Version 86.3 by Xiaoling on 2022/06/29 14:46

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (((
146 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
147 )))
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161
162
163 === 2.4.1 Uplink FPORT~=5, Device Status ===
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
173 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
174 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182
183 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
184
185 For WSC1-L, this value is 0x0D.
186
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 *0x01: EU868
198
199 *0x02: US915
200
201 *0x03: IN865
202
203 *0x04: AU915
204
205 *0x05: KZ865
206
207 *0x06: RU864
208
209 *0x07: AS923
210
211 *0x08: AS923-1
212
213 *0x09: AS923-2
214
215 *0x0a: AS923-3
216
217
218
219 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
220
221 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
222
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220624140352-2.png]]
299
300
301 (((
302 Below is an example payload:  [[image:image-20220624140615-3.png]]
303 )))
304
305 (((
306
307 )))
308
309 (((
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311 )))
312
313 * (((
314 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
315 )))
316
317 (((
318 Uplink 1:  [[image:image-20220624140735-4.png]]
319 )))
320
321 (((
322
323 )))
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327 )))
328
329 (((
330
331 )))
332
333 * (((
334 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624141025-6.png]]
339 )))
340
341 (((
342
343 )))
344
345 Uplink 2:  [[image:image-20220624141100-7.png]]
346
347
348
349
350 === 2.4.3 Decoder in TTN V3 ===
351
352 (((
353 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
354 )))
355
356 (((
357
358 )))
359
360 (((
361 Download decoder for suitable platform from:
362 )))
363
364 (((
365 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
366 )))
367
368 (((
369 and put as below:
370 )))
371
372 [[image:1656051152438-578.png]]
373
374
375
376 == 2.5 Show data on Application Server ==
377
378 (((
379 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
380 )))
381
382 (((
383
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
388 )))
389
390 (((
391 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
392 )))
393
394 [[image:1656051197172-131.png]]
395
396
397 **Add TagoIO:**
398
399 [[image:1656051223585-631.png]]
400
401
402 **Authorization:**
403
404 [[image:1656051248318-368.png]]
405
406
407 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
408
409 [[image:1656051277767-168.png]]
410
411
412
413 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
414
415 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
416
417 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
418 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
419
420 There are two kinds of commands to configure WSC1-L, they are:
421
422 * (% style="color:#4472c4" %)**General Commands**.
423
424 These commands are to configure:
425
426 * General system settings like: uplink interval.
427 * LoRaWAN protocol & radio related command.
428
429 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
430
431 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
432
433
434 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
435
436 These commands only valid for WSC1-L, as below:
437
438
439
440 == 3.1 Set Transmit Interval Time ==
441
442 Feature: Change LoRaWAN End Node Transmit Interval.
443
444 (% style="color:#037691" %)**AT Command: AT+TDC**
445
446 [[image:image-20220624142619-8.png]]
447
448
449 (% style="color:#037691" %)**Downlink Command: 0x01**
450
451 Format: Command Code (0x01) followed by 3 bytes time value.
452
453 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
454
455 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
456 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
457
458
459
460 == 3.2 Set Emergency Mode ==
461
462 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
463
464 (% style="color:#037691" %)**AT Command:**
465
466 [[image:image-20220624142956-9.png]]
467
468
469 (% style="color:#037691" %)**Downlink Command:**
470
471 * 0xE101     Same as: AT+ALARMMOD=1
472 * 0xE100     Same as: AT+ALARMMOD=0
473
474
475
476 == 3.3 Add or Delete RS485 Sensor ==
477
478 (((
479 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
480 )))
481
482 (((
483 (% style="color:#037691" %)**AT Command: **
484 )))
485
486 (((
487 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
488 )))
489
490 * (((
491 Type_Code range:  A1 ~~ A4
492 )))
493 * (((
494 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
495 )))
496 * (((
497 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
498 )))
499 * (((
500 Read_Length:  RS485 response frame length supposed to receive. Max can receive
501 )))
502 * (((
503 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
504 )))
505 * (((
506 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
507 )))
508 * (((
509 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
510 )))
511
512 (((
513 **Example:**
514 )))
515
516 (((
517 User need to change external sensor use the type code as address code.
518 )))
519
520 (((
521 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
522 )))
523
524 [[image:image-20220624143553-10.png]]
525
526
527 The response frame of the sensor is as follows:
528
529 [[image:image-20220624143618-11.png]]
530
531
532
533 **Then the following parameters should be:**
534
535 * Address_Code range: A1
536 * Query_Length: 8
537 * Query_Command: A103000000019CAA
538 * Read_Length: 8
539 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
540 * has_CRC: 1
541 * timeout: 1500 (Fill in the test according to the actual situation)
542
543 **So the input command is:**
544
545 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
546
547
548 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
551 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
552 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
553
554 **Related commands:**
555
556 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
557
558 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
559
560
561 (% style="color:#037691" %)**Downlink Command:  **
562
563 **delete custom sensor A1:**
564
565 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
566
567 **Remove all custom sensors**
568
569 * 0xE5FF  
570
571
572
573 == 3.4 RS485 Test Command ==
574
575 (% style="color:#037691" %)**AT Command:**
576
577 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
578 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
579 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
580 (((
581 Send command to 485 sensor
582 )))
583
584 (((
585 Range : no more than 10 bytes
586 )))
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598
599
600 == 3.5 RS485 response timeout ==
601
602 Feature: Set or get extended time to receive 485 sensor data.
603
604 (% style="color:#037691" %)**AT Command:**
605
606 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
607 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
608 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
609 (((
610 Set response timeout to:
611 )))
612
613 (((
614 Range : 0~~10000
615 )))
616 )))|(% style="width:85px" %)OK
617
618 (% style="color:#037691" %)**Downlink Command:**
619
620 Format: Command Code (0xE0) followed by 3 bytes time value.
621
622 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
623
624 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
625 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
626
627
628
629 == 3.6 Set Sensor Type ==
630
631 (((
632 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
633 )))
634
635 (((
636 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
637 )))
638
639 [[image:image-20220624144904-12.png]]
640
641
642 (% style="color:#037691" %)**AT Command:**
643
644 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
645 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
646 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
647
648 Eg: The setting command **AT+STYPE=802212** means:
649
650 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
651 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
652 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
653 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
655 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
657
658 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
659
660
661 (% style="color:#037691" %)**Downlink Command:**
662
663 * 0xE400802212     Same as: AT+STYPE=80221
664
665 (% style="color:red" %)**Note:**
666
667 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
668
669
670
671
672 = 4. Power consumption and battery =
673
674 == 4.1 Total Power Consumption ==
675
676 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
677
678
679 == 4.2 Reduce power consumption ==
680
681 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
682
683
684 == 4.3 Battery ==
685
686 (((
687 All sensors are only power by external power source. If external power source is off. All sensor won't work.
688 )))
689
690 (((
691 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
692 )))
693
694
695 = 5. Main Process Unit WSC1-L =
696
697 == 5.1 Features ==
698
699 * Wall Attachable.
700 * LoRaWAN v1.0.3 Class A protocol.
701 * RS485 / Modbus protocol
702 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
703 * AT Commands to change parameters
704 * Remote configure parameters via LoRaWAN Downlink
705 * Firmware upgradable via program port
706 * Powered by external 12v battery
707 * Back up rechargeable 1000mAh battery
708 * IP Rating: IP65
709 * Support default sensors or 3rd party RS485 sensors
710
711
712
713 == 5.2 Power Consumption ==
714
715 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
716
717
718 == 5.3 Storage & Operation Temperature ==
719
720 -20°C to +60°C
721
722
723 == 5.4 Pin Mapping ==
724
725 [[image:1656054149793-239.png]]
726
727
728 == 5.5 Mechanical ==
729
730 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
731
732
733 == 5.6 Connect to RS485 Sensors ==
734
735 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
736
737
738 [[image:1656054389031-379.png]]
739
740
741 Hardware Design for the Converter Board please see:
742
743 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
744
745
746 = 6. Weather Sensors =
747
748 == 6.1 Rain Gauge ~-~- WSS-01 ==
749
750
751 (((
752 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
753 )))
754
755 (((
756 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
757 )))
758
759 (((
760 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
761 )))
762
763 (((
764 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
765 )))
766
767 (((
768 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
769 )))
770
771
772 === 6.1.1 Feature ===
773
774 * RS485 Rain Gauge
775 * Small dimension, easy to install
776 * Vents under funnel, avoid leaf or other things to avoid rain flow.
777 * ABS enclosure.
778 * Horizontal adjustable.
779
780
781
782 === 6.1.2 Specification ===
783
784 * Resolution: 0.2mm
785 * Accuracy: ±3%
786 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
787 * Input Power: DC 5~~24v
788 * Interface: RS485
789 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
790 * Working Humidity: <100% (no dewing)
791 * Power Consumption: 4mA @ 12v.
792
793
794
795 === 6.1.3 Dimension ===
796
797 [[image:1656054957406-980.png]]
798
799
800 === 6.1.4 Pin Mapping ===
801
802 [[image:1656054972828-692.png]]
803
804
805 === 6.1.5 Installation Notice ===
806
807 (((
808 Do not power on while connect the cables. Double check the wiring before power on.
809 )))
810
811 (((
812 Installation Photo as reference:
813 )))
814
815
816 (((
817 (% style="color:#4472c4" %)** Install on Ground:**
818 )))
819
820 (((
821 WSS-01 Rain Gauge include screws so can install in ground directly .
822 )))
823
824
825 (((
826 (% style="color:#4472c4" %)** Install on pole:**
827 )))
828
829 (((
830 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
831 )))
832
833 [[image:image-20220624152218-1.png||height="526" width="276"]]
834
835 WS-K2: Bracket Kit for Pole installation
836
837
838 WSSC-K2 dimension document, please see:
839
840 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
841
842
843 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
844
845 [[image:1656055444035-179.png]]
846
847 (((
848 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
849 )))
850
851 (((
852 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
853 )))
854
855 (((
856 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
857 )))
858
859
860 === 6.2.1 Feature ===
861
862 * RS485 wind speed / direction sensor
863 * PC enclosure, resist corrosion
864
865
866
867 === 6.2.2 Specification ===
868
869 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
870 * Wind direction range: 0 ~~ 360°
871 * Start wind speed: ≤0.3m/s
872 * Accuracy: ±(0.3+0.03V)m/s , ±1°
873 * Input Power: DC 5~~24v
874 * Interface: RS485
875 * Working Temperature: -30℃~70℃
876 * Working Humidity: <100% (no dewing)
877 * Power Consumption: 13mA ~~ 12v.
878 * Cable Length: 2 meters
879
880
881
882 === 6.2.3 Dimension ===
883
884 [[image:image-20220624152813-2.png]]
885
886
887 === 6.2.4 Pin Mapping ===
888
889 [[image:1656056281231-994.png]]
890
891
892 === 6.2.5  Angle Mapping ===
893
894 [[image:1656056303845-585.png]]
895
896
897 === 6.2.6  Installation Notice ===
898
899 (((
900 Do not power on while connect the cables. Double check the wiring before power on.
901 )))
902
903 (((
904 The sensor must be installed with below direction, towards North.
905 )))
906
907 [[image:image-20220624153901-3.png]]
908
909
910 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
911
912
913 (((
914 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
915 )))
916
917 (((
918 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
919 )))
920
921 (((
922 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
923 )))
924
925
926 === 6.3.1 Feature ===
927
928 * RS485 CO2, PM2.5, PM10 sensor
929 * NDIR to measure CO2 with Internal Temperature Compensation
930 * Laser Beam Scattering to PM2.5 and PM10
931
932
933
934 === 6.3.2 Specification ===
935
936 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
937 * CO2 resolution: 1ppm
938 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
939 * PM2.5/PM10 resolution: 1μg/m3
940 * Input Power: DC 7 ~~ 24v
941 * Preheat time: 3min
942 * Interface: RS485
943 * Working Temperature:
944 ** CO2: 0℃~50℃;
945 ** PM2.5/PM10: -30 ~~ 50℃
946 * Working Humidity:
947 ** PM2.5/PM10: 15~80%RH (no dewing)
948 ** CO2: 0~95%RH
949 * Power Consumption: 50mA@ 12v.
950
951
952
953 === 6.3.3 Dimension ===
954
955 [[image:1656056708366-230.png]]
956
957
958 === 6.3.4 Pin Mapping ===
959
960 [[image:1656056722648-743.png]]
961
962
963 === 6.3.5 Installation Notice ===
964
965 Do not power on while connect the cables. Double check the wiring before power on.
966
967 [[image:1656056751153-304.png]]
968
969 [[image:1656056766224-773.png]]
970
971
972 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
973
974
975 (((
976 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
977 )))
978
979 (((
980 WSS-04 has auto heating feature, this ensures measurement more reliable.
981 )))
982
983 (((
984 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
985 )))
986
987
988
989 === 6.4.1 Feature ===
990
991 * RS485 Rain/Snow detect sensor
992 * Surface heating to dry
993 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
994
995
996
997 === 6.4.2 Specification ===
998
999 * Detect if there is rain or snow
1000 * Input Power: DC 12 ~~ 24v
1001 * Interface: RS485
1002 * Working Temperature: -30℃~70℃
1003 * Working Humidity: 10~90%RH
1004 * Power Consumption:
1005 ** No heating: 12mA @ 12v,
1006 ** heating: 94ma @ 12v.
1007
1008
1009
1010 === 6.4.3 Dimension ===
1011
1012 [[image:1656056844782-155.png]]
1013
1014
1015 === 6.4.4 Pin Mapping ===
1016
1017 [[image:1656056855590-754.png]]
1018
1019
1020 === 6.4.5 Installation Notice ===
1021
1022 Do not power on while connect the cables. Double check the wiring before power on.
1023
1024
1025 (((
1026 Install with 15°degree.
1027 )))
1028
1029 [[image:1656056873783-780.png]]
1030
1031
1032 [[image:1656056883736-804.png]]
1033
1034
1035 === 6.4.6 Heating ===
1036
1037 (((
1038 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1039 )))
1040
1041
1042 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1043
1044
1045 (((
1046 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1047 )))
1048
1049 (((
1050 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1051 )))
1052
1053
1054 === 6.5.1 Feature ===
1055
1056 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1057
1058
1059
1060 === 6.5.2 Specification ===
1061
1062 * Input Power: DC 12 ~~ 24v
1063 * Interface: RS485
1064 * Temperature Sensor Spec:
1065 ** Range: -30 ~~ 70℃
1066 ** resolution 0.1℃
1067 ** Accuracy: ±0.5℃
1068 * Humidity Sensor Spec:
1069 ** Range: 0 ~~ 100% RH
1070 ** resolution 0.1 %RH
1071 ** Accuracy: 3% RH
1072 * Pressure Sensor Spec:
1073 ** Range: 10~1100hPa
1074 ** Resolution: 0.1hPa
1075 ** Accuracy: ±0.1hPa
1076 * Illuminate sensor:
1077 ** Range: 0~2/20/200kLux
1078 ** Resolution: 10 Lux
1079 ** Accuracy: ±3%FS
1080 * Working Temperature: -30℃~70℃
1081 * Working Humidity: 10~90%RH
1082 * Power Consumption: 4mA @ 12v
1083
1084
1085
1086 === 6.5.3 Dimension ===
1087
1088 [[image:1656057170639-522.png]]
1089
1090
1091 === 6.5.4 Pin Mapping ===
1092
1093 [[image:1656057181899-910.png]]
1094
1095
1096 === 6.5.5 Installation Notice ===
1097
1098 Do not power on while connect the cables. Double check the wiring before power on.
1099
1100 [[image:1656057199955-514.png]]
1101
1102
1103 [[image:1656057212438-475.png]]
1104
1105
1106 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1107
1108
1109 (((
1110 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1111 )))
1112
1113 (((
1114 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1115 )))
1116
1117 (((
1118 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1119 )))
1120
1121
1122
1123 === 6.6.1 Feature ===
1124
1125 * RS485 Total Solar Radiation sensor
1126 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1127 * Measure Reflected Radiation if sense area towards ground.
1128
1129
1130
1131
1132 === 6.6.2 Specification ===
1133
1134 * Input Power: DC 5 ~~ 24v
1135 * Interface: RS485
1136 * Detect spectrum: 0.3~3μm(300~3000nm)
1137 * Measure strength range: 0~2000W/m2
1138 * Resolution: 0.1W/m2
1139 * Accuracy: ±3%
1140 * Yearly Stability: ≤±2%
1141 * Cosine response: ≤7% (@ Sun angle 10°)
1142 * Temperature Effect: ±2%(-10℃~40℃)
1143 * Working Temperature: -40℃~70℃
1144 * Working Humidity: 10~90%RH
1145 * Power Consumption: 4mA @ 12v
1146
1147
1148
1149 === 6.6.3 Dimension ===
1150
1151 [[image:1656057348695-898.png]]
1152
1153
1154 === 6.6.4 Pin Mapping ===
1155
1156 [[image:1656057359343-744.png]]
1157
1158
1159 === 6.6.5 Installation Notice ===
1160
1161 Do not power on while connect the cables. Double check the wiring before power on.
1162
1163 [[image:1656057369259-804.png]]
1164
1165
1166 [[image:1656057377943-564.png]]
1167
1168
1169 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1170
1171
1172 (((
1173 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1174 )))
1175
1176 (((
1177 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1178 )))
1179
1180 (((
1181 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1182 )))
1183
1184
1185 === 6.7.1 Feature ===
1186
1187 (((
1188 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1189 )))
1190
1191 (((
1192 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1193 )))
1194
1195
1196 === 6.7.2 Specification ===
1197
1198 * Input Power: DC 5 ~~ 24v
1199 * Interface: RS485
1200 * Response Spectrum: 400~700nm
1201 * Measure range: 0~2500μmol/m2•s
1202 * Resolution: 1μmol/m2•s
1203 * Accuracy: ±2%
1204 * Yearly Stability: ≤±2%
1205 * Working Temperature: -30℃~75℃
1206 * Working Humidity: 10~90%RH
1207 * Power Consumption: 3mA @ 12v
1208
1209
1210
1211 === 6.7.3 Dimension ===
1212
1213 [[image:1656057538793-888.png]]
1214
1215
1216 === 6.7.4 Pin Mapping ===
1217
1218 [[image:1656057548116-203.png]]
1219
1220
1221 === 6.7.5 Installation Notice ===
1222
1223 Do not power on while connect the cables. Double check the wiring before power on.
1224
1225
1226 [[image:1656057557191-895.png]]
1227
1228
1229 [[image:1656057565783-251.png]]
1230
1231
1232 = 7. FAQ =
1233
1234 == 7.1 What else do I need to purchase to build Weather Station? ==
1235
1236 Below is the installation photo and structure:
1237
1238 [[image:1656057598349-319.png]]
1239
1240
1241 [[image:1656057608049-693.png]]
1242
1243
1244
1245 == 7.2 How to upgrade firmware for WSC1-L? ==
1246
1247 (((
1248 Firmware Location & Change log:
1249 )))
1250
1251 (((
1252 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1253 )))
1254
1255
1256 (((
1257 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1258 )))
1259
1260
1261 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1262
1263 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1264
1265
1266 == 7.4 Can I add my weather sensors? ==
1267
1268 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1269
1270
1271 = 8. Trouble Shooting =
1272
1273 == 8.1 AT Command input doesn't work ==
1274
1275 (((
1276 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1277 )))
1278
1279
1280 = 9. Order Info =
1281
1282 == 9.1 Main Process Unit ==
1283
1284 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1285
1286 (% style="color:blue" %)**XX**(%%): The default frequency band
1287
1288 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1289 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1290 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1291 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1292 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1293 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1294 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1295 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1296
1297 == 9.2 Sensors ==
1298
1299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1300 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1301 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1302 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1303 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1304 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1305 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1306 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1307 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1308 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1309
1310 = 10. Support =
1311
1312 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1313 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1314
1315
1316
1317 = 11. Appendix I: Field Installation Photo =
1318
1319
1320 [[image:1656058346362-132.png||height="685" width="732"]]
1321
1322 **Storage Battery**: 12v,12AH li battery
1323
1324
1325
1326 **Wind Speed/Direction**
1327
1328 [[image:1656058373174-421.png||height="356" width="731"]]
1329
1330
1331
1332 **Total Solar Radiation sensor**
1333
1334 [[image:1656058397364-282.png||height="453" width="732"]]
1335
1336
1337
1338 **PAR Sensor**
1339
1340 [[image:1656058416171-615.png]]
1341
1342
1343
1344 **CO2/PM2.5/PM10 3 in 1 sensor**
1345
1346 [[image:1656058441194-827.png||height="672" width="523"]]
1347
1348
1349
1350 **Rain / Snow Detect**
1351
1352 [[image:1656058451456-166.png]]
1353
1354
1355
1356 **Rain Gauge**
1357
1358 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0