Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (((
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146 )))
147
148
149 [[image:1656042745346-283.png]]
150
151
152
153 == 2.4 Uplink Payload ==
154
155 Uplink payloads include two types: Valid Sensor Value and other status / control command.
156
157 * Valid Sensor Value: Use FPORT=2
158 * Other control command: Use FPORT other than 2.
159
160 === 2.4.1 Uplink FPORT~=5, Device Status ===
161
162 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
163
164
165 (((
166 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
167 )))
168
169 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
170 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
171 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
172
173 [[image:1656043061044-343.png]]
174
175
176 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
177
178
179
180 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
181
182 For WSC1-L, this value is 0x0D.
183
184
185
186 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 *0x01: EU868
195
196 *0x02: US915
197
198 *0x03: IN865
199
200 *0x04: AU915
201
202 *0x05: KZ865
203
204 *0x06: RU864
205
206 *0x07: AS923
207
208 *0x08: AS923-1
209
210 *0x09: AS923-2
211
212 *0x0a: AS923-3
213
214
215
216 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
217
218 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
219
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220624140352-2.png]]
296
297
298 (((
299 Below is an example payload:  [[image:image-20220624140615-3.png]]
300 )))
301
302 (((
303
304 )))
305
306 (((
307 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
308 )))
309
310 * (((
311 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
312 )))
313
314 (((
315 Uplink 1:  [[image:image-20220624140735-4.png]]
316 )))
317
318 (((
319
320 )))
321
322 (((
323 Uplink 2:  [[image:image-20220624140842-5.png]]
324 )))
325
326 (((
327
328 )))
329
330 * (((
331 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
332 )))
333
334 (((
335 Uplink 1:  [[image:image-20220624141025-6.png]]
336 )))
337
338 (((
339
340 )))
341
342 Uplink 2:  [[image:image-20220624141100-7.png]]
343
344
345
346
347 === 2.4.3 Decoder in TTN V3 ===
348
349 (((
350 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
351 )))
352
353 (((
354
355 )))
356
357 (((
358 Download decoder for suitable platform from:
359 )))
360
361 (((
362 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
363 )))
364
365 (((
366 and put as below:
367 )))
368
369 [[image:1656051152438-578.png]]
370
371
372
373 == 2.5 Show data on Application Server ==
374
375 (((
376 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
377 )))
378
379 (((
380
381 )))
382
383 (((
384 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
385 )))
386
387 (((
388 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
389 )))
390
391 [[image:1656051197172-131.png]]
392
393
394 **Add TagoIO:**
395
396 [[image:1656051223585-631.png]]
397
398
399 **Authorization:**
400
401 [[image:1656051248318-368.png]]
402
403
404 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
405
406 [[image:1656051277767-168.png]]
407
408
409
410 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
411
412 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
413
414 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
415 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
416
417 There are two kinds of commands to configure WSC1-L, they are:
418
419 * (% style="color:#4472c4" %)**General Commands**.
420
421 These commands are to configure:
422
423 * General system settings like: uplink interval.
424 * LoRaWAN protocol & radio related command.
425
426 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
427
428 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
429
430
431 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
432
433 These commands only valid for WSC1-L, as below:
434
435
436
437 == 3.1 Set Transmit Interval Time ==
438
439 Feature: Change LoRaWAN End Node Transmit Interval.
440
441 (% style="color:#037691" %)**AT Command: AT+TDC**
442
443 [[image:image-20220624142619-8.png]]
444
445
446 (% style="color:#037691" %)**Downlink Command: 0x01**
447
448 Format: Command Code (0x01) followed by 3 bytes time value.
449
450 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
451
452 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
453 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
454
455
456
457
458 == 3.2 Set Emergency Mode ==
459
460 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
461
462 (% style="color:#037691" %)**AT Command:**
463
464 [[image:image-20220624142956-9.png]]
465
466
467 (% style="color:#037691" %)**Downlink Command:**
468
469 * 0xE101     Same as: AT+ALARMMOD=1
470 * 0xE100     Same as: AT+ALARMMOD=0
471
472
473
474
475 == 3.3 Add or Delete RS485 Sensor ==
476
477 (((
478 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
479 )))
480
481 (((
482 (% style="color:#037691" %)**AT Command: **
483 )))
484
485 (((
486 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
487 )))
488
489 * (((
490 Type_Code range:  A1 ~~ A4
491 )))
492 * (((
493 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
494 )))
495 * (((
496 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
497 )))
498 * (((
499 Read_Length:  RS485 response frame length supposed to receive. Max can receive
500 )))
501 * (((
502 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
503 )))
504 * (((
505 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
506 )))
507 * (((
508 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
509 )))
510
511 (((
512 **Example:**
513 )))
514
515 (((
516 User need to change external sensor use the type code as address code.
517 )))
518
519 (((
520 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
521 )))
522
523 [[image:image-20220624143553-10.png]]
524
525
526 The response frame of the sensor is as follows:
527
528 [[image:image-20220624143618-11.png]]
529
530
531
532 **Then the following parameters should be:**
533
534 * Address_Code range: A1
535 * Query_Length: 8
536 * Query_Command: A103000000019CAA
537 * Read_Length: 8
538 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
539 * has_CRC: 1
540 * timeout: 1500 (Fill in the test according to the actual situation)
541
542 **So the input command is:**
543
544 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
545
546
547 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
548
549 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
550 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
551 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
552
553 **Related commands:**
554
555 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
556
557 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
558
559
560 (% style="color:#037691" %)**Downlink Command:  **
561
562 **delete custom sensor A1:**
563
564 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
565
566 **Remove all custom sensors**
567
568 * 0xE5FF  
569
570
571
572
573 == 3.4 RS485 Test Command ==
574
575 (% style="color:#037691" %)**AT Command:**
576
577 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
578 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
579 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
580 (((
581 Send command to 485 sensor
582 )))
583
584 (((
585 Range : no more than 10 bytes
586 )))
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598
599
600
601 == 3.5 RS485 response timeout ==
602
603 Feature: Set or get extended time to receive 485 sensor data.
604
605 (% style="color:#037691" %)**AT Command:**
606
607 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
608 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
609 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
610 (((
611 Set response timeout to:
612 )))
613
614 (((
615 Range : 0~~10000
616 )))
617 )))|(% style="width:85px" %)OK
618
619 (% style="color:#037691" %)**Downlink Command:**
620
621 Format: Command Code (0xE0) followed by 3 bytes time value.
622
623 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
624
625 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
626 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
627
628
629
630
631 == 3.6 Set Sensor Type ==
632
633 (((
634 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
635 )))
636
637 (((
638 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
639 )))
640
641 [[image:image-20220624144904-12.png]]
642
643
644 (% style="color:#037691" %)**AT Command:**
645
646 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
647 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
648 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
649
650 Eg: The setting command **AT+STYPE=802212** means:
651
652 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
653 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
655 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
657 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
658 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
659
660 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
661
662
663 (% style="color:#037691" %)**Downlink Command:**
664
665 * 0xE400802212     Same as: AT+STYPE=80221
666
667 (% style="color:red" %)**Note:**
668
669 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
670
671
672
673
674 = 4. Power consumption and battery =
675
676 == 4.1 Total Power Consumption ==
677
678 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
679
680
681 == 4.2 Reduce power consumption ==
682
683 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
684
685
686 == 4.3 Battery ==
687
688 (((
689 All sensors are only power by external power source. If external power source is off. All sensor won't work.
690 )))
691
692 (((
693 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
694 )))
695
696
697 = 5. Main Process Unit WSC1-L =
698
699 == 5.1 Features ==
700
701 * Wall Attachable.
702 * LoRaWAN v1.0.3 Class A protocol.
703 * RS485 / Modbus protocol
704 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
705 * AT Commands to change parameters
706 * Remote configure parameters via LoRaWAN Downlink
707 * Firmware upgradable via program port
708 * Powered by external 12v battery
709 * Back up rechargeable 1000mAh battery
710 * IP Rating: IP65
711 * Support default sensors or 3rd party RS485 sensors
712
713
714
715
716 == 5.2 Power Consumption ==
717
718 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
719
720
721 == 5.3 Storage & Operation Temperature ==
722
723 -20°C to +60°C
724
725
726 == 5.4 Pin Mapping ==
727
728 [[image:1656054149793-239.png]]
729
730
731 == 5.5 Mechanical ==
732
733 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
734
735
736 == 5.6 Connect to RS485 Sensors ==
737
738 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
739
740
741 [[image:1656054389031-379.png]]
742
743
744 Hardware Design for the Converter Board please see:
745
746 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
747
748
749 = 6. Weather Sensors =
750
751 == 6.1 Rain Gauge ~-~- WSS-01 ==
752
753
754 (((
755 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
756 )))
757
758 (((
759 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
760 )))
761
762 (((
763 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
764 )))
765
766 (((
767 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
768 )))
769
770 (((
771 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
772 )))
773
774
775 === 6.1.1 Feature ===
776
777 * RS485 Rain Gauge
778 * Small dimension, easy to install
779 * Vents under funnel, avoid leaf or other things to avoid rain flow.
780 * ABS enclosure.
781 * Horizontal adjustable.
782
783
784
785
786 === 6.1.2 Specification ===
787
788 * Resolution: 0.2mm
789 * Accuracy: ±3%
790 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
791 * Input Power: DC 5~~24v
792 * Interface: RS485
793 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
794 * Working Humidity: <100% (no dewing)
795 * Power Consumption: 4mA @ 12v.
796
797
798
799
800 === 6.1.3 Dimension ===
801
802 [[image:1656054957406-980.png]]
803
804
805 === 6.1.4 Pin Mapping ===
806
807 [[image:1656054972828-692.png]]
808
809
810 === 6.1.5 Installation Notice ===
811
812 (((
813 Do not power on while connect the cables. Double check the wiring before power on.
814 )))
815
816 (((
817 Installation Photo as reference:
818 )))
819
820
821 (((
822 (% style="color:#4472c4" %)** Install on Ground:**
823 )))
824
825 (((
826 WSS-01 Rain Gauge include screws so can install in ground directly .
827 )))
828
829
830 (((
831 (% style="color:#4472c4" %)** Install on pole:**
832 )))
833
834 (((
835 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
836 )))
837
838 [[image:image-20220624152218-1.png||height="526" width="276"]]
839
840 WS-K2: Bracket Kit for Pole installation
841
842
843 WSSC-K2 dimension document, please see:
844
845 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
846
847
848 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
849
850 [[image:1656055444035-179.png]]
851
852 (((
853 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
854 )))
855
856 (((
857 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
858 )))
859
860 (((
861 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
862 )))
863
864
865 === 6.2.1 Feature ===
866
867 * RS485 wind speed / direction sensor
868 * PC enclosure, resist corrosion
869
870
871
872
873 === 6.2.2 Specification ===
874
875 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
876 * Wind direction range: 0 ~~ 360°
877 * Start wind speed: ≤0.3m/s
878 * Accuracy: ±(0.3+0.03V)m/s , ±1°
879 * Input Power: DC 5~~24v
880 * Interface: RS485
881 * Working Temperature: -30℃~70℃
882 * Working Humidity: <100% (no dewing)
883 * Power Consumption: 13mA ~~ 12v.
884 * Cable Length: 2 meters
885
886
887
888
889 === 6.2.3 Dimension ===
890
891 [[image:image-20220624152813-2.png]]
892
893
894 === 6.2.4 Pin Mapping ===
895
896 [[image:1656056281231-994.png]]
897
898
899 === 6.2.5  Angle Mapping ===
900
901 [[image:1656056303845-585.png]]
902
903
904 === 6.2.6  Installation Notice ===
905
906 (((
907 Do not power on while connect the cables. Double check the wiring before power on.
908 )))
909
910 (((
911 The sensor must be installed with below direction, towards North.
912 )))
913
914 [[image:image-20220624153901-3.png]]
915
916
917 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
918
919
920 (((
921 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
922 )))
923
924 (((
925 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
926 )))
927
928 (((
929 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
930 )))
931
932
933 === 6.3.1 Feature ===
934
935 * RS485 CO2, PM2.5, PM10 sensor
936 * NDIR to measure CO2 with Internal Temperature Compensation
937 * Laser Beam Scattering to PM2.5 and PM10
938
939
940
941
942 === 6.3.2 Specification ===
943
944 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
945 * CO2 resolution: 1ppm
946 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
947 * PM2.5/PM10 resolution: 1μg/m3
948 * Input Power: DC 7 ~~ 24v
949 * Preheat time: 3min
950 * Interface: RS485
951 * Working Temperature:
952 ** CO2: 0℃~50℃;
953 ** PM2.5/PM10: -30 ~~ 50℃
954 * Working Humidity:
955 ** PM2.5/PM10: 15~80%RH (no dewing)
956 ** CO2: 0~95%RH
957 * Power Consumption: 50mA@ 12v.
958
959
960
961
962 === 6.3.3 Dimension ===
963
964 [[image:1656056708366-230.png]]
965
966
967 === 6.3.4 Pin Mapping ===
968
969 [[image:1656056722648-743.png]]
970
971
972 === 6.3.5 Installation Notice ===
973
974 Do not power on while connect the cables. Double check the wiring before power on.
975
976 [[image:1656056751153-304.png]]
977
978 [[image:1656056766224-773.png]]
979
980
981 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
982
983
984 (((
985 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
986 )))
987
988 (((
989 WSS-04 has auto heating feature, this ensures measurement more reliable.
990 )))
991
992 (((
993 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
994 )))
995
996
997
998 === 6.4.1 Feature ===
999
1000 * RS485 Rain/Snow detect sensor
1001 * Surface heating to dry
1002 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1003
1004
1005
1006
1007 === 6.4.2 Specification ===
1008
1009 * Detect if there is rain or snow
1010 * Input Power: DC 12 ~~ 24v
1011 * Interface: RS485
1012 * Working Temperature: -30℃~70℃
1013 * Working Humidity: 10~90%RH
1014 * Power Consumption:
1015 ** No heating: 12mA @ 12v,
1016 ** heating: 94ma @ 12v.
1017
1018
1019
1020
1021 === 6.4.3 Dimension ===
1022
1023 [[image:1656056844782-155.png]]
1024
1025
1026 === 6.4.4 Pin Mapping ===
1027
1028 [[image:1656056855590-754.png]]
1029
1030
1031 === 6.4.5 Installation Notice ===
1032
1033 Do not power on while connect the cables. Double check the wiring before power on.
1034
1035
1036 (((
1037 Install with 15°degree.
1038 )))
1039
1040 [[image:1656056873783-780.png]]
1041
1042
1043 [[image:1656056883736-804.png]]
1044
1045
1046 === 6.4.6 Heating ===
1047
1048 (((
1049 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1050 )))
1051
1052
1053 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1054
1055
1056 (((
1057 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1058 )))
1059
1060 (((
1061 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1062 )))
1063
1064
1065 === 6.5.1 Feature ===
1066
1067 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1068
1069
1070
1071
1072 === 6.5.2 Specification ===
1073
1074 * Input Power: DC 12 ~~ 24v
1075 * Interface: RS485
1076 * Temperature Sensor Spec:
1077 ** Range: -30 ~~ 70℃
1078 ** resolution 0.1℃
1079 ** Accuracy: ±0.5℃
1080 * Humidity Sensor Spec:
1081 ** Range: 0 ~~ 100% RH
1082 ** resolution 0.1 %RH
1083 ** Accuracy: 3% RH
1084 * Pressure Sensor Spec:
1085 ** Range: 10~1100hPa
1086 ** Resolution: 0.1hPa
1087 ** Accuracy: ±0.1hPa
1088 * Illuminate sensor:
1089 ** Range: 0~2/20/200kLux
1090 ** Resolution: 10 Lux
1091 ** Accuracy: ±3%FS
1092 * Working Temperature: -30℃~70℃
1093 * Working Humidity: 10~90%RH
1094 * Power Consumption: 4mA @ 12v
1095
1096
1097
1098
1099 === 6.5.3 Dimension ===
1100
1101 [[image:1656057170639-522.png]]
1102
1103
1104 === 6.5.4 Pin Mapping ===
1105
1106 [[image:1656057181899-910.png]]
1107
1108
1109 === 6.5.5 Installation Notice ===
1110
1111 Do not power on while connect the cables. Double check the wiring before power on.
1112
1113 [[image:1656057199955-514.png]]
1114
1115
1116 [[image:1656057212438-475.png]]
1117
1118
1119 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1120
1121
1122 (((
1123 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1124 )))
1125
1126 (((
1127 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1128 )))
1129
1130 (((
1131 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1132 )))
1133
1134
1135
1136 === 6.6.1 Feature ===
1137
1138 * RS485 Total Solar Radiation sensor
1139 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1140 * Measure Reflected Radiation if sense area towards ground.
1141
1142
1143
1144
1145
1146 === 6.6.2 Specification ===
1147
1148 * Input Power: DC 5 ~~ 24v
1149 * Interface: RS485
1150 * Detect spectrum: 0.3~3μm(300~3000nm)
1151 * Measure strength range: 0~2000W/m2
1152 * Resolution: 0.1W/m2
1153 * Accuracy: ±3%
1154 * Yearly Stability: ≤±2%
1155 * Cosine response: ≤7% (@ Sun angle 10°)
1156 * Temperature Effect: ±2%(-10℃~40℃)
1157 * Working Temperature: -40℃~70℃
1158 * Working Humidity: 10~90%RH
1159 * Power Consumption: 4mA @ 12v
1160
1161
1162
1163
1164 === 6.6.3 Dimension ===
1165
1166 [[image:1656057348695-898.png]]
1167
1168
1169 === 6.6.4 Pin Mapping ===
1170
1171 [[image:1656057359343-744.png]]
1172
1173
1174 === 6.6.5 Installation Notice ===
1175
1176 Do not power on while connect the cables. Double check the wiring before power on.
1177
1178 [[image:1656057369259-804.png]]
1179
1180
1181 [[image:1656057377943-564.png]]
1182
1183
1184 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1185
1186
1187 (((
1188 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1189 )))
1190
1191 (((
1192 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1193 )))
1194
1195 (((
1196 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1197 )))
1198
1199
1200 === 6.7.1 Feature ===
1201
1202 (((
1203 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1204 )))
1205
1206 (((
1207 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1208 )))
1209
1210
1211 === 6.7.2 Specification ===
1212
1213 * Input Power: DC 5 ~~ 24v
1214 * Interface: RS485
1215 * Response Spectrum: 400~700nm
1216 * Measure range: 0~2500μmol/m2•s
1217 * Resolution: 1μmol/m2•s
1218 * Accuracy: ±2%
1219 * Yearly Stability: ≤±2%
1220 * Working Temperature: -30℃~75℃
1221 * Working Humidity: 10~90%RH
1222 * Power Consumption: 3mA @ 12v
1223
1224
1225
1226
1227 === 6.7.3 Dimension ===
1228
1229 [[image:1656057538793-888.png]]
1230
1231
1232 === 6.7.4 Pin Mapping ===
1233
1234 [[image:1656057548116-203.png]]
1235
1236
1237 === 6.7.5 Installation Notice ===
1238
1239 Do not power on while connect the cables. Double check the wiring before power on.
1240
1241
1242 [[image:1656057557191-895.png]]
1243
1244
1245 [[image:1656057565783-251.png]]
1246
1247
1248 = 7. FAQ =
1249
1250 == 7.1 What else do I need to purchase to build Weather Station? ==
1251
1252 Below is the installation photo and structure:
1253
1254 [[image:1656057598349-319.png]]
1255
1256
1257 [[image:1656057608049-693.png]]
1258
1259
1260
1261 == 7.2 How to upgrade firmware for WSC1-L? ==
1262
1263 (((
1264 Firmware Location & Change log:
1265 )))
1266
1267 (((
1268 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1269 )))
1270
1271
1272 (((
1273 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1274 )))
1275
1276
1277 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1278
1279 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1280
1281
1282 == 7.4 Can I add my weather sensors? ==
1283
1284 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1285
1286
1287 = 8. Trouble Shooting =
1288
1289 == 8.1 AT Command input doesn't work ==
1290
1291 (((
1292 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1293 )))
1294
1295
1296 = 9. Order Info =
1297
1298 == 9.1 Main Process Unit ==
1299
1300 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1301
1302 (% style="color:blue" %)**XX**(%%): The default frequency band
1303
1304 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1305 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1306 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1307 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1308 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1309 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1310 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1311 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1312
1313 == 9.2 Sensors ==
1314
1315 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1316 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1317 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1318 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1319 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1320 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1321 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1322 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1323 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1324 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1325
1326 = 10. Support =
1327
1328 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1329 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1330
1331
1332
1333
1334 = 11. Appendix I: Field Installation Photo =
1335
1336
1337 [[image:1656058346362-132.png||height="685" width="732"]]
1338
1339 **Storage Battery**: 12v,12AH li battery
1340
1341
1342
1343 **Wind Speed/Direction**
1344
1345 [[image:1656058373174-421.png||height="356" width="731"]]
1346
1347
1348
1349 **Total Solar Radiation sensor**
1350
1351 [[image:1656058397364-282.png||height="453" width="732"]]
1352
1353
1354
1355 **PAR Sensor**
1356
1357 [[image:1656058416171-615.png]]
1358
1359
1360
1361 **CO2/PM2.5/PM10 3 in 1 sensor**
1362
1363 [[image:1656058441194-827.png||height="672" width="523"]]
1364
1365
1366
1367 **Rain / Snow Detect**
1368
1369 [[image:1656058451456-166.png]]
1370
1371
1372
1373 **Rain Gauge**
1374
1375 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0