Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99 == 2.3 Example to use for LoRaWAN network ==
100
101 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
102
103
104 [[image:1656042612899-422.png]]
105
106
107
108 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
109
110
111 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
112
113 Each WSC1-L is shipped with a sticker with the default device EUI as below:
114
115 [[image:image-20220624115043-1.jpeg]]
116
117
118 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
119
120 **Add APP EUI in the application.**
121
122 [[image:1656042662694-311.png]]
123
124 [[image:1656042673910-429.png]]
125
126
127
128
129 **Choose Manually to add WSC1-L**
130
131 [[image:1656042695755-103.png]]
132
133
134
135 **Add APP KEY and DEV EUI**
136
137 [[image:1656042723199-746.png]]
138
139
140
141 (((
142 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143 )))
144
145
146 [[image:1656042745346-283.png]]
147
148
149
150 == 2.4 Uplink Payload ==
151
152 Uplink payloads include two types: Valid Sensor Value and other status / control command.
153
154 * Valid Sensor Value: Use FPORT=2
155 * Other control command: Use FPORT other than 2.
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 (((
222 shows the battery voltage for WSC1-L MCU.
223 )))
224
225 (((
226 Ex1: 0x0BD6/1000 = 3.03 V
227 )))
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292 [[image:image-20220624140352-2.png]]
293
294
295 (((
296 Below is an example payload:  [[image:image-20220624140615-3.png]]
297 )))
298
299 (((
300
301 )))
302
303 (((
304 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
305 )))
306
307 * (((
308 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
309 )))
310
311 (((
312 Uplink 1:  [[image:image-20220624140735-4.png]]
313 )))
314
315 (((
316
317 )))
318
319 (((
320 Uplink 2:  [[image:image-20220624140842-5.png]]
321 )))
322
323 (((
324
325 )))
326
327 * (((
328 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
329 )))
330
331 (((
332 Uplink 1:  [[image:image-20220624141025-6.png]]
333 )))
334
335 (((
336
337 )))
338
339 Uplink 2:  [[image:image-20220624141100-7.png]]
340
341
342
343
344 === 2.4.3 Decoder in TTN V3 ===
345
346 (((
347 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
348 )))
349
350 (((
351
352 )))
353
354 (((
355 Download decoder for suitable platform from:
356 )))
357
358 (((
359 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
360 )))
361
362 (((
363 and put as below:
364 )))
365
366 [[image:1656051152438-578.png]]
367
368
369
370 == 2.5 Show data on Application Server ==
371
372 (((
373 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
374 )))
375
376 (((
377
378 )))
379
380 (((
381 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
386 )))
387
388 [[image:1656051197172-131.png]]
389
390
391 **Add TagoIO:**
392
393 [[image:1656051223585-631.png]]
394
395
396 **Authorization:**
397
398 [[image:1656051248318-368.png]]
399
400
401 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
402
403 [[image:1656051277767-168.png]]
404
405
406
407 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
408
409 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
410
411 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
412 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
413
414 There are two kinds of commands to configure WSC1-L, they are:
415
416 * (% style="color:#4472c4" %)**General Commands**.
417
418 These commands are to configure:
419
420 * General system settings like: uplink interval.
421 * LoRaWAN protocol & radio related command.
422
423 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
424
425 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
426
427
428 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
429
430 These commands only valid for WSC1-L, as below:
431
432
433
434 == 3.1 Set Transmit Interval Time ==
435
436 Feature: Change LoRaWAN End Node Transmit Interval.
437
438 (% style="color:#037691" %)**AT Command: AT+TDC**
439
440 [[image:image-20220624142619-8.png]]
441
442
443 (% style="color:#037691" %)**Downlink Command: 0x01**
444
445 Format: Command Code (0x01) followed by 3 bytes time value.
446
447 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
448
449 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
450 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
451
452
453
454
455
456
457 == 3.2 Set Emergency Mode ==
458
459 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
460
461 (% style="color:#037691" %)**AT Command:**
462
463 [[image:image-20220624142956-9.png]]
464
465
466 (% style="color:#037691" %)**Downlink Command:**
467
468 * 0xE101     Same as: AT+ALARMMOD=1
469 * 0xE100     Same as: AT+ALARMMOD=0
470
471
472
473
474
475
476 == 3.3 Add or Delete RS485 Sensor ==
477
478 (((
479 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
480 )))
481
482 (((
483 (% style="color:#037691" %)**AT Command: **
484 )))
485
486 (((
487 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
488 )))
489
490 * (((
491 Type_Code range:  A1 ~~ A4
492 )))
493 * (((
494 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
495 )))
496 * (((
497 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
498 )))
499 * (((
500 Read_Length:  RS485 response frame length supposed to receive. Max can receive
501 )))
502 * (((
503 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
504 )))
505 * (((
506 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
507 )))
508 * (((
509 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
510 )))
511
512 (((
513 **Example:**
514 )))
515
516 (((
517 User need to change external sensor use the type code as address code.
518 )))
519
520 (((
521 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
522 )))
523
524 [[image:image-20220624143553-10.png]]
525
526
527 The response frame of the sensor is as follows:
528
529 [[image:image-20220624143618-11.png]]
530
531
532
533 **Then the following parameters should be:**
534
535 * Address_Code range: A1
536 * Query_Length: 8
537 * Query_Command: A103000000019CAA
538 * Read_Length: 8
539 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
540 * has_CRC: 1
541 * timeout: 1500 (Fill in the test according to the actual situation)
542
543
544 **So the input command is:**
545
546 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
547
548
549 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
550
551 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
552 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
553 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
554
555 **Related commands:**
556
557 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
558
559 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
560
561
562 (% style="color:#037691" %)**Downlink Command:  **
563
564 **delete custom sensor A1:**
565
566 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
567
568 **Remove all custom sensors**
569
570 * 0xE5FF  
571
572
573
574
575
576
577 == 3.4 RS485 Test Command ==
578
579 (% style="color:#037691" %)**AT Command:**
580
581 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
582 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
583 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
584 Send command to 485 sensor
585
586 Range : no more than 10 bytes
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598
599
600
601
602
603 == 3.5 RS485 response timeout ==
604
605 Feature: Set or get extended time to receive 485 sensor data.
606
607 (% style="color:#037691" %)**AT Command:**
608
609 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
610 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
611 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
612 Set response timeout to:
613
614 Range : 0~~10000
615 )))|(% style="width:85px" %)OK
616
617 (% style="color:#037691" %)**Downlink Command:**
618
619 Format: Command Code (0xE0) followed by 3 bytes time value.
620
621 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
622
623 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
624 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
625
626
627
628
629
630
631 == 3.6 Set Sensor Type ==
632
633 (((
634 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
635 )))
636
637 (((
638 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
639 )))
640
641 [[image:image-20220624144904-12.png]]
642
643
644 (% style="color:#037691" %)**AT Command:**
645
646 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
647 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
648 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
649
650 Eg: The setting command **AT+STYPE=802212** means:
651
652 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
653 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
655 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
657 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
658 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
659
660 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
661
662
663 (% style="color:#037691" %)**Downlink Command:**
664
665 * 0xE400802212     Same as: AT+STYPE=80221
666
667 (% style="color:red" %)**Note:**
668
669 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
670
671
672
673
674 = 4. Power consumption and battery =
675
676 == 4.1 Total Power Consumption ==
677
678 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
679
680
681 == 4.2 Reduce power consumption ==
682
683 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
684
685
686 == 4.3 Battery ==
687
688 (((
689 All sensors are only power by external power source. If external power source is off. All sensor won't work.
690 )))
691
692 (((
693 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
694 )))
695
696
697 = 5. Main Process Unit WSC1-L =
698
699 == 5.1 Features ==
700
701 * Wall Attachable.
702 * LoRaWAN v1.0.3 Class A protocol.
703 * RS485 / Modbus protocol
704 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
705 * AT Commands to change parameters
706 * Remote configure parameters via LoRaWAN Downlink
707 * Firmware upgradable via program port
708 * Powered by external 12v battery
709 * Back up rechargeable 1000mAh battery
710 * IP Rating: IP65
711 * Support default sensors or 3rd party RS485 sensors
712
713
714
715
716
717
718 == 5.2 Power Consumption ==
719
720 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
721
722
723 == 5.3 Storage & Operation Temperature ==
724
725 -20°C to +60°C
726
727
728 == 5.4 Pin Mapping ==
729
730 [[image:1656054149793-239.png]]
731
732
733 == 5.5 Mechanical ==
734
735 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
736
737
738 == 5.6 Connect to RS485 Sensors ==
739
740 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
741
742
743 [[image:1656054389031-379.png]]
744
745
746 Hardware Design for the Converter Board please see:
747
748 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
749
750
751 = 6. Weather Sensors =
752
753 == 6.1 Rain Gauge ~-~- WSS-01 ==
754
755
756 (((
757 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
758 )))
759
760 (((
761 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
762 )))
763
764 (((
765 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
766 )))
767
768 (((
769 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
770 )))
771
772 (((
773 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
774 )))
775
776
777 === 6.1.1 Feature ===
778
779 * RS485 Rain Gauge
780 * Small dimension, easy to install
781 * Vents under funnel, avoid leaf or other things to avoid rain flow.
782 * ABS enclosure.
783 * Horizontal adjustable.
784
785
786
787
788
789
790 === 6.1.2 Specification ===
791
792 * Resolution: 0.2mm
793 * Accuracy: ±3%
794 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
795 * Input Power: DC 5~~24v
796 * Interface: RS485
797 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
798 * Working Humidity: <100% (no dewing)
799 * Power Consumption: 4mA @ 12v.
800
801
802
803
804
805
806 === 6.1.3 Dimension ===
807
808 [[image:1656054957406-980.png]]
809
810
811 === 6.1.4 Pin Mapping ===
812
813 [[image:1656054972828-692.png]]
814
815
816 === 6.1.5 Installation Notice ===
817
818 (((
819 Do not power on while connect the cables. Double check the wiring before power on.
820 )))
821
822 (((
823 Installation Photo as reference:
824 )))
825
826
827 (((
828 (% style="color:#4472c4" %)** Install on Ground:**
829 )))
830
831 (((
832 WSS-01 Rain Gauge include screws so can install in ground directly .
833 )))
834
835
836 (((
837 (% style="color:#4472c4" %)** Install on pole:**
838 )))
839
840 (((
841 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
842 )))
843
844 [[image:image-20220624152218-1.png||height="526" width="276"]]
845
846 WS-K2: Bracket Kit for Pole installation
847
848
849 WSSC-K2 dimension document, please see:
850
851 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
852
853
854 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
855
856 [[image:1656055444035-179.png]]
857
858 (((
859 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
860 )))
861
862 (((
863 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
864 )))
865
866 (((
867 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
868 )))
869
870
871 === 6.2.1 Feature ===
872
873 * RS485 wind speed / direction sensor
874 * PC enclosure, resist corrosion
875
876
877
878
879
880
881 === 6.2.2 Specification ===
882
883 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
884 * Wind direction range: 0 ~~ 360°
885 * Start wind speed: ≤0.3m/s
886 * Accuracy: ±(0.3+0.03V)m/s , ±1°
887 * Input Power: DC 5~~24v
888 * Interface: RS485
889 * Working Temperature: -30℃~70℃
890 * Working Humidity: <100% (no dewing)
891 * Power Consumption: 13mA ~~ 12v.
892 * Cable Length: 2 meters
893
894
895
896
897
898
899 === 6.2.3 Dimension ===
900
901 [[image:image-20220624152813-2.png]]
902
903
904 === 6.2.4 Pin Mapping ===
905
906 [[image:1656056281231-994.png]]
907
908
909 === 6.2.5  Angle Mapping ===
910
911 [[image:1656056303845-585.png]]
912
913
914 === 6.2.6  Installation Notice ===
915
916 (((
917 Do not power on while connect the cables. Double check the wiring before power on.
918 )))
919
920 (((
921 The sensor must be installed with below direction, towards North.
922 )))
923
924 [[image:image-20220624153901-3.png]]
925
926
927 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
928
929
930 (((
931 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
932 )))
933
934 (((
935 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
936 )))
937
938 (((
939 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
940 )))
941
942
943 === 6.3.1 Feature ===
944
945 * RS485 CO2, PM2.5, PM10 sensor
946 * NDIR to measure CO2 with Internal Temperature Compensation
947 * Laser Beam Scattering to PM2.5 and PM10
948
949
950
951
952
953
954 === 6.3.2 Specification ===
955
956 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
957 * CO2 resolution: 1ppm
958 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
959 * PM2.5/PM10 resolution: 1μg/m3
960 * Input Power: DC 7 ~~ 24v
961 * Preheat time: 3min
962 * Interface: RS485
963 * Working Temperature:
964 ** CO2: 0℃~50℃;
965 ** PM2.5/PM10: -30 ~~ 50℃
966 * Working Humidity:
967 ** PM2.5/PM10: 15~80%RH (no dewing)
968 ** CO2: 0~95%RH
969 * Power Consumption: 50mA@ 12v.
970
971
972
973
974
975
976 === 6.3.3 Dimension ===
977
978 [[image:1656056708366-230.png]]
979
980
981 === 6.3.4 Pin Mapping ===
982
983 [[image:1656056722648-743.png]]
984
985
986 === 6.3.5 Installation Notice ===
987
988 Do not power on while connect the cables. Double check the wiring before power on.
989
990 [[image:1656056751153-304.png]]
991
992 [[image:1656056766224-773.png]]
993
994
995 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
996
997
998 (((
999 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1000 )))
1001
1002 (((
1003 WSS-04 has auto heating feature, this ensures measurement more reliable.
1004 )))
1005
1006 (((
1007 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1008 )))
1009
1010
1011
1012 === 6.4.1 Feature ===
1013
1014 * RS485 Rain/Snow detect sensor
1015 * Surface heating to dry
1016 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1017
1018
1019
1020
1021
1022
1023 === 6.4.2 Specification ===
1024
1025 * Detect if there is rain or snow
1026 * Input Power: DC 12 ~~ 24v
1027 * Interface: RS485
1028 * Working Temperature: -30℃~70℃
1029 * Working Humidity: 10~90%RH
1030 * Power Consumption:
1031 ** No heating: 12mA @ 12v,
1032 ** heating: 94ma @ 12v.
1033
1034
1035
1036
1037
1038
1039 === 6.4.3 Dimension ===
1040
1041 [[image:1656056844782-155.png]]
1042
1043
1044 === 6.4.4 Pin Mapping ===
1045
1046 [[image:1656056855590-754.png]]
1047
1048
1049 === 6.4.5 Installation Notice ===
1050
1051 Do not power on while connect the cables. Double check the wiring before power on.
1052
1053
1054 (((
1055 Install with 15°degree.
1056 )))
1057
1058 [[image:1656056873783-780.png]]
1059
1060
1061 [[image:1656056883736-804.png]]
1062
1063
1064 === 6.4.6 Heating ===
1065
1066 (((
1067 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1068 )))
1069
1070
1071 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1072
1073
1074 (((
1075 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1076 )))
1077
1078 (((
1079 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1080 )))
1081
1082
1083 === 6.5.1 Feature ===
1084
1085 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1086
1087
1088
1089
1090
1091
1092 === 6.5.2 Specification ===
1093
1094 * Input Power: DC 12 ~~ 24v
1095 * Interface: RS485
1096 * Temperature Sensor Spec:
1097 ** Range: -30 ~~ 70℃
1098 ** resolution 0.1℃
1099 ** Accuracy: ±0.5℃
1100 * Humidity Sensor Spec:
1101 ** Range: 0 ~~ 100% RH
1102 ** resolution 0.1 %RH
1103 ** Accuracy: 3% RH
1104 * Pressure Sensor Spec:
1105 ** Range: 10~1100hPa
1106 ** Resolution: 0.1hPa
1107 ** Accuracy: ±0.1hPa
1108 * Illuminate sensor:
1109 ** Range: 0~2/20/200kLux
1110 ** Resolution: 10 Lux
1111 ** Accuracy: ±3%FS
1112 * Working Temperature: -30℃~70℃
1113 * Working Humidity: 10~90%RH
1114 * Power Consumption: 4mA @ 12v
1115
1116
1117
1118
1119
1120
1121 === 6.5.3 Dimension ===
1122
1123 [[image:1656057170639-522.png]]
1124
1125
1126 === 6.5.4 Pin Mapping ===
1127
1128 [[image:1656057181899-910.png]]
1129
1130
1131 === 6.5.5 Installation Notice ===
1132
1133 Do not power on while connect the cables. Double check the wiring before power on.
1134
1135 [[image:1656057199955-514.png]]
1136
1137
1138 [[image:1656057212438-475.png]]
1139
1140
1141 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1142
1143
1144 (((
1145 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1146 )))
1147
1148 (((
1149 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1150 )))
1151
1152 (((
1153 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1154 )))
1155
1156
1157
1158 === 6.6.1 Feature ===
1159
1160 * RS485 Total Solar Radiation sensor
1161 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1162 * Measure Reflected Radiation if sense area towards ground.
1163
1164
1165
1166
1167
1168
1169
1170 === 6.6.2 Specification ===
1171
1172 * Input Power: DC 5 ~~ 24v
1173 * Interface: RS485
1174 * Detect spectrum: 0.3~3μm(300~3000nm)
1175 * Measure strength range: 0~2000W/m2
1176 * Resolution: 0.1W/m2
1177 * Accuracy: ±3%
1178 * Yearly Stability: ≤±2%
1179 * Cosine response: ≤7% (@ Sun angle 10°)
1180 * Temperature Effect: ±2%(-10℃~40℃)
1181 * Working Temperature: -40℃~70℃
1182 * Working Humidity: 10~90%RH
1183 * Power Consumption: 4mA @ 12v
1184
1185
1186
1187
1188
1189
1190 === 6.6.3 Dimension ===
1191
1192 [[image:1656057348695-898.png]]
1193
1194
1195 === 6.6.4 Pin Mapping ===
1196
1197 [[image:1656057359343-744.png]]
1198
1199
1200 === 6.6.5 Installation Notice ===
1201
1202 Do not power on while connect the cables. Double check the wiring before power on.
1203
1204 [[image:1656057369259-804.png]]
1205
1206
1207 [[image:1656057377943-564.png]]
1208
1209
1210 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1211
1212
1213 (((
1214 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1215 )))
1216
1217 (((
1218 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1219 )))
1220
1221 (((
1222 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1223 )))
1224
1225
1226 === 6.7.1 Feature ===
1227
1228 (((
1229 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1230 )))
1231
1232 (((
1233 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1234 )))
1235
1236
1237 === 6.7.2 Specification ===
1238
1239 * Input Power: DC 5 ~~ 24v
1240 * Interface: RS485
1241 * Response Spectrum: 400~700nm
1242 * Measure range: 0~2500μmol/m2•s
1243 * Resolution: 1μmol/m2•s
1244 * Accuracy: ±2%
1245 * Yearly Stability: ≤±2%
1246 * Working Temperature: -30℃~75℃
1247 * Working Humidity: 10~90%RH
1248 * Power Consumption: 3mA @ 12v
1249
1250
1251
1252
1253
1254
1255 === 6.7.3 Dimension ===
1256
1257 [[image:1656057538793-888.png]]
1258
1259
1260 === 6.7.4 Pin Mapping ===
1261
1262 [[image:1656057548116-203.png]]
1263
1264
1265 === 6.7.5 Installation Notice ===
1266
1267 Do not power on while connect the cables. Double check the wiring before power on.
1268
1269
1270 [[image:1656057557191-895.png]]
1271
1272
1273 [[image:1656057565783-251.png]]
1274
1275
1276 = 7. FAQ =
1277
1278 == 7.1 What else do I need to purchase to build Weather Station? ==
1279
1280 Below is the installation photo and structure:
1281
1282 [[image:1656057598349-319.png]]
1283
1284
1285 [[image:1656057608049-693.png]]
1286
1287
1288
1289 == 7.2 How to upgrade firmware for WSC1-L? ==
1290
1291 (((
1292 Firmware Location & Change log:
1293 )))
1294
1295 (((
1296 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1297 )))
1298
1299
1300 (((
1301 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1302 )))
1303
1304
1305 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1306
1307 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1308
1309
1310 == 7.4 Can I add my weather sensors? ==
1311
1312 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1313
1314
1315 = 8. Trouble Shooting =
1316
1317 == 8.1 AT Command input doesn't work ==
1318
1319 (((
1320 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1321 )))
1322
1323
1324 = 9. Order Info =
1325
1326 == 9.1 Main Process Unit ==
1327
1328 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1329
1330 (% style="color:blue" %)**XX**(%%): The default frequency band
1331
1332 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1333 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1334 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1335 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1336 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1337 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1338 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1339 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1340
1341
1342
1343 == 9.2 Sensors ==
1344
1345 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1346 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1347 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1348 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1349 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1350 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1351 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1352 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1353 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1354 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1355
1356
1357
1358 = 10. Support =
1359
1360 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1361 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1362
1363
1364
1365
1366
1367
1368 = 11. Appendix I: Field Installation Photo =
1369
1370
1371 [[image:1656058346362-132.png||height="685" width="732"]]
1372
1373 **Storage Battery**: 12v,12AH li battery
1374
1375
1376
1377 **Wind Speed/Direction**
1378
1379 [[image:1656058373174-421.png||height="356" width="731"]]
1380
1381
1382
1383 **Total Solar Radiation sensor**
1384
1385 [[image:1656058397364-282.png||height="453" width="732"]]
1386
1387
1388
1389 **PAR Sensor**
1390
1391 [[image:1656058416171-615.png]]
1392
1393
1394
1395 **CO2/PM2.5/PM10 3 in 1 sensor**
1396
1397 [[image:1656058441194-827.png||height="672" width="523"]]
1398
1399
1400
1401 **Rain / Snow Detect**
1402
1403 [[image:1656058451456-166.png]]
1404
1405
1406
1407 **Rain Gauge**
1408
1409 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0