Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99 == 2.3 Example to use for LoRaWAN network ==
100
101 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
102
103
104 [[image:1656042612899-422.png]]
105
106
107
108 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
109
110
111 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
112
113 Each WSC1-L is shipped with a sticker with the default device EUI as below:
114
115 [[image:image-20220624115043-1.jpeg]]
116
117
118 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
119
120 **Add APP EUI in the application.**
121
122 [[image:1656042662694-311.png]]
123
124 [[image:1656042673910-429.png]]
125
126
127
128
129 **Choose Manually to add WSC1-L**
130
131 [[image:1656042695755-103.png]]
132
133
134
135 **Add APP KEY and DEV EUI**
136
137 [[image:1656042723199-746.png]]
138
139
140
141 (((
142 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143 )))
144
145
146 [[image:1656042745346-283.png]]
147
148
149
150 == 2.4 Uplink Payload ==
151
152 Uplink payloads include two types: Valid Sensor Value and other status / control command.
153
154 * Valid Sensor Value: Use FPORT=2
155 * Other control command: Use FPORT other than 2.
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 (((
222 shows the battery voltage for WSC1-L MCU.
223 )))
224
225 (((
226 Ex1: 0x0BD6/1000 = 3.03 V
227 )))
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292 [[image:image-20220624140352-2.png]]
293
294
295 (((
296 Below is an example payload:  [[image:image-20220624140615-3.png]]
297 )))
298
299 (((
300
301 )))
302
303 (((
304 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
305 )))
306
307 * (((
308 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
309 )))
310
311 (((
312 Uplink 1:  [[image:image-20220624140735-4.png]]
313 )))
314
315 (((
316
317 )))
318
319 (((
320 Uplink 2:  [[image:image-20220624140842-5.png]]
321 )))
322
323 (((
324
325 )))
326
327 * (((
328 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
329 )))
330
331 (((
332 Uplink 1:  [[image:image-20220624141025-6.png]]
333 )))
334
335 (((
336
337 )))
338
339 Uplink 2:  [[image:image-20220624141100-7.png]]
340
341
342
343
344 === 2.4.3 Decoder in TTN V3 ===
345
346 (((
347 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
348 )))
349
350 (((
351
352 )))
353
354 (((
355 Download decoder for suitable platform from:
356 )))
357
358 (((
359 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
360 )))
361
362 (((
363 and put as below:
364 )))
365
366 [[image:1656051152438-578.png]]
367
368
369
370 == 2.5 Show data on Application Server ==
371
372 (((
373 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
374 )))
375
376 (((
377
378 )))
379
380 (((
381 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
386 )))
387
388 [[image:1656051197172-131.png]]
389
390
391 **Add TagoIO:**
392
393 [[image:1656051223585-631.png]]
394
395
396 **Authorization:**
397
398 [[image:1656051248318-368.png]]
399
400
401 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
402
403 [[image:1656051277767-168.png]]
404
405
406
407 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
408
409 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
410
411 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
412 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
413
414 There are two kinds of commands to configure WSC1-L, they are:
415
416 * (% style="color:#4472c4" %)**General Commands**.
417
418 These commands are to configure:
419
420 * General system settings like: uplink interval.
421 * LoRaWAN protocol & radio related command.
422
423 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
424
425 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
426
427
428 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
429
430 These commands only valid for WSC1-L, as below:
431
432
433
434 == 3.1 Set Transmit Interval Time ==
435
436 Feature: Change LoRaWAN End Node Transmit Interval.
437
438 (% style="color:#037691" %)**AT Command: AT+TDC**
439
440 [[image:image-20220624142619-8.png]]
441
442
443 (% style="color:#037691" %)**Downlink Command: 0x01**
444
445 Format: Command Code (0x01) followed by 3 bytes time value.
446
447 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
448
449 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
450 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
451
452
453
454
455
456 == 3.2 Set Emergency Mode ==
457
458 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
459
460 (% style="color:#037691" %)**AT Command:**
461
462 [[image:image-20220624142956-9.png]]
463
464
465 (% style="color:#037691" %)**Downlink Command:**
466
467 * 0xE101     Same as: AT+ALARMMOD=1
468 * 0xE100     Same as: AT+ALARMMOD=0
469
470
471
472
473
474 == 3.3 Add or Delete RS485 Sensor ==
475
476 (((
477 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
478 )))
479
480 (((
481 (% style="color:#037691" %)**AT Command: **
482 )))
483
484 (((
485 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
486 )))
487
488 * (((
489 Type_Code range:  A1 ~~ A4
490 )))
491 * (((
492 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
493 )))
494 * (((
495 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
496 )))
497 * (((
498 Read_Length:  RS485 response frame length supposed to receive. Max can receive
499 )))
500 * (((
501 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
502 )))
503 * (((
504 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
505 )))
506 * (((
507 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
508 )))
509
510 (((
511 **Example:**
512 )))
513
514 (((
515 User need to change external sensor use the type code as address code.
516 )))
517
518 (((
519 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
520 )))
521
522 [[image:image-20220624143553-10.png]]
523
524
525 The response frame of the sensor is as follows:
526
527 [[image:image-20220624143618-11.png]]
528
529
530
531 **Then the following parameters should be:**
532
533 * Address_Code range: A1
534 * Query_Length: 8
535 * Query_Command: A103000000019CAA
536 * Read_Length: 8
537 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
538 * has_CRC: 1
539 * timeout: 1500 (Fill in the test according to the actual situation)
540
541 **So the input command is:**
542
543 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
544
545
546 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
547
548 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
549 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
550 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
551
552 **Related commands:**
553
554 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
555
556 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
557
558
559 (% style="color:#037691" %)**Downlink Command:  **
560
561 **delete custom sensor A1:**
562
563 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
564
565 **Remove all custom sensors**
566
567 * 0xE5FF  
568
569
570
571
572
573 == 3.4 RS485 Test Command ==
574
575 (% style="color:#037691" %)**AT Command:**
576
577 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
578 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
579 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
580 (((
581 Send command to 485 sensor
582 )))
583
584 (((
585 Range : no more than 10 bytes
586 )))
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598
599
600
601
602 == 3.5 RS485 response timeout ==
603
604 Feature: Set or get extended time to receive 485 sensor data.
605
606 (% style="color:#037691" %)**AT Command:**
607
608 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
609 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
610 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
611 (((
612 Set response timeout to:
613 )))
614
615 (((
616 Range : 0~~10000
617 )))
618 )))|(% style="width:85px" %)OK
619
620 (% style="color:#037691" %)**Downlink Command:**
621
622 Format: Command Code (0xE0) followed by 3 bytes time value.
623
624 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
625
626 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
627 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
628
629
630
631
632
633 == 3.6 Set Sensor Type ==
634
635 (((
636 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
637 )))
638
639 (((
640 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
641 )))
642
643 [[image:image-20220624144904-12.png]]
644
645
646 (% style="color:#037691" %)**AT Command:**
647
648 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
649 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
650 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
651
652 Eg: The setting command **AT+STYPE=802212** means:
653
654 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
655 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
657 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
658 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
659 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
660 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
661
662 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
663
664
665 (% style="color:#037691" %)**Downlink Command:**
666
667 * 0xE400802212     Same as: AT+STYPE=80221
668
669 (% style="color:red" %)**Note:**
670
671 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
672
673
674
675
676 = 4. Power consumption and battery =
677
678 == 4.1 Total Power Consumption ==
679
680 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
681
682
683 == 4.2 Reduce power consumption ==
684
685 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
686
687
688 == 4.3 Battery ==
689
690 (((
691 All sensors are only power by external power source. If external power source is off. All sensor won't work.
692 )))
693
694 (((
695 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
696 )))
697
698
699 = 5. Main Process Unit WSC1-L =
700
701 == 5.1 Features ==
702
703 * Wall Attachable.
704 * LoRaWAN v1.0.3 Class A protocol.
705 * RS485 / Modbus protocol
706 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
707 * AT Commands to change parameters
708 * Remote configure parameters via LoRaWAN Downlink
709 * Firmware upgradable via program port
710 * Powered by external 12v battery
711 * Back up rechargeable 1000mAh battery
712 * IP Rating: IP65
713 * Support default sensors or 3rd party RS485 sensors
714
715
716
717
718
719 == 5.2 Power Consumption ==
720
721 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
722
723
724 == 5.3 Storage & Operation Temperature ==
725
726 -20°C to +60°C
727
728
729 == 5.4 Pin Mapping ==
730
731 [[image:1656054149793-239.png]]
732
733
734 == 5.5 Mechanical ==
735
736 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
737
738
739 == 5.6 Connect to RS485 Sensors ==
740
741 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
742
743
744 [[image:1656054389031-379.png]]
745
746
747 Hardware Design for the Converter Board please see:
748
749 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
750
751
752 = 6. Weather Sensors =
753
754 == 6.1 Rain Gauge ~-~- WSS-01 ==
755
756
757 (((
758 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
759 )))
760
761 (((
762 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
763 )))
764
765 (((
766 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
767 )))
768
769 (((
770 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
771 )))
772
773 (((
774 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
775 )))
776
777
778 === 6.1.1 Feature ===
779
780 * RS485 Rain Gauge
781 * Small dimension, easy to install
782 * Vents under funnel, avoid leaf or other things to avoid rain flow.
783 * ABS enclosure.
784 * Horizontal adjustable.
785
786
787
788
789
790 === 6.1.2 Specification ===
791
792 * Resolution: 0.2mm
793 * Accuracy: ±3%
794 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
795 * Input Power: DC 5~~24v
796 * Interface: RS485
797 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
798 * Working Humidity: <100% (no dewing)
799 * Power Consumption: 4mA @ 12v.
800
801
802
803
804
805 === 6.1.3 Dimension ===
806
807 [[image:1656054957406-980.png]]
808
809
810 === 6.1.4 Pin Mapping ===
811
812 [[image:1656054972828-692.png]]
813
814
815 === 6.1.5 Installation Notice ===
816
817 (((
818 Do not power on while connect the cables. Double check the wiring before power on.
819 )))
820
821 (((
822 Installation Photo as reference:
823 )))
824
825
826 (((
827 (% style="color:#4472c4" %)** Install on Ground:**
828 )))
829
830 (((
831 WSS-01 Rain Gauge include screws so can install in ground directly .
832 )))
833
834
835 (((
836 (% style="color:#4472c4" %)** Install on pole:**
837 )))
838
839 (((
840 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
841 )))
842
843 [[image:image-20220624152218-1.png||height="526" width="276"]]
844
845 WS-K2: Bracket Kit for Pole installation
846
847
848 WSSC-K2 dimension document, please see:
849
850 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
851
852
853 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
854
855 [[image:1656055444035-179.png]]
856
857 (((
858 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
859 )))
860
861 (((
862 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
863 )))
864
865 (((
866 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
867 )))
868
869
870 === 6.2.1 Feature ===
871
872 * RS485 wind speed / direction sensor
873 * PC enclosure, resist corrosion
874
875
876
877
878
879 === 6.2.2 Specification ===
880
881 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
882 * Wind direction range: 0 ~~ 360°
883 * Start wind speed: ≤0.3m/s
884 * Accuracy: ±(0.3+0.03V)m/s , ±1°
885 * Input Power: DC 5~~24v
886 * Interface: RS485
887 * Working Temperature: -30℃~70℃
888 * Working Humidity: <100% (no dewing)
889 * Power Consumption: 13mA ~~ 12v.
890 * Cable Length: 2 meters
891
892
893
894
895
896 === 6.2.3 Dimension ===
897
898 [[image:image-20220624152813-2.png]]
899
900
901 === 6.2.4 Pin Mapping ===
902
903 [[image:1656056281231-994.png]]
904
905
906 === 6.2.5  Angle Mapping ===
907
908 [[image:1656056303845-585.png]]
909
910
911 === 6.2.6  Installation Notice ===
912
913 (((
914 Do not power on while connect the cables. Double check the wiring before power on.
915 )))
916
917 (((
918 The sensor must be installed with below direction, towards North.
919 )))
920
921 [[image:image-20220624153901-3.png]]
922
923
924 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
925
926
927 (((
928 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
929 )))
930
931 (((
932 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
933 )))
934
935 (((
936 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
937 )))
938
939
940 === 6.3.1 Feature ===
941
942 * RS485 CO2, PM2.5, PM10 sensor
943 * NDIR to measure CO2 with Internal Temperature Compensation
944 * Laser Beam Scattering to PM2.5 and PM10
945
946
947
948
949
950 === 6.3.2 Specification ===
951
952 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
953 * CO2 resolution: 1ppm
954 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
955 * PM2.5/PM10 resolution: 1μg/m3
956 * Input Power: DC 7 ~~ 24v
957 * Preheat time: 3min
958 * Interface: RS485
959 * Working Temperature:
960 ** CO2: 0℃~50℃;
961 ** PM2.5/PM10: -30 ~~ 50℃
962 * Working Humidity:
963 ** PM2.5/PM10: 15~80%RH (no dewing)
964 ** CO2: 0~95%RH
965 * Power Consumption: 50mA@ 12v.
966
967
968
969
970
971 === 6.3.3 Dimension ===
972
973 [[image:1656056708366-230.png]]
974
975
976 === 6.3.4 Pin Mapping ===
977
978 [[image:1656056722648-743.png]]
979
980
981 === 6.3.5 Installation Notice ===
982
983 Do not power on while connect the cables. Double check the wiring before power on.
984
985 [[image:1656056751153-304.png]]
986
987 [[image:1656056766224-773.png]]
988
989
990 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
991
992
993 (((
994 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
995 )))
996
997 (((
998 WSS-04 has auto heating feature, this ensures measurement more reliable.
999 )))
1000
1001 (((
1002 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1003 )))
1004
1005
1006
1007 === 6.4.1 Feature ===
1008
1009 * RS485 Rain/Snow detect sensor
1010 * Surface heating to dry
1011 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1012
1013
1014
1015
1016
1017 === 6.4.2 Specification ===
1018
1019 * Detect if there is rain or snow
1020 * Input Power: DC 12 ~~ 24v
1021 * Interface: RS485
1022 * Working Temperature: -30℃~70℃
1023 * Working Humidity: 10~90%RH
1024 * Power Consumption:
1025 ** No heating: 12mA @ 12v,
1026 ** heating: 94ma @ 12v.
1027
1028
1029
1030
1031
1032 === 6.4.3 Dimension ===
1033
1034 [[image:1656056844782-155.png]]
1035
1036
1037 === 6.4.4 Pin Mapping ===
1038
1039 [[image:1656056855590-754.png]]
1040
1041
1042 === 6.4.5 Installation Notice ===
1043
1044 Do not power on while connect the cables. Double check the wiring before power on.
1045
1046
1047 (((
1048 Install with 15°degree.
1049 )))
1050
1051 [[image:1656056873783-780.png]]
1052
1053
1054 [[image:1656056883736-804.png]]
1055
1056
1057 === 6.4.6 Heating ===
1058
1059 (((
1060 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1061 )))
1062
1063
1064 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1065
1066
1067 (((
1068 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1069 )))
1070
1071 (((
1072 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1073 )))
1074
1075
1076 === 6.5.1 Feature ===
1077
1078 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1079
1080
1081
1082
1083
1084 === 6.5.2 Specification ===
1085
1086 * Input Power: DC 12 ~~ 24v
1087 * Interface: RS485
1088 * Temperature Sensor Spec:
1089 ** Range: -30 ~~ 70℃
1090 ** resolution 0.1℃
1091 ** Accuracy: ±0.5℃
1092 * Humidity Sensor Spec:
1093 ** Range: 0 ~~ 100% RH
1094 ** resolution 0.1 %RH
1095 ** Accuracy: 3% RH
1096 * Pressure Sensor Spec:
1097 ** Range: 10~1100hPa
1098 ** Resolution: 0.1hPa
1099 ** Accuracy: ±0.1hPa
1100 * Illuminate sensor:
1101 ** Range: 0~2/20/200kLux
1102 ** Resolution: 10 Lux
1103 ** Accuracy: ±3%FS
1104 * Working Temperature: -30℃~70℃
1105 * Working Humidity: 10~90%RH
1106 * Power Consumption: 4mA @ 12v
1107
1108
1109
1110
1111
1112 === 6.5.3 Dimension ===
1113
1114 [[image:1656057170639-522.png]]
1115
1116
1117 === 6.5.4 Pin Mapping ===
1118
1119 [[image:1656057181899-910.png]]
1120
1121
1122 === 6.5.5 Installation Notice ===
1123
1124 Do not power on while connect the cables. Double check the wiring before power on.
1125
1126 [[image:1656057199955-514.png]]
1127
1128
1129 [[image:1656057212438-475.png]]
1130
1131
1132 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1133
1134
1135 (((
1136 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1137 )))
1138
1139 (((
1140 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1141 )))
1142
1143 (((
1144 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1145 )))
1146
1147
1148
1149 === 6.6.1 Feature ===
1150
1151 * RS485 Total Solar Radiation sensor
1152 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1153 * Measure Reflected Radiation if sense area towards ground.
1154
1155
1156
1157
1158
1159
1160 === 6.6.2 Specification ===
1161
1162 * Input Power: DC 5 ~~ 24v
1163 * Interface: RS485
1164 * Detect spectrum: 0.3~3μm(300~3000nm)
1165 * Measure strength range: 0~2000W/m2
1166 * Resolution: 0.1W/m2
1167 * Accuracy: ±3%
1168 * Yearly Stability: ≤±2%
1169 * Cosine response: ≤7% (@ Sun angle 10°)
1170 * Temperature Effect: ±2%(-10℃~40℃)
1171 * Working Temperature: -40℃~70℃
1172 * Working Humidity: 10~90%RH
1173 * Power Consumption: 4mA @ 12v
1174
1175
1176
1177
1178
1179 === 6.6.3 Dimension ===
1180
1181 [[image:1656057348695-898.png]]
1182
1183
1184 === 6.6.4 Pin Mapping ===
1185
1186 [[image:1656057359343-744.png]]
1187
1188
1189 === 6.6.5 Installation Notice ===
1190
1191 Do not power on while connect the cables. Double check the wiring before power on.
1192
1193 [[image:1656057369259-804.png]]
1194
1195
1196 [[image:1656057377943-564.png]]
1197
1198
1199 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1200
1201
1202 (((
1203 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1204 )))
1205
1206 (((
1207 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1208 )))
1209
1210 (((
1211 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1212 )))
1213
1214
1215 === 6.7.1 Feature ===
1216
1217 (((
1218 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1219 )))
1220
1221 (((
1222 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1223 )))
1224
1225
1226 === 6.7.2 Specification ===
1227
1228 * Input Power: DC 5 ~~ 24v
1229 * Interface: RS485
1230 * Response Spectrum: 400~700nm
1231 * Measure range: 0~2500μmol/m2•s
1232 * Resolution: 1μmol/m2•s
1233 * Accuracy: ±2%
1234 * Yearly Stability: ≤±2%
1235 * Working Temperature: -30℃~75℃
1236 * Working Humidity: 10~90%RH
1237 * Power Consumption: 3mA @ 12v
1238
1239
1240
1241
1242
1243 === 6.7.3 Dimension ===
1244
1245 [[image:1656057538793-888.png]]
1246
1247
1248 === 6.7.4 Pin Mapping ===
1249
1250 [[image:1656057548116-203.png]]
1251
1252
1253 === 6.7.5 Installation Notice ===
1254
1255 Do not power on while connect the cables. Double check the wiring before power on.
1256
1257
1258 [[image:1656057557191-895.png]]
1259
1260
1261 [[image:1656057565783-251.png]]
1262
1263
1264 = 7. FAQ =
1265
1266 == 7.1 What else do I need to purchase to build Weather Station? ==
1267
1268 Below is the installation photo and structure:
1269
1270 [[image:1656057598349-319.png]]
1271
1272
1273 [[image:1656057608049-693.png]]
1274
1275
1276
1277 == 7.2 How to upgrade firmware for WSC1-L? ==
1278
1279 (((
1280 Firmware Location & Change log:
1281 )))
1282
1283 (((
1284 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1285 )))
1286
1287
1288 (((
1289 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1290 )))
1291
1292
1293 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1294
1295 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1296
1297
1298 == 7.4 Can I add my weather sensors? ==
1299
1300 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1301
1302
1303 = 8. Trouble Shooting =
1304
1305 == 8.1 AT Command input doesn't work ==
1306
1307 (((
1308 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1309 )))
1310
1311
1312 = 9. Order Info =
1313
1314 == 9.1 Main Process Unit ==
1315
1316 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1317
1318 (% style="color:blue" %)**XX**(%%): The default frequency band
1319
1320 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1321 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1322 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1323 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1324 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1325 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1326 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1327 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1328
1329
1330 == 9.2 Sensors ==
1331
1332 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1333 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1334 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1335 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1336 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1337 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1338 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1339 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1340 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1341 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1342
1343
1344 = 10. Support =
1345
1346 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1347 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1348
1349
1350
1351
1352
1353 = 11. Appendix I: Field Installation Photo =
1354
1355
1356 [[image:1656058346362-132.png||height="685" width="732"]]
1357
1358 **Storage Battery**: 12v,12AH li battery
1359
1360
1361
1362 **Wind Speed/Direction**
1363
1364 [[image:1656058373174-421.png||height="356" width="731"]]
1365
1366
1367
1368 **Total Solar Radiation sensor**
1369
1370 [[image:1656058397364-282.png||height="453" width="732"]]
1371
1372
1373
1374 **PAR Sensor**
1375
1376 [[image:1656058416171-615.png]]
1377
1378
1379
1380 **CO2/PM2.5/PM10 3 in 1 sensor**
1381
1382 [[image:1656058441194-827.png||height="672" width="523"]]
1383
1384
1385
1386 **Rain / Snow Detect**
1387
1388 [[image:1656058451456-166.png]]
1389
1390
1391
1392 **Rain Gauge**
1393
1394 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0