Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81 == 2.2 How it works? ==
82
83 (((
84 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
85 )))
86
87
88 (((
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90 )))
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (((
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145 )))
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160 === 2.4.1 Uplink FPORT~=5, Device Status ===
161
162 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
163
164
165 (((
166 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
167 )))
168
169 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
170 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
171 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
172
173 [[image:1656043061044-343.png]]
174
175
176 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
177
178
179
180 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
181
182 For WSC1-L, this value is 0x0D.
183
184
185
186 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 *0x01: EU868
195
196 *0x02: US915
197
198 *0x03: IN865
199
200 *0x04: AU915
201
202 *0x05: KZ865
203
204 *0x06: RU864
205
206 *0x07: AS923
207
208 *0x08: AS923-1
209
210 *0x09: AS923-2
211
212 *0x0a: AS923-3
213
214
215
216 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
217
218 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
219
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220624140352-2.png]]
296
297
298 (((
299 Below is an example payload:  [[image:image-20220624140615-3.png]]
300 )))
301
302 (((
303
304 )))
305
306 (((
307 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
308 )))
309
310 * (((
311 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
312 )))
313
314 (((
315 Uplink 1:  [[image:image-20220624140735-4.png]]
316 )))
317
318 (((
319
320 )))
321
322 (((
323 Uplink 2:  [[image:image-20220624140842-5.png]]
324 )))
325
326 (((
327
328 )))
329
330 * (((
331 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
332 )))
333
334 (((
335 Uplink 1:  [[image:image-20220624141025-6.png]]
336 )))
337
338 (((
339
340 )))
341
342 Uplink 2:  [[image:image-20220624141100-7.png]]
343
344
345
346
347 === 2.4.3 Decoder in TTN V3 ===
348
349 (((
350 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
351 )))
352
353 (((
354
355 )))
356
357 (((
358 Download decoder for suitable platform from:
359 )))
360
361 (((
362 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
363 )))
364
365 (((
366 and put as below:
367 )))
368
369 [[image:1656051152438-578.png]]
370
371
372
373 == 2.5 Show data on Application Server ==
374
375 (((
376 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
377 )))
378
379 (((
380
381 )))
382
383 (((
384 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
385 )))
386
387 (((
388 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
389 )))
390
391 [[image:1656051197172-131.png]]
392
393
394 **Add TagoIO:**
395
396 [[image:1656051223585-631.png]]
397
398
399 **Authorization:**
400
401 [[image:1656051248318-368.png]]
402
403
404 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
405
406 [[image:1656051277767-168.png]]
407
408
409
410 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
411
412 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
413
414 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
415 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
416
417 There are two kinds of commands to configure WSC1-L, they are:
418
419 * (% style="color:#4472c4" %)**General Commands**.
420
421 These commands are to configure:
422
423 * General system settings like: uplink interval.
424 * LoRaWAN protocol & radio related command.
425
426 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
427
428 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
429
430
431 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
432
433 These commands only valid for WSC1-L, as below:
434
435
436
437 == 3.1 Set Transmit Interval Time ==
438
439 Feature: Change LoRaWAN End Node Transmit Interval.
440
441 (% style="color:#037691" %)**AT Command: AT+TDC**
442
443 [[image:image-20220624142619-8.png]]
444
445
446 (% style="color:#037691" %)**Downlink Command: 0x01**
447
448 Format: Command Code (0x01) followed by 3 bytes time value.
449
450 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
451
452 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
453 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
454
455
456 == 3.2 Set Emergency Mode ==
457
458 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
459
460 (% style="color:#037691" %)**AT Command:**
461
462 [[image:image-20220624142956-9.png]]
463
464
465 (% style="color:#037691" %)**Downlink Command:**
466
467 * 0xE101     Same as: AT+ALARMMOD=1
468 * 0xE100     Same as: AT+ALARMMOD=0
469
470
471 == 3.3 Add or Delete RS485 Sensor ==
472
473 (((
474 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
475 )))
476
477 (((
478 (% style="color:#037691" %)**AT Command: **
479 )))
480
481 (((
482 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
483 )))
484
485 * (((
486 Type_Code range:  A1 ~~ A4
487 )))
488 * (((
489 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
490 )))
491 * (((
492 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
493 )))
494 * (((
495 Read_Length:  RS485 response frame length supposed to receive. Max can receive
496 )))
497 * (((
498 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
499 )))
500 * (((
501 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
502 )))
503 * (((
504 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
505 )))
506
507 (((
508 **Example:**
509 )))
510
511 (((
512 User need to change external sensor use the type code as address code.
513 )))
514
515 (((
516 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
517 )))
518
519 [[image:image-20220624143553-10.png]]
520
521
522 The response frame of the sensor is as follows:
523
524 [[image:image-20220624143618-11.png]]
525
526
527
528 **Then the following parameters should be:**
529
530 * Address_Code range: A1
531 * Query_Length: 8
532 * Query_Command: A103000000019CAA
533 * Read_Length: 8
534 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
535 * has_CRC: 1
536 * timeout: 1500 (Fill in the test according to the actual situation)
537
538 **So the input command is:**
539
540 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
541
542
543 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
544
545 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
546 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
547 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
548
549 **Related commands:**
550
551 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
552
553 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
554
555
556 (% style="color:#037691" %)**Downlink Command:  **
557
558 **delete custom sensor A1:**
559
560 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
561
562 **Remove all custom sensors**
563
564 * 0xE5FF  
565
566
567 == 3.4 RS485 Test Command ==
568
569 (% style="color:#037691" %)**AT Command:**
570
571 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
572 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
573 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
574 Send command to 485 sensor
575
576 Range : no more than 10 bytes
577 )))|(% style="width:85px" %)OK
578
579 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
580
581 AT+RSWRITE=0103000001840A
582
583
584 (% style="color:#037691" %)**Downlink Command:**
585
586 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
587
588
589 == 3.5 RS485 response timeout ==
590
591 Feature: Set or get extended time to receive 485 sensor data.
592
593 (% style="color:#037691" %)**AT Command:**
594
595 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
596 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
597 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
598 Set response timeout to:
599
600 Range : 0~~10000
601 )))|(% style="width:85px" %)OK
602
603 (% style="color:#037691" %)**Downlink Command:**
604
605 Format: Command Code (0xE0) followed by 3 bytes time value.
606
607 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
608
609 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
610 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
611
612
613 == 3.6 Set Sensor Type ==
614
615 (((
616 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
617 )))
618
619 (((
620 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
621 )))
622
623 [[image:image-20220624144904-12.png]]
624
625
626 (% style="color:#037691" %)**AT Command:**
627
628 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
629 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
630 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
631
632 Eg: The setting command **AT+STYPE=802212** means:
633
634 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
635 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
636 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
637 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
638 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
639 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
640 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
641
642 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
643
644
645 (% style="color:#037691" %)**Downlink Command:**
646
647 * 0xE400802212     Same as: AT+STYPE=80221
648
649 (% style="color:red" %)**Note:**
650
651 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
652
653
654
655
656 = 4. Power consumption and battery =
657
658 == 4.1 Total Power Consumption ==
659
660 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
661
662
663 == 4.2 Reduce power consumption ==
664
665 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
666
667
668 == 4.3 Battery ==
669
670 (((
671 All sensors are only power by external power source. If external power source is off. All sensor won't work.
672 )))
673
674 (((
675 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
676 )))
677
678
679 = 5. Main Process Unit WSC1-L =
680
681 == 5.1 Features ==
682
683 * Wall Attachable.
684 * LoRaWAN v1.0.3 Class A protocol.
685 * RS485 / Modbus protocol
686 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
687 * AT Commands to change parameters
688 * Remote configure parameters via LoRaWAN Downlink
689 * Firmware upgradable via program port
690 * Powered by external 12v battery
691 * Back up rechargeable 1000mAh battery
692 * IP Rating: IP65
693 * Support default sensors or 3rd party RS485 sensors
694
695
696 == 5.2 Power Consumption ==
697
698 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
699
700
701 == 5.3 Storage & Operation Temperature ==
702
703 -20°C to +60°C
704
705
706 == 5.4 Pin Mapping ==
707
708 [[image:1656054149793-239.png]]
709
710
711 == 5.5 Mechanical ==
712
713 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
714
715
716 == 5.6 Connect to RS485 Sensors ==
717
718 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
719
720
721 [[image:1656054389031-379.png]]
722
723
724 Hardware Design for the Converter Board please see:
725
726 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
727
728
729 = 6. Weather Sensors =
730
731 == 6.1 Rain Gauge ~-~- WSS-01 ==
732
733
734 (((
735 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
736 )))
737
738 (((
739 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
740 )))
741
742 (((
743 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
744 )))
745
746 (((
747 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
748 )))
749
750 (((
751 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
752 )))
753
754
755 === 6.1.1 Feature ===
756
757 * RS485 Rain Gauge
758 * Small dimension, easy to install
759 * Vents under funnel, avoid leaf or other things to avoid rain flow.
760 * ABS enclosure.
761 * Horizontal adjustable.
762
763
764 === 6.1.2 Specification ===
765
766 * Resolution: 0.2mm
767 * Accuracy: ±3%
768 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
769 * Input Power: DC 5~~24v
770 * Interface: RS485
771 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
772 * Working Humidity: <100% (no dewing)
773 * Power Consumption: 4mA @ 12v.
774
775
776 === 6.1.3 Dimension ===
777
778 [[image:1656054957406-980.png]]
779
780
781 === 6.1.4 Pin Mapping ===
782
783 [[image:1656054972828-692.png]]
784
785
786 === 6.1.5 Installation Notice ===
787
788 (((
789 Do not power on while connect the cables. Double check the wiring before power on.
790 )))
791
792 (((
793 Installation Photo as reference:
794 )))
795
796
797 (((
798 (% style="color:#4472c4" %)** Install on Ground:**
799 )))
800
801 (((
802 WSS-01 Rain Gauge include screws so can install in ground directly .
803 )))
804
805
806 (((
807 (% style="color:#4472c4" %)** Install on pole:**
808 )))
809
810 (((
811 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
812 )))
813
814 [[image:image-20220624152218-1.png||height="526" width="276"]]
815
816 WS-K2: Bracket Kit for Pole installation
817
818
819 WSSC-K2 dimension document, please see:
820
821 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
822
823
824 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
825
826 [[image:1656055444035-179.png]]
827
828 (((
829 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
830 )))
831
832 (((
833 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
834 )))
835
836 (((
837 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
838 )))
839
840
841 === 6.2.1 Feature ===
842
843 * RS485 wind speed / direction sensor
844 * PC enclosure, resist corrosion
845
846
847 === 6.2.2 Specification ===
848
849 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
850 * Wind direction range: 0 ~~ 360°
851 * Start wind speed: ≤0.3m/s
852 * Accuracy: ±(0.3+0.03V)m/s , ±1°
853 * Input Power: DC 5~~24v
854 * Interface: RS485
855 * Working Temperature: -30℃~70℃
856 * Working Humidity: <100% (no dewing)
857 * Power Consumption: 13mA ~~ 12v.
858 * Cable Length: 2 meters
859
860
861 === 6.2.3 Dimension ===
862
863 [[image:image-20220624152813-2.png]]
864
865
866 === 6.2.4 Pin Mapping ===
867
868 [[image:1656056281231-994.png]]
869
870
871 === 6.2.5  Angle Mapping ===
872
873 [[image:1656056303845-585.png]]
874
875
876 === 6.2.6  Installation Notice ===
877
878 (((
879 Do not power on while connect the cables. Double check the wiring before power on.
880 )))
881
882 (((
883 The sensor must be installed with below direction, towards North.
884 )))
885
886 [[image:image-20220624153901-3.png]]
887
888
889 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
890
891
892 (((
893 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
894 )))
895
896 (((
897 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
898 )))
899
900 (((
901 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
902 )))
903
904
905 === 6.3.1 Feature ===
906
907 * RS485 CO2, PM2.5, PM10 sensor
908 * NDIR to measure CO2 with Internal Temperature Compensation
909 * Laser Beam Scattering to PM2.5 and PM10
910
911
912 === 6.3.2 Specification ===
913
914 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
915 * CO2 resolution: 1ppm
916 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
917 * PM2.5/PM10 resolution: 1μg/m3
918 * Input Power: DC 7 ~~ 24v
919 * Preheat time: 3min
920 * Interface: RS485
921 * Working Temperature:
922 ** CO2: 0℃~50℃;
923 ** PM2.5/PM10: -30 ~~ 50℃
924 * Working Humidity:
925 ** PM2.5/PM10: 15~80%RH (no dewing)
926 ** CO2: 0~95%RH
927 * Power Consumption: 50mA@ 12v.
928
929
930 === 6.3.3 Dimension ===
931
932 [[image:1656056708366-230.png]]
933
934
935 === 6.3.4 Pin Mapping ===
936
937 [[image:1656056722648-743.png]]
938
939
940 === 6.3.5 Installation Notice ===
941
942 Do not power on while connect the cables. Double check the wiring before power on.
943
944 [[image:1656056751153-304.png]]
945
946 [[image:1656056766224-773.png]]
947
948
949 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
950
951
952 (((
953 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
954 )))
955
956 (((
957 WSS-04 has auto heating feature, this ensures measurement more reliable.
958 )))
959
960 (((
961 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
962 )))
963
964
965
966 === 6.4.1 Feature ===
967
968 * RS485 Rain/Snow detect sensor
969 * Surface heating to dry
970 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
971
972
973 === 6.4.2 Specification ===
974
975 * Detect if there is rain or snow
976 * Input Power: DC 12 ~~ 24v
977 * Interface: RS485
978 * Working Temperature: -30℃~70℃
979 * Working Humidity: 10~90%RH
980 * Power Consumption:
981 ** No heating: 12mA @ 12v,
982 ** heating: 94ma @ 12v.
983
984
985 === 6.4.3 Dimension ===
986
987 [[image:1656056844782-155.png]]
988
989
990 === 6.4.4 Pin Mapping ===
991
992 [[image:1656056855590-754.png]]
993
994
995 === 6.4.5 Installation Notice ===
996
997 Do not power on while connect the cables. Double check the wiring before power on.
998
999
1000 (((
1001 Install with 15°degree.
1002 )))
1003
1004 [[image:1656056873783-780.png]]
1005
1006
1007 [[image:1656056883736-804.png]]
1008
1009
1010 === 6.4.6 Heating ===
1011
1012 (((
1013 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1014 )))
1015
1016
1017 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1018
1019
1020 (((
1021 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1022 )))
1023
1024 (((
1025 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1026 )))
1027
1028
1029 === 6.5.1 Feature ===
1030
1031 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1032
1033
1034 === 6.5.2 Specification ===
1035
1036 * Input Power: DC 12 ~~ 24v
1037 * Interface: RS485
1038 * Temperature Sensor Spec:
1039 ** Range: -30 ~~ 70℃
1040 ** resolution 0.1℃
1041 ** Accuracy: ±0.5℃
1042 * Humidity Sensor Spec:
1043 ** Range: 0 ~~ 100% RH
1044 ** resolution 0.1 %RH
1045 ** Accuracy: 3% RH
1046 * Pressure Sensor Spec:
1047 ** Range: 10~1100hPa
1048 ** Resolution: 0.1hPa
1049 ** Accuracy: ±0.1hPa
1050 * Illuminate sensor:
1051 ** Range: 0~2/20/200kLux
1052 ** Resolution: 10 Lux
1053 ** Accuracy: ±3%FS
1054 * Working Temperature: -30℃~70℃
1055 * Working Humidity: 10~90%RH
1056 * Power Consumption: 4mA @ 12v
1057
1058
1059 === 6.5.3 Dimension ===
1060
1061 [[image:1656057170639-522.png]]
1062
1063
1064 === 6.5.4 Pin Mapping ===
1065
1066 [[image:1656057181899-910.png]]
1067
1068
1069 === 6.5.5 Installation Notice ===
1070
1071 Do not power on while connect the cables. Double check the wiring before power on.
1072
1073 [[image:1656057199955-514.png]]
1074
1075
1076 [[image:1656057212438-475.png]]
1077
1078
1079 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1080
1081
1082 (((
1083 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1084 )))
1085
1086 (((
1087 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1088 )))
1089
1090 (((
1091 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1092 )))
1093
1094
1095
1096 === 6.6.1 Feature ===
1097
1098 * RS485 Total Solar Radiation sensor
1099 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1100 * Measure Reflected Radiation if sense area towards ground.
1101
1102 === 6.6.2 Specification ===
1103
1104 * Input Power: DC 5 ~~ 24v
1105 * Interface: RS485
1106 * Detect spectrum: 0.3~3μm(300~3000nm)
1107 * Measure strength range: 0~2000W/m2
1108 * Resolution: 0.1W/m2
1109 * Accuracy: ±3%
1110 * Yearly Stability: ≤±2%
1111 * Cosine response: ≤7% (@ Sun angle 10°)
1112 * Temperature Effect: ±2%(-10℃~40℃)
1113 * Working Temperature: -40℃~70℃
1114 * Working Humidity: 10~90%RH
1115 * Power Consumption: 4mA @ 12v
1116
1117
1118 === 6.6.3 Dimension ===
1119
1120 [[image:1656057348695-898.png]]
1121
1122
1123 === 6.6.4 Pin Mapping ===
1124
1125 [[image:1656057359343-744.png]]
1126
1127
1128 === 6.6.5 Installation Notice ===
1129
1130 Do not power on while connect the cables. Double check the wiring before power on.
1131
1132 [[image:1656057369259-804.png]]
1133
1134
1135 [[image:1656057377943-564.png]]
1136
1137
1138 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1139
1140
1141 (((
1142 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1143 )))
1144
1145 (((
1146 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1147 )))
1148
1149 (((
1150 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1151 )))
1152
1153
1154 === 6.7.1 Feature ===
1155
1156 (((
1157 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1158 )))
1159
1160 (((
1161 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1162 )))
1163
1164
1165 === 6.7.2 Specification ===
1166
1167 * Input Power: DC 5 ~~ 24v
1168 * Interface: RS485
1169 * Response Spectrum: 400~700nm
1170 * Measure range: 0~2500μmol/m2•s
1171 * Resolution: 1μmol/m2•s
1172 * Accuracy: ±2%
1173 * Yearly Stability: ≤±2%
1174 * Working Temperature: -30℃~75℃
1175 * Working Humidity: 10~90%RH
1176 * Power Consumption: 3mA @ 12v
1177
1178
1179 === 6.7.3 Dimension ===
1180
1181 [[image:1656057538793-888.png]]
1182
1183
1184 === 6.7.4 Pin Mapping ===
1185
1186 [[image:1656057548116-203.png]]
1187
1188
1189 === 6.7.5 Installation Notice ===
1190
1191 Do not power on while connect the cables. Double check the wiring before power on.
1192
1193
1194 [[image:1656057557191-895.png]]
1195
1196
1197 [[image:1656057565783-251.png]]
1198
1199
1200 = 7. FAQ =
1201
1202 == 7.1 What else do I need to purchase to build Weather Station? ==
1203
1204 Below is the installation photo and structure:
1205
1206 [[image:1656057598349-319.png]]
1207
1208
1209 [[image:1656057608049-693.png]]
1210
1211
1212
1213 == 7.2 How to upgrade firmware for WSC1-L? ==
1214
1215 (((
1216 Firmware Location & Change log:
1217 )))
1218
1219 (((
1220 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1221 )))
1222
1223
1224 (((
1225 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1226 )))
1227
1228
1229 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1230
1231 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1232
1233
1234 == 7.4 Can I add my weather sensors? ==
1235
1236 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1237
1238
1239 = 8. Trouble Shooting =
1240
1241 == 8.1 AT Command input doesn't work ==
1242
1243 (((
1244 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1245 )))
1246
1247
1248 = 9. Order Info =
1249
1250 == 9.1 Main Process Unit ==
1251
1252 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1253
1254 (% style="color:blue" %)**XX**(%%): The default frequency band
1255
1256 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1257 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1258 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1259 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1260 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1261 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1262 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1263 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1264
1265
1266
1267
1268 == 9.2 Sensors ==
1269
1270 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1271 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1272 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1273 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1274 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1275 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1276 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1277 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1278 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1279 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1280
1281
1282
1283
1284 = 10. Support =
1285
1286 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1287 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1288
1289
1290
1291 = 11. Appendix I: Field Installation Photo =
1292
1293
1294 [[image:1656058346362-132.png||height="685" width="732"]]
1295
1296 **Storage Battery**: 12v,12AH li battery
1297
1298
1299
1300 **Wind Speed/Direction**
1301
1302 [[image:1656058373174-421.png||height="356" width="731"]]
1303
1304
1305
1306 **Total Solar Radiation sensor**
1307
1308 [[image:1656058397364-282.png||height="453" width="732"]]
1309
1310
1311
1312 **PAR Sensor**
1313
1314 [[image:1656058416171-615.png]]
1315
1316
1317
1318 **CO2/PM2.5/PM10 3 in 1 sensor**
1319
1320 [[image:1656058441194-827.png||height="672" width="523"]]
1321
1322
1323
1324 **Rain / Snow Detect**
1325
1326 [[image:1656058451456-166.png]]
1327
1328
1329
1330 **Rain Gauge**
1331
1332 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0