Version 86.5 by Xiaoling on 2022/06/29 15:10

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (((
146 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
147 )))
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161
162
163 === 2.4.1 Uplink FPORT~=5, Device Status ===
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
173 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
174 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182
183 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
184
185 For WSC1-L, this value is 0x0D.
186
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 *0x01: EU868
198
199 *0x02: US915
200
201 *0x03: IN865
202
203 *0x04: AU915
204
205 *0x05: KZ865
206
207 *0x06: RU864
208
209 *0x07: AS923
210
211 *0x08: AS923-1
212
213 *0x09: AS923-2
214
215 *0x0a: AS923-3
216
217
218
219 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
220
221 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
222
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220624140352-2.png]]
299
300
301 (((
302 Below is an example payload:  [[image:image-20220624140615-3.png]]
303 )))
304
305 (((
306
307 )))
308
309 (((
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311 )))
312
313 * (((
314 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
315 )))
316
317 (((
318 Uplink 1:  [[image:image-20220624140735-4.png]]
319 )))
320
321 (((
322
323 )))
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327 )))
328
329 (((
330
331 )))
332
333 * (((
334 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624141025-6.png]]
339 )))
340
341 (((
342
343 )))
344
345 Uplink 2:  [[image:image-20220624141100-7.png]]
346
347
348
349 === 2.4.3 Decoder in TTN V3 ===
350
351 (((
352 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
353 )))
354
355 (((
356
357 )))
358
359 (((
360 Download decoder for suitable platform from:
361 )))
362
363 (((
364 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
365 )))
366
367 (((
368 and put as below:
369 )))
370
371 [[image:1656051152438-578.png]]
372
373
374
375 == 2.5 Show data on Application Server ==
376
377 (((
378 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
379 )))
380
381 (((
382
383 )))
384
385 (((
386 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
387 )))
388
389 (((
390 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
391 )))
392
393 [[image:1656051197172-131.png]]
394
395
396 **Add TagoIO:**
397
398 [[image:1656051223585-631.png]]
399
400
401 **Authorization:**
402
403 [[image:1656051248318-368.png]]
404
405
406 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
407
408 [[image:1656051277767-168.png]]
409
410
411
412 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
413
414 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
415
416 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
417 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
418
419 There are two kinds of commands to configure WSC1-L, they are:
420
421 * (% style="color:#4472c4" %)**General Commands**.
422
423 These commands are to configure:
424
425 * General system settings like: uplink interval.
426 * LoRaWAN protocol & radio related command.
427
428 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
429
430 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
431
432
433 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
434
435 These commands only valid for WSC1-L, as below:
436
437
438
439 == 3.1 Set Transmit Interval Time ==
440
441 Feature: Change LoRaWAN End Node Transmit Interval.
442
443 (% style="color:#037691" %)**AT Command: AT+TDC**
444
445 [[image:image-20220624142619-8.png]]
446
447
448 (% style="color:#037691" %)**Downlink Command: 0x01**
449
450 Format: Command Code (0x01) followed by 3 bytes time value.
451
452 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
453
454 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
455 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
456
457
458
459 == 3.2 Set Emergency Mode ==
460
461 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
462
463 (% style="color:#037691" %)**AT Command:**
464
465 [[image:image-20220624142956-9.png]]
466
467
468 (% style="color:#037691" %)**Downlink Command:**
469
470 * 0xE101     Same as: AT+ALARMMOD=1
471 * 0xE100     Same as: AT+ALARMMOD=0
472
473
474
475 == 3.3 Add or Delete RS485 Sensor ==
476
477 (((
478 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
479 )))
480
481 (((
482 (% style="color:#037691" %)**AT Command: **
483 )))
484
485 (((
486 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
487 )))
488
489 * (((
490 Type_Code range:  A1 ~~ A4
491 )))
492 * (((
493 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
494 )))
495 * (((
496 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
497 )))
498 * (((
499 Read_Length:  RS485 response frame length supposed to receive. Max can receive
500 )))
501 * (((
502 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
503 )))
504 * (((
505 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
506 )))
507 * (((
508 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
509 )))
510
511 (((
512 **Example:**
513 )))
514
515 (((
516 User need to change external sensor use the type code as address code.
517 )))
518
519 (((
520 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
521 )))
522
523 [[image:image-20220624143553-10.png]]
524
525
526 The response frame of the sensor is as follows:
527
528 [[image:image-20220624143618-11.png]]
529
530
531
532 **Then the following parameters should be:**
533
534 * Address_Code range: A1
535 * Query_Length: 8
536 * Query_Command: A103000000019CAA
537 * Read_Length: 8
538 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
539 * has_CRC: 1
540 * timeout: 1500 (Fill in the test according to the actual situation)
541
542
543 **So the input command is:**
544
545 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
546
547
548 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
551 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
552 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
553
554
555 **Related commands:**
556
557 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
558
559 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
560
561
562 (% style="color:#037691" %)**Downlink Command:  **
563
564 **delete custom sensor A1:**
565
566 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
567
568 **Remove all custom sensors**
569
570 * 0xE5FF  
571
572
573
574 == 3.4 RS485 Test Command ==
575
576 (% style="color:#037691" %)**AT Command:**
577
578 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
579 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
580 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
581 (((
582 Send command to 485 sensor
583 )))
584
585 (((
586 Range : no more than 10 bytes
587 )))
588 )))|(% style="width:85px" %)OK
589
590 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
591
592 AT+RSWRITE=0103000001840A
593
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
598
599
600
601 == 3.5 RS485 response timeout ==
602
603 Feature: Set or get extended time to receive 485 sensor data.
604
605 (% style="color:#037691" %)**AT Command:**
606
607 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
608 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
609 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
610 (((
611 Set response timeout to:
612 )))
613
614 (((
615 Range : 0~~10000
616 )))
617 )))|(% style="width:85px" %)OK
618
619 (% style="color:#037691" %)**Downlink Command:**
620
621 Format: Command Code (0xE0) followed by 3 bytes time value.
622
623 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
624
625 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
626 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
627
628
629
630 == 3.6 Set Sensor Type ==
631
632 (((
633 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
634 )))
635
636 (((
637 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
638 )))
639
640 [[image:image-20220624144904-12.png]]
641
642
643 (% style="color:#037691" %)**AT Command:**
644
645 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
646 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
647 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
648
649 Eg: The setting command **AT+STYPE=802212** means:
650
651 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
652 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
653 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
654 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
655 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
656 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
657 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
658
659 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
660
661
662 (% style="color:#037691" %)**Downlink Command:**
663
664 * 0xE400802212     Same as: AT+STYPE=80221
665
666 (% style="color:red" %)**Note:**
667
668 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
669
670
671
672
673 = 4. Power consumption and battery =
674
675 == 4.1 Total Power Consumption ==
676
677 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
678
679
680 == 4.2 Reduce power consumption ==
681
682 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
683
684
685 == 4.3 Battery ==
686
687 (((
688 All sensors are only power by external power source. If external power source is off. All sensor won't work.
689 )))
690
691 (((
692 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
693 )))
694
695
696 = 5. Main Process Unit WSC1-L =
697
698 == 5.1 Features ==
699
700 * Wall Attachable.
701 * LoRaWAN v1.0.3 Class A protocol.
702 * RS485 / Modbus protocol
703 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
704 * AT Commands to change parameters
705 * Remote configure parameters via LoRaWAN Downlink
706 * Firmware upgradable via program port
707 * Powered by external 12v battery
708 * Back up rechargeable 1000mAh battery
709 * IP Rating: IP65
710 * Support default sensors or 3rd party RS485 sensors
711
712
713
714 == 5.2 Power Consumption ==
715
716 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
717
718
719 == 5.3 Storage & Operation Temperature ==
720
721 -20°C to +60°C
722
723
724 == 5.4 Pin Mapping ==
725
726 [[image:1656054149793-239.png]]
727
728
729 == 5.5 Mechanical ==
730
731 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
732
733
734 == 5.6 Connect to RS485 Sensors ==
735
736 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
737
738
739 [[image:1656054389031-379.png]]
740
741
742 Hardware Design for the Converter Board please see:
743
744 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
745
746
747 = 6. Weather Sensors =
748
749 == 6.1 Rain Gauge ~-~- WSS-01 ==
750
751
752 (((
753 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
754 )))
755
756 (((
757 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
758 )))
759
760 (((
761 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
762 )))
763
764 (((
765 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
766 )))
767
768 (((
769 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
770 )))
771
772
773 === 6.1.1 Feature ===
774
775 * RS485 Rain Gauge
776 * Small dimension, easy to install
777 * Vents under funnel, avoid leaf or other things to avoid rain flow.
778 * ABS enclosure.
779 * Horizontal adjustable.
780
781
782
783 === 6.1.2 Specification ===
784
785 * Resolution: 0.2mm
786 * Accuracy: ±3%
787 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
788 * Input Power: DC 5~~24v
789 * Interface: RS485
790 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
791 * Working Humidity: <100% (no dewing)
792 * Power Consumption: 4mA @ 12v.
793
794
795
796 === 6.1.3 Dimension ===
797
798 [[image:1656054957406-980.png]]
799
800
801 === 6.1.4 Pin Mapping ===
802
803 [[image:1656054972828-692.png]]
804
805
806 === 6.1.5 Installation Notice ===
807
808 (((
809 Do not power on while connect the cables. Double check the wiring before power on.
810 )))
811
812 (((
813 Installation Photo as reference:
814 )))
815
816
817 (((
818 (% style="color:#4472c4" %)** Install on Ground:**
819 )))
820
821 (((
822 WSS-01 Rain Gauge include screws so can install in ground directly .
823 )))
824
825
826 (((
827 (% style="color:#4472c4" %)** Install on pole:**
828 )))
829
830 (((
831 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
832 )))
833
834 [[image:image-20220624152218-1.png||height="526" width="276"]]
835
836 WS-K2: Bracket Kit for Pole installation
837
838
839 WSSC-K2 dimension document, please see:
840
841 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
842
843
844 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
845
846 [[image:1656055444035-179.png]]
847
848 (((
849 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
850 )))
851
852 (((
853 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
854 )))
855
856 (((
857 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
858 )))
859
860
861 === 6.2.1 Feature ===
862
863 * RS485 wind speed / direction sensor
864 * PC enclosure, resist corrosion
865
866
867
868 === 6.2.2 Specification ===
869
870 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
871 * Wind direction range: 0 ~~ 360°
872 * Start wind speed: ≤0.3m/s
873 * Accuracy: ±(0.3+0.03V)m/s , ±1°
874 * Input Power: DC 5~~24v
875 * Interface: RS485
876 * Working Temperature: -30℃~70℃
877 * Working Humidity: <100% (no dewing)
878 * Power Consumption: 13mA ~~ 12v.
879 * Cable Length: 2 meters
880
881
882
883 === 6.2.3 Dimension ===
884
885 [[image:image-20220624152813-2.png]]
886
887
888 === 6.2.4 Pin Mapping ===
889
890 [[image:1656056281231-994.png]]
891
892
893 === 6.2.5  Angle Mapping ===
894
895 [[image:1656056303845-585.png]]
896
897
898 === 6.2.6  Installation Notice ===
899
900 (((
901 Do not power on while connect the cables. Double check the wiring before power on.
902 )))
903
904 (((
905 The sensor must be installed with below direction, towards North.
906 )))
907
908 [[image:image-20220624153901-3.png]]
909
910
911 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
912
913
914 (((
915 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
916 )))
917
918 (((
919 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
920 )))
921
922 (((
923 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
924 )))
925
926
927 === 6.3.1 Feature ===
928
929 * RS485 CO2, PM2.5, PM10 sensor
930 * NDIR to measure CO2 with Internal Temperature Compensation
931 * Laser Beam Scattering to PM2.5 and PM10
932
933
934
935 === 6.3.2 Specification ===
936
937 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
938 * CO2 resolution: 1ppm
939 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
940 * PM2.5/PM10 resolution: 1μg/m3
941 * Input Power: DC 7 ~~ 24v
942 * Preheat time: 3min
943 * Interface: RS485
944 * Working Temperature:
945 ** CO2: 0℃~50℃;
946 ** PM2.5/PM10: -30 ~~ 50℃
947 * Working Humidity:
948 ** PM2.5/PM10: 15~80%RH (no dewing)
949 ** CO2: 0~95%RH
950 * Power Consumption: 50mA@ 12v.
951
952
953
954 === 6.3.3 Dimension ===
955
956 [[image:1656056708366-230.png]]
957
958
959 === 6.3.4 Pin Mapping ===
960
961 [[image:1656056722648-743.png]]
962
963
964 === 6.3.5 Installation Notice ===
965
966 Do not power on while connect the cables. Double check the wiring before power on.
967
968 [[image:1656056751153-304.png]]
969
970 [[image:1656056766224-773.png]]
971
972
973 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
974
975
976 (((
977 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
978 )))
979
980 (((
981 WSS-04 has auto heating feature, this ensures measurement more reliable.
982 )))
983
984 (((
985 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
986 )))
987
988
989
990 === 6.4.1 Feature ===
991
992 * RS485 Rain/Snow detect sensor
993 * Surface heating to dry
994 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
995
996
997
998 === 6.4.2 Specification ===
999
1000 * Detect if there is rain or snow
1001 * Input Power: DC 12 ~~ 24v
1002 * Interface: RS485
1003 * Working Temperature: -30℃~70℃
1004 * Working Humidity: 10~90%RH
1005 * Power Consumption:
1006 ** No heating: 12mA @ 12v,
1007 ** heating: 94ma @ 12v.
1008
1009
1010
1011 === 6.4.3 Dimension ===
1012
1013 [[image:1656056844782-155.png]]
1014
1015
1016 === 6.4.4 Pin Mapping ===
1017
1018 [[image:1656056855590-754.png]]
1019
1020
1021 === 6.4.5 Installation Notice ===
1022
1023 Do not power on while connect the cables. Double check the wiring before power on.
1024
1025
1026 (((
1027 Install with 15°degree.
1028 )))
1029
1030 [[image:1656056873783-780.png]]
1031
1032
1033 [[image:1656056883736-804.png]]
1034
1035
1036 === 6.4.6 Heating ===
1037
1038 (((
1039 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1040 )))
1041
1042
1043 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1044
1045
1046 (((
1047 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1048 )))
1049
1050 (((
1051 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1052 )))
1053
1054
1055 === 6.5.1 Feature ===
1056
1057 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1058
1059
1060
1061 === 6.5.2 Specification ===
1062
1063 * Input Power: DC 12 ~~ 24v
1064 * Interface: RS485
1065 * Temperature Sensor Spec:
1066 ** Range: -30 ~~ 70℃
1067 ** resolution 0.1℃
1068 ** Accuracy: ±0.5℃
1069 * Humidity Sensor Spec:
1070 ** Range: 0 ~~ 100% RH
1071 ** resolution 0.1 %RH
1072 ** Accuracy: 3% RH
1073 * Pressure Sensor Spec:
1074 ** Range: 10~1100hPa
1075 ** Resolution: 0.1hPa
1076 ** Accuracy: ±0.1hPa
1077 * Illuminate sensor:
1078 ** Range: 0~2/20/200kLux
1079 ** Resolution: 10 Lux
1080 ** Accuracy: ±3%FS
1081 * Working Temperature: -30℃~70℃
1082 * Working Humidity: 10~90%RH
1083 * Power Consumption: 4mA @ 12v
1084
1085
1086
1087 === 6.5.3 Dimension ===
1088
1089 [[image:1656057170639-522.png]]
1090
1091
1092 === 6.5.4 Pin Mapping ===
1093
1094 [[image:1656057181899-910.png]]
1095
1096
1097 === 6.5.5 Installation Notice ===
1098
1099 Do not power on while connect the cables. Double check the wiring before power on.
1100
1101 [[image:1656057199955-514.png]]
1102
1103
1104 [[image:1656057212438-475.png]]
1105
1106
1107 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1108
1109
1110 (((
1111 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1112 )))
1113
1114 (((
1115 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1116 )))
1117
1118 (((
1119 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1120 )))
1121
1122
1123
1124 === 6.6.1 Feature ===
1125
1126 * RS485 Total Solar Radiation sensor
1127 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1128 * Measure Reflected Radiation if sense area towards ground.
1129
1130
1131
1132 === 6.6.2 Specification ===
1133
1134 * Input Power: DC 5 ~~ 24v
1135 * Interface: RS485
1136 * Detect spectrum: 0.3~3μm(300~3000nm)
1137 * Measure strength range: 0~2000W/m2
1138 * Resolution: 0.1W/m2
1139 * Accuracy: ±3%
1140 * Yearly Stability: ≤±2%
1141 * Cosine response: ≤7% (@ Sun angle 10°)
1142 * Temperature Effect: ±2%(-10℃~40℃)
1143 * Working Temperature: -40℃~70℃
1144 * Working Humidity: 10~90%RH
1145 * Power Consumption: 4mA @ 12v
1146
1147
1148
1149 === 6.6.3 Dimension ===
1150
1151 [[image:1656057348695-898.png]]
1152
1153
1154 === 6.6.4 Pin Mapping ===
1155
1156 [[image:1656057359343-744.png]]
1157
1158
1159 === 6.6.5 Installation Notice ===
1160
1161 Do not power on while connect the cables. Double check the wiring before power on.
1162
1163 [[image:1656057369259-804.png]]
1164
1165
1166 [[image:1656057377943-564.png]]
1167
1168
1169 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1170
1171
1172 (((
1173 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1174 )))
1175
1176 (((
1177 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1178 )))
1179
1180 (((
1181 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1182 )))
1183
1184
1185 === 6.7.1 Feature ===
1186
1187 (((
1188 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1189 )))
1190
1191 (((
1192 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1193 )))
1194
1195
1196 === 6.7.2 Specification ===
1197
1198 * Input Power: DC 5 ~~ 24v
1199 * Interface: RS485
1200 * Response Spectrum: 400~700nm
1201 * Measure range: 0~2500μmol/m2•s
1202 * Resolution: 1μmol/m2•s
1203 * Accuracy: ±2%
1204 * Yearly Stability: ≤±2%
1205 * Working Temperature: -30℃~75℃
1206 * Working Humidity: 10~90%RH
1207 * Power Consumption: 3mA @ 12v
1208
1209
1210
1211 === 6.7.3 Dimension ===
1212
1213 [[image:1656057538793-888.png]]
1214
1215
1216 === 6.7.4 Pin Mapping ===
1217
1218 [[image:1656057548116-203.png]]
1219
1220
1221 === 6.7.5 Installation Notice ===
1222
1223 Do not power on while connect the cables. Double check the wiring before power on.
1224
1225
1226 [[image:1656057557191-895.png]]
1227
1228
1229 [[image:1656057565783-251.png]]
1230
1231
1232 = 7. FAQ =
1233
1234 == 7.1 What else do I need to purchase to build Weather Station? ==
1235
1236 Below is the installation photo and structure:
1237
1238 [[image:1656057598349-319.png]]
1239
1240
1241 [[image:1656057608049-693.png]]
1242
1243
1244
1245 == 7.2 How to upgrade firmware for WSC1-L? ==
1246
1247 (((
1248 Firmware Location & Change log:
1249 )))
1250
1251 (((
1252 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1253 )))
1254
1255
1256 (((
1257 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1258 )))
1259
1260
1261 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1262
1263 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1264
1265
1266 == 7.4 Can I add my weather sensors? ==
1267
1268 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1269
1270
1271 = 8. Trouble Shooting =
1272
1273 == 8.1 AT Command input doesn't work ==
1274
1275 (((
1276 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1277 )))
1278
1279
1280 = 9. Order Info =
1281
1282 == 9.1 Main Process Unit ==
1283
1284 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1285
1286 (% style="color:blue" %)**XX**(%%): The default frequency band
1287
1288 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1289 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1290 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1291 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1292 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1293 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1294 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1295 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1296
1297
1298
1299 == 9.2 Sensors ==
1300
1301 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1302 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1303 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1304 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1305 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1306 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1307 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1308 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1309 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1310 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1311
1312
1313
1314 = 10. Support =
1315
1316 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1317 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1318
1319
1320
1321 = 11. Appendix I: Field Installation Photo =
1322
1323
1324 [[image:1656058346362-132.png||height="685" width="732"]]
1325
1326 **Storage Battery**: 12v,12AH li battery
1327
1328
1329
1330 **Wind Speed/Direction**
1331
1332 [[image:1656058373174-421.png||height="356" width="731"]]
1333
1334
1335
1336 **Total Solar Radiation sensor**
1337
1338 [[image:1656058397364-282.png||height="453" width="732"]]
1339
1340
1341
1342 **PAR Sensor**
1343
1344 [[image:1656058416171-615.png]]
1345
1346
1347
1348 **CO2/PM2.5/PM10 3 in 1 sensor**
1349
1350 [[image:1656058441194-827.png||height="672" width="523"]]
1351
1352
1353
1354 **Rain / Snow Detect**
1355
1356 [[image:1656058451456-166.png]]
1357
1358
1359
1360 **Rain Gauge**
1361
1362 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0