Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
101
102
103
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151
152 [[image:1656042745346-283.png]]
153
154
155
156 == 2.4 Uplink Payload ==
157
158 Uplink payloads include two types: Valid Sensor Value and other status / control command.
159
160 * Valid Sensor Value: Use FPORT=2
161 * Other control command: Use FPORT other than 2.
162
163
164
165
166 === 2.4.1 Uplink FPORT~=5, Device Status ===
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185
186 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
187
188 For WSC1-L, this value is 0x0D.
189
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 (((
231 shows the battery voltage for WSC1-L MCU.
232 )))
233
234 (((
235 Ex1: 0x0BD6/1000 = 3.03 V
236 )))
237
238
239
240 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
241
242 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 [[image:image-20220624134713-1.png]]
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301 [[image:image-20220624140352-2.png]]
302
303
304 (((
305 Below is an example payload:  [[image:image-20220624140615-3.png]]
306 )))
307
308 (((
309
310 )))
311
312 (((
313 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
314 )))
315
316 * (((
317 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
318 )))
319
320 (((
321 Uplink 1:  [[image:image-20220624140735-4.png]]
322 )))
323
324 (((
325
326 )))
327
328 (((
329 Uplink 2:  [[image:image-20220624140842-5.png]]
330 )))
331
332 (((
333
334 )))
335
336 * (((
337 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
338 )))
339
340 (((
341 Uplink 1:  [[image:image-20220624141025-6.png]]
342 )))
343
344 (((
345
346 )))
347
348 Uplink 2:  [[image:image-20220624141100-7.png]]
349
350
351
352
353 === 2.4.3 Decoder in TTN V3 ===
354
355 (((
356 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
357 )))
358
359 (((
360
361 )))
362
363 (((
364 Download decoder for suitable platform from:
365 )))
366
367 (((
368 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
369 )))
370
371 (((
372 and put as below:
373 )))
374
375 [[image:1656051152438-578.png]]
376
377
378
379 == 2.5 Show data on Application Server ==
380
381 (((
382 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
383 )))
384
385 (((
386
387 )))
388
389 (((
390 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
391 )))
392
393 (((
394 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
395 )))
396
397 [[image:1656051197172-131.png]]
398
399
400 **Add TagoIO:**
401
402 [[image:1656051223585-631.png]]
403
404
405 **Authorization:**
406
407 [[image:1656051248318-368.png]]
408
409
410 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
411
412 [[image:1656051277767-168.png]]
413
414
415
416 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
417
418 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
419
420 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
421 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
422
423 There are two kinds of commands to configure WSC1-L, they are:
424
425 * (% style="color:#4472c4" %)**General Commands**.
426
427 These commands are to configure:
428
429 * General system settings like: uplink interval.
430 * LoRaWAN protocol & radio related command.
431
432 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
433
434 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
435
436
437 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
438
439 These commands only valid for WSC1-L, as below:
440
441
442
443 == 3.1 Set Transmit Interval Time ==
444
445 Feature: Change LoRaWAN End Node Transmit Interval.
446
447 (% style="color:#037691" %)**AT Command: AT+TDC**
448
449 [[image:image-20220624142619-8.png]]
450
451
452 (% style="color:#037691" %)**Downlink Command: 0x01**
453
454 Format: Command Code (0x01) followed by 3 bytes time value.
455
456 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
457
458 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
459 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
460
461
462
463
464 == 3.2 Set Emergency Mode ==
465
466 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
467
468 (% style="color:#037691" %)**AT Command:**
469
470 [[image:image-20220624142956-9.png]]
471
472
473 (% style="color:#037691" %)**Downlink Command:**
474
475 * 0xE101     Same as: AT+ALARMMOD=1
476 * 0xE100     Same as: AT+ALARMMOD=0
477
478
479
480
481 == 3.3 Add or Delete RS485 Sensor ==
482
483 (((
484 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
485 )))
486
487 (((
488 (% style="color:#037691" %)**AT Command: **
489 )))
490
491 (((
492 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
493 )))
494
495 * (((
496 Type_Code range:  A1 ~~ A4
497 )))
498 * (((
499 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
500 )))
501 * (((
502 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
503 )))
504 * (((
505 Read_Length:  RS485 response frame length supposed to receive. Max can receive
506 )))
507 * (((
508 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
509 )))
510 * (((
511 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
512 )))
513 * (((
514 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
515 )))
516
517 (((
518 **Example:**
519 )))
520
521 (((
522 User need to change external sensor use the type code as address code.
523 )))
524
525 (((
526 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
527 )))
528
529 [[image:image-20220624143553-10.png]]
530
531
532 The response frame of the sensor is as follows:
533
534 [[image:image-20220624143618-11.png]]
535
536
537
538 **Then the following parameters should be:**
539
540 * Address_Code range: A1
541 * Query_Length: 8
542 * Query_Command: A103000000019CAA
543 * Read_Length: 8
544 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
545 * has_CRC: 1
546 * timeout: 1500 (Fill in the test according to the actual situation)
547
548 **So the input command is:**
549
550 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
551
552
553 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
554
555 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
556 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
557 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
558
559 **Related commands:**
560
561 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
562
563 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
564
565
566 (% style="color:#037691" %)**Downlink Command:  **
567
568 **delete custom sensor A1:**
569
570 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
571
572 **Remove all custom sensors**
573
574 * 0xE5FF  
575
576
577
578
579 == 3.4 RS485 Test Command ==
580
581 (% style="color:#037691" %)**AT Command:**
582
583 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
584 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
585 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
586 Send command to 485 sensor
587
588 Range : no more than 10 bytes
589 )))|(% style="width:85px" %)OK
590
591 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
592
593 AT+RSWRITE=0103000001840A
594
595
596 (% style="color:#037691" %)**Downlink Command:**
597
598 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
599
600
601
602
603 == 3.5 RS485 response timeout ==
604
605 Feature: Set or get extended time to receive 485 sensor data.
606
607 (% style="color:#037691" %)**AT Command:**
608
609 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
610 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
611 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
612 Set response timeout to:
613
614 Range : 0~~10000
615 )))|(% style="width:85px" %)OK
616
617 (% style="color:#037691" %)**Downlink Command:**
618
619 Format: Command Code (0xE0) followed by 3 bytes time value.
620
621 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
622
623 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
624 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
625
626
627
628
629 == 3.6 Set Sensor Type ==
630
631 (((
632 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
633 )))
634
635 (((
636 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
637 )))
638
639 [[image:image-20220624144904-12.png]]
640
641
642 (% style="color:#037691" %)**AT Command:**
643
644 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
645 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
646 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
647
648 Eg: The setting command **AT+STYPE=802212** means:
649
650 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
651 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
652 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
653 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
655 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
657
658 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
659
660
661 (% style="color:#037691" %)**Downlink Command:**
662
663 * 0xE400802212     Same as: AT+STYPE=80221
664
665 (% style="color:red" %)**Note:**
666
667 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
668
669
670
671
672 = 4. Power consumption and battery =
673
674 == 4.1 Total Power Consumption ==
675
676 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
677
678
679 == 4.2 Reduce power consumption ==
680
681 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
682
683
684 == 4.3 Battery ==
685
686 (((
687 All sensors are only power by external power source. If external power source is off. All sensor won't work.
688 )))
689
690 (((
691 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
692 )))
693
694
695 = 5. Main Process Unit WSC1-L =
696
697 == 5.1 Features ==
698
699 * Wall Attachable.
700 * LoRaWAN v1.0.3 Class A protocol.
701 * RS485 / Modbus protocol
702 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
703 * AT Commands to change parameters
704 * Remote configure parameters via LoRaWAN Downlink
705 * Firmware upgradable via program port
706 * Powered by external 12v battery
707 * Back up rechargeable 1000mAh battery
708 * IP Rating: IP65
709 * Support default sensors or 3rd party RS485 sensors
710
711
712
713
714 == 5.2 Power Consumption ==
715
716 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
717
718
719 == 5.3 Storage & Operation Temperature ==
720
721 -20°C to +60°C
722
723
724 == 5.4 Pin Mapping ==
725
726 [[image:1656054149793-239.png]]
727
728
729 == 5.5 Mechanical ==
730
731 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
732
733
734 == 5.6 Connect to RS485 Sensors ==
735
736 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
737
738
739 [[image:1656054389031-379.png]]
740
741
742 Hardware Design for the Converter Board please see:
743
744 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
745
746
747 = 6. Weather Sensors =
748
749 == 6.1 Rain Gauge ~-~- WSS-01 ==
750
751
752 (((
753 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
754 )))
755
756 (((
757 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
758 )))
759
760 (((
761 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
762 )))
763
764 (((
765 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
766 )))
767
768 (((
769 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
770 )))
771
772
773 === 6.1.1 Feature ===
774
775 * RS485 Rain Gauge
776 * Small dimension, easy to install
777 * Vents under funnel, avoid leaf or other things to avoid rain flow.
778 * ABS enclosure.
779 * Horizontal adjustable.
780
781
782
783
784 === 6.1.2 Specification ===
785
786 * Resolution: 0.2mm
787 * Accuracy: ±3%
788 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
789 * Input Power: DC 5~~24v
790 * Interface: RS485
791 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
792 * Working Humidity: <100% (no dewing)
793 * Power Consumption: 4mA @ 12v.
794
795
796
797
798 === 6.1.3 Dimension ===
799
800 [[image:1656054957406-980.png]]
801
802
803 === 6.1.4 Pin Mapping ===
804
805 [[image:1656054972828-692.png]]
806
807
808 === 6.1.5 Installation Notice ===
809
810 (((
811 Do not power on while connect the cables. Double check the wiring before power on.
812 )))
813
814 (((
815 Installation Photo as reference:
816 )))
817
818
819 (((
820 (% style="color:#4472c4" %)** Install on Ground:**
821 )))
822
823 (((
824 WSS-01 Rain Gauge include screws so can install in ground directly .
825 )))
826
827
828 (((
829 (% style="color:#4472c4" %)** Install on pole:**
830 )))
831
832 (((
833 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
834 )))
835
836 [[image:image-20220624152218-1.png||height="526" width="276"]]
837
838 WS-K2: Bracket Kit for Pole installation
839
840
841 WSSC-K2 dimension document, please see:
842
843 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
844
845
846 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
847
848 [[image:1656055444035-179.png]]
849
850 (((
851 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
852 )))
853
854 (((
855 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
856 )))
857
858 (((
859 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
860 )))
861
862
863 === 6.2.1 Feature ===
864
865 * RS485 wind speed / direction sensor
866 * PC enclosure, resist corrosion
867
868
869
870
871 === 6.2.2 Specification ===
872
873 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
874 * Wind direction range: 0 ~~ 360°
875 * Start wind speed: ≤0.3m/s
876 * Accuracy: ±(0.3+0.03V)m/s , ±1°
877 * Input Power: DC 5~~24v
878 * Interface: RS485
879 * Working Temperature: -30℃~70℃
880 * Working Humidity: <100% (no dewing)
881 * Power Consumption: 13mA ~~ 12v.
882 * Cable Length: 2 meters
883
884
885
886
887 === 6.2.3 Dimension ===
888
889 [[image:image-20220624152813-2.png]]
890
891
892 === 6.2.4 Pin Mapping ===
893
894 [[image:1656056281231-994.png]]
895
896
897 === 6.2.5  Angle Mapping ===
898
899 [[image:1656056303845-585.png]]
900
901
902 === 6.2.6  Installation Notice ===
903
904 (((
905 Do not power on while connect the cables. Double check the wiring before power on.
906 )))
907
908 (((
909 The sensor must be installed with below direction, towards North.
910 )))
911
912 [[image:image-20220624153901-3.png]]
913
914
915 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
916
917
918 (((
919 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
920 )))
921
922 (((
923 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
924 )))
925
926 (((
927 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
928 )))
929
930
931 === 6.3.1 Feature ===
932
933 * RS485 CO2, PM2.5, PM10 sensor
934 * NDIR to measure CO2 with Internal Temperature Compensation
935 * Laser Beam Scattering to PM2.5 and PM10
936
937
938
939
940 === 6.3.2 Specification ===
941
942 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
943 * CO2 resolution: 1ppm
944 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
945 * PM2.5/PM10 resolution: 1μg/m3
946 * Input Power: DC 7 ~~ 24v
947 * Preheat time: 3min
948 * Interface: RS485
949 * Working Temperature:
950 ** CO2: 0℃~50℃;
951 ** PM2.5/PM10: -30 ~~ 50℃
952 * Working Humidity:
953 ** PM2.5/PM10: 15~80%RH (no dewing)
954 ** CO2: 0~95%RH
955 * Power Consumption: 50mA@ 12v.
956
957
958
959
960 === 6.3.3 Dimension ===
961
962 [[image:1656056708366-230.png]]
963
964
965 === 6.3.4 Pin Mapping ===
966
967 [[image:1656056722648-743.png]]
968
969
970 === 6.3.5 Installation Notice ===
971
972 Do not power on while connect the cables. Double check the wiring before power on.
973
974 [[image:1656056751153-304.png]]
975
976 [[image:1656056766224-773.png]]
977
978
979 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
980
981
982 (((
983 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
984 )))
985
986 (((
987 WSS-04 has auto heating feature, this ensures measurement more reliable.
988 )))
989
990 (((
991 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
992 )))
993
994
995
996 === 6.4.1 Feature ===
997
998 * RS485 Rain/Snow detect sensor
999 * Surface heating to dry
1000 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1001
1002
1003
1004
1005 === 6.4.2 Specification ===
1006
1007 * Detect if there is rain or snow
1008 * Input Power: DC 12 ~~ 24v
1009 * Interface: RS485
1010 * Working Temperature: -30℃~70℃
1011 * Working Humidity: 10~90%RH
1012 * Power Consumption:
1013 ** No heating: 12mA @ 12v,
1014 ** heating: 94ma @ 12v.
1015
1016
1017
1018
1019 === 6.4.3 Dimension ===
1020
1021 [[image:1656056844782-155.png]]
1022
1023
1024 === 6.4.4 Pin Mapping ===
1025
1026 [[image:1656056855590-754.png]]
1027
1028
1029 === 6.4.5 Installation Notice ===
1030
1031 Do not power on while connect the cables. Double check the wiring before power on.
1032
1033
1034 (((
1035 Install with 15°degree.
1036 )))
1037
1038 [[image:1656056873783-780.png]]
1039
1040
1041 [[image:1656056883736-804.png]]
1042
1043
1044 === 6.4.6 Heating ===
1045
1046 (((
1047 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1048 )))
1049
1050
1051 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1052
1053
1054 (((
1055 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1056 )))
1057
1058 (((
1059 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1060 )))
1061
1062
1063 === 6.5.1 Feature ===
1064
1065 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1066
1067
1068
1069
1070 === 6.5.2 Specification ===
1071
1072 * Input Power: DC 12 ~~ 24v
1073 * Interface: RS485
1074 * Temperature Sensor Spec:
1075 ** Range: -30 ~~ 70℃
1076 ** resolution 0.1℃
1077 ** Accuracy: ±0.5℃
1078 * Humidity Sensor Spec:
1079 ** Range: 0 ~~ 100% RH
1080 ** resolution 0.1 %RH
1081 ** Accuracy: 3% RH
1082 * Pressure Sensor Spec:
1083 ** Range: 10~1100hPa
1084 ** Resolution: 0.1hPa
1085 ** Accuracy: ±0.1hPa
1086 * Illuminate sensor:
1087 ** Range: 0~2/20/200kLux
1088 ** Resolution: 10 Lux
1089 ** Accuracy: ±3%FS
1090 * Working Temperature: -30℃~70℃
1091 * Working Humidity: 10~90%RH
1092 * Power Consumption: 4mA @ 12v
1093
1094
1095
1096
1097 === 6.5.3 Dimension ===
1098
1099 [[image:1656057170639-522.png]]
1100
1101
1102 === 6.5.4 Pin Mapping ===
1103
1104 [[image:1656057181899-910.png]]
1105
1106
1107 === 6.5.5 Installation Notice ===
1108
1109 Do not power on while connect the cables. Double check the wiring before power on.
1110
1111 [[image:1656057199955-514.png]]
1112
1113
1114 [[image:1656057212438-475.png]]
1115
1116
1117 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1118
1119
1120 (((
1121 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1122 )))
1123
1124 (((
1125 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1126 )))
1127
1128 (((
1129 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1130 )))
1131
1132
1133
1134 === 6.6.1 Feature ===
1135
1136 * RS485 Total Solar Radiation sensor
1137 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1138 * Measure Reflected Radiation if sense area towards ground.
1139
1140
1141
1142 === 6.6.2 Specification ===
1143
1144 * Input Power: DC 5 ~~ 24v
1145 * Interface: RS485
1146 * Detect spectrum: 0.3~3μm(300~3000nm)
1147 * Measure strength range: 0~2000W/m2
1148 * Resolution: 0.1W/m2
1149 * Accuracy: ±3%
1150 * Yearly Stability: ≤±2%
1151 * Cosine response: ≤7% (@ Sun angle 10°)
1152 * Temperature Effect: ±2%(-10℃~40℃)
1153 * Working Temperature: -40℃~70℃
1154 * Working Humidity: 10~90%RH
1155 * Power Consumption: 4mA @ 12v
1156
1157
1158
1159
1160 === 6.6.3 Dimension ===
1161
1162 [[image:1656057348695-898.png]]
1163
1164
1165 === 6.6.4 Pin Mapping ===
1166
1167 [[image:1656057359343-744.png]]
1168
1169
1170 === 6.6.5 Installation Notice ===
1171
1172 Do not power on while connect the cables. Double check the wiring before power on.
1173
1174 [[image:1656057369259-804.png]]
1175
1176
1177 [[image:1656057377943-564.png]]
1178
1179
1180 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1181
1182
1183 (((
1184 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1185 )))
1186
1187 (((
1188 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1189 )))
1190
1191 (((
1192 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1193 )))
1194
1195
1196 === 6.7.1 Feature ===
1197
1198 (((
1199 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1200 )))
1201
1202 (((
1203 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1204 )))
1205
1206
1207 === 6.7.2 Specification ===
1208
1209 * Input Power: DC 5 ~~ 24v
1210 * Interface: RS485
1211 * Response Spectrum: 400~700nm
1212 * Measure range: 0~2500μmol/m2•s
1213 * Resolution: 1μmol/m2•s
1214 * Accuracy: ±2%
1215 * Yearly Stability: ≤±2%
1216 * Working Temperature: -30℃~75℃
1217 * Working Humidity: 10~90%RH
1218 * Power Consumption: 3mA @ 12v
1219
1220
1221
1222
1223 === 6.7.3 Dimension ===
1224
1225 [[image:1656057538793-888.png]]
1226
1227
1228 === 6.7.4 Pin Mapping ===
1229
1230 [[image:1656057548116-203.png]]
1231
1232
1233 === 6.7.5 Installation Notice ===
1234
1235 Do not power on while connect the cables. Double check the wiring before power on.
1236
1237
1238 [[image:1656057557191-895.png]]
1239
1240
1241 [[image:1656057565783-251.png]]
1242
1243
1244 = 7. FAQ =
1245
1246 == 7.1 What else do I need to purchase to build Weather Station? ==
1247
1248 Below is the installation photo and structure:
1249
1250 [[image:1656057598349-319.png]]
1251
1252
1253 [[image:1656057608049-693.png]]
1254
1255
1256
1257 == 7.2 How to upgrade firmware for WSC1-L? ==
1258
1259 (((
1260 Firmware Location & Change log:
1261 )))
1262
1263 (((
1264 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1265 )))
1266
1267
1268 (((
1269 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1270 )))
1271
1272
1273 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1274
1275 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1276
1277
1278 == 7.4 Can I add my weather sensors? ==
1279
1280 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1281
1282
1283 = 8. Trouble Shooting =
1284
1285 == 8.1 AT Command input doesn't work ==
1286
1287 (((
1288 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1289 )))
1290
1291
1292 = 9. Order Info =
1293
1294 == 9.1 Main Process Unit ==
1295
1296 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1297
1298 (% style="color:blue" %)**XX**(%%): The default frequency band
1299
1300 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1301 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1302 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1303 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1304 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1305 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1306 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1307 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1308
1309
1310 == 9.2 Sensors ==
1311
1312 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1313 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1314 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1315 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1316 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1317 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1318 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1319 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1320 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1321 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1322
1323
1324 = 10. Support =
1325
1326 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1327 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1328
1329
1330
1331
1332
1333 = 11. Appendix I: Field Installation Photo =
1334
1335
1336 [[image:1656058346362-132.png||height="685" width="732"]]
1337
1338 **Storage Battery**: 12v,12AH li battery
1339
1340
1341
1342 **Wind Speed/Direction**
1343
1344 [[image:1656058373174-421.png||height="356" width="731"]]
1345
1346
1347
1348 **Total Solar Radiation sensor**
1349
1350 [[image:1656058397364-282.png||height="453" width="732"]]
1351
1352
1353
1354 **PAR Sensor**
1355
1356 [[image:1656058416171-615.png]]
1357
1358
1359
1360 **CO2/PM2.5/PM10 3 in 1 sensor**
1361
1362 [[image:1656058441194-827.png||height="672" width="523"]]
1363
1364
1365
1366 **Rain / Snow Detect**
1367
1368 [[image:1656058451456-166.png]]
1369
1370
1371
1372 **Rain Gauge**
1373
1374 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0