not power on while connect the cables. Double check the wiring before power on.
1262
1263
1264 [[image:1656057557191-895.png]]
1265
1266
1267 [[image:1656057565783-251.png]]
1268
1269
1270 = 7. FAQ =
1271
1272 == 7.1 What else do I need to purchase to build Weather Station? ==
1273
1274 Below is the installation photo and structure:
1275
1276 [[image:1656057598349-319.png]]
1277
1278
1279 [[image:1656057608049-693.png]]
1280
1281
1282
1283 == 7.2 How to upgrade firmware for WSC1-L? ==
1284
1285 (((
1286 Firmware Location & Change log:
1287 )))
1288
1289 (((
1290 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1291 )))
1292
1293
1294 (((
1295 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1296 )))
1297
1298
1299 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1300
1301 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1302
1303
1304 == 7.4 Can I add my weather sensors? ==
1305
1306 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1307
1308
1309 = 8. Trouble Shooting =
1310
1311 == 8.1 AT Command input doesn't work ==
1312
1313 (((
1314 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1315 )))
1316
1317
1318 = 9. Order Info =
1319
1320 == 9.1 Main Process Unit ==
1321
1322 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1323
1324 (% style="color:blue" %)**XX**(%%): The default frequency band
1325
1326 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1327 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1328 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1329 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1330 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1331 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1332 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1333 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1334
1335 == 9.2 Sensors ==
1336
1337 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1338 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1339 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1340 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1341 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1342 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1343 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1344 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1345 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1346 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1347
1348 = 10. Support =
1349
1350 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1351 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1352
1353 = 11. Appendix I: Field Installation Photo =
1354
1355
1356 [[image:1656058346362-132.png||height="685" width="732"]]
1357
1358 **Storage Battery**: 12v,12AH li battery
1359
1360
1361
1362 **Wind Speed/Direction**
1363
1364 [[image:1656058373174-421.png||height="356" width="731"]]
1365
1366
1367
1368 **Total Solar Radiation sensor**
1369
1370 [[image:1656058397364-282.png||height="453" width="732"]]
1371
1372
1373
1374 **PAR Sensor**
1375
1376 [[image:1656058416171-615.png]]
1377
1378
1379
1380 **CO2/PM2.5/PM10 3 in 1 sensor**
1381
1382 [[image:1656058441194-827.png||height="672" width="523"]]
1383
1384
1385
1386 **Rain / Snow Detect**
1387
1388 [[image:1656058451456-166.png]]
1389
1390
1391
1392 **Rain Gauge**
1393
1394 [[image:1656058463455-569.png||height="499" width="550"]]