Version 82.5 by Xiaoling on 2022/06/24 18:01

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354
355
356 === 2.4.3 Decoder in TTN V3 ===
357
358 (((
359 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
360 )))
361
362 (((
363
364 )))
365
366 (((
367 Download decoder for suitable platform from:
368 )))
369
370 (((
371 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
372 )))
373
374 (((
375 and put as below:
376 )))
377
378 [[image:1656051152438-578.png]]
379
380
381
382 == 2.5 Show data on Application Server ==
383
384 (((
385 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
386 )))
387
388 (((
389
390 )))
391
392 (((
393 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
398 )))
399
400 [[image:1656051197172-131.png]]
401
402
403 **Add TagoIO:**
404
405 [[image:1656051223585-631.png]]
406
407
408 **Authorization:**
409
410 [[image:1656051248318-368.png]]
411
412
413 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
414
415 [[image:1656051277767-168.png]]
416
417
418
419 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
420
421 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
422
423 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
424 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
425
426 There are two kinds of commands to configure WSC1-L, they are:
427
428 * (% style="color:#4472c4" %)**General Commands**.
429
430 These commands are to configure:
431
432 * General system settings like: uplink interval.
433 * LoRaWAN protocol & radio related command.
434
435 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
436
437 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
438
439
440 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
441
442 These commands only valid for WSC1-L, as below:
443
444
445
446 == 3.1 Set Transmit Interval Time ==
447
448 Feature: Change LoRaWAN End Node Transmit Interval.
449
450 (% style="color:#037691" %)**AT Command: AT+TDC**
451
452 [[image:image-20220624142619-8.png]]
453
454
455 (% style="color:#037691" %)**Downlink Command: 0x01**
456
457 Format: Command Code (0x01) followed by 3 bytes time value.
458
459 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
460
461 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
462 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
463
464
465
466
467
468 == 3.2 Set Emergency Mode ==
469
470 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
471
472 (% style="color:#037691" %)**AT Command:**
473
474 [[image:image-20220624142956-9.png]]
475
476
477 (% style="color:#037691" %)**Downlink Command:**
478
479 * 0xE101     Same as: AT+ALARMMOD=1
480 * 0xE100     Same as: AT+ALARMMOD=0
481
482
483
484
485
486 == 3.3 Add or Delete RS485 Sensor ==
487
488 (((
489 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
490 )))
491
492 (((
493 (% style="color:#037691" %)**AT Command: **
494 )))
495
496 (((
497 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
498 )))
499
500 * (((
501 Type_Code range:  A1 ~~ A4
502 )))
503 * (((
504 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
505 )))
506 * (((
507 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
508 )))
509 * (((
510 Read_Length:  RS485 response frame length supposed to receive. Max can receive
511 )))
512 * (((
513 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
514 )))
515 * (((
516 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
517 )))
518 * (((
519 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
520 )))
521
522 (((
523 **Example:**
524 )))
525
526 (((
527 User need to change external sensor use the type code as address code.
528 )))
529
530 (((
531 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
532 )))
533
534 [[image:image-20220624143553-10.png]]
535
536
537 The response frame of the sensor is as follows:
538
539 [[image:image-20220624143618-11.png]]
540
541
542
543 **Then the following parameters should be:**
544
545 * Address_Code range: A1
546 * Query_Length: 8
547 * Query_Command: A103000000019CAA
548 * Read_Length: 8
549 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
550 * has_CRC: 1
551 * timeout: 1500 (Fill in the test according to the actual situation)
552
553 **So the input command is:**
554
555 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
556
557
558 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
559
560 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
561 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
562 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
563
564 **Related commands:**
565
566 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
567
568 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
569
570
571 (% style="color:#037691" %)**Downlink Command:  **
572
573 **delete custom sensor A1:**
574
575 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
576
577 **Remove all custom sensors**
578
579 * 0xE5FF  
580
581
582
583
584
585 == 3.4 RS485 Test Command ==
586
587 (% style="color:#037691" %)**AT Command:**
588
589 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
590 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
591 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
592 Send command to 485 sensor
593
594 Range : no more than 10 bytes
595 )))|(% style="width:85px" %)OK
596
597 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
598
599 AT+RSWRITE=0103000001840A
600
601
602 (% style="color:#037691" %)**Downlink Command:**
603
604 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
605
606
607
608
609
610 == 3.5 RS485 response timeout ==
611
612 Feature: Set or get extended time to receive 485 sensor data.
613
614 (% style="color:#037691" %)**AT Command:**
615
616 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
617 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
618 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
619 Set response timeout to:
620
621 Range : 0~~10000
622 )))|(% style="width:85px" %)OK
623
624 (% style="color:#037691" %)**Downlink Command:**
625
626 Format: Command Code (0xE0) followed by 3 bytes time value.
627
628 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
629
630 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
631 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
632
633 == 3.6 Set Sensor Type ==
634
635 (((
636 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
637 )))
638
639 (((
640 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
641 )))
642
643 [[image:image-20220624144904-12.png]]
644
645
646 (% style="color:#037691" %)**AT Command:**
647
648 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
649 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
650 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
651
652 Eg: The setting command **AT+STYPE=802212** means:
653
654 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
655 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
657 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
658 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
659 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
660 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
661
662 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
663
664
665 (% style="color:#037691" %)**Downlink Command:**
666
667 * 0xE400802212     Same as: AT+STYPE=80221
668
669 (% style="color:red" %)**Note:**
670
671 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
672
673
674
675
676 = 4. Power consumption and battery =
677
678 == 4.1 Total Power Consumption ==
679
680 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
681
682
683 == 4.2 Reduce power consumption ==
684
685 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
686
687
688 == 4.3 Battery ==
689
690 (((
691 All sensors are only power by external power source. If external power source is off. All sensor won't work.
692 )))
693
694 (((
695 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
696 )))
697
698
699 = 5. Main Process Unit WSC1-L =
700
701 == 5.1 Features ==
702
703 * Wall Attachable.
704 * LoRaWAN v1.0.3 Class A protocol.
705 * RS485 / Modbus protocol
706 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
707 * AT Commands to change parameters
708 * Remote configure parameters via LoRaWAN Downlink
709 * Firmware upgradable via program port
710 * Powered by external 12v battery
711 * Back up rechargeable 1000mAh battery
712 * IP Rating: IP65
713 * Support default sensors or 3rd party RS485 sensors
714
715 == 5.2 Power Consumption ==
716
717 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
718
719
720 == 5.3 Storage & Operation Temperature ==
721
722 -20°C to +60°C
723
724
725 == 5.4 Pin Mapping ==
726
727 [[image:1656054149793-239.png]]
728
729
730 == 5.5 Mechanical ==
731
732 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
733
734
735 == 5.6 Connect to RS485 Sensors ==
736
737 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
738
739
740 [[image:1656054389031-379.png]]
741
742
743 Hardware Design for the Converter Board please see:
744
745 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
746
747
748 = 6. Weather Sensors =
749
750 == 6.1 Rain Gauge ~-~- WSS-01 ==
751
752
753 (((
754 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
755 )))
756
757 (((
758 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
759 )))
760
761 (((
762 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
763 )))
764
765 (((
766 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
767 )))
768
769 (((
770 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
771 )))
772
773
774 === 6.1.1 Feature ===
775
776 * RS485 Rain Gauge
777 * Small dimension, easy to install
778 * Vents under funnel, avoid leaf or other things to avoid rain flow.
779 * ABS enclosure.
780 * Horizontal adjustable.
781
782 === 6.1.2 Specification ===
783
784 * Resolution: 0.2mm
785 * Accuracy: ±3%
786 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
787 * Input Power: DC 5~~24v
788 * Interface: RS485
789 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
790 * Working Humidity: <100% (no dewing)
791 * Power Consumption: 4mA @ 12v.
792
793 === 6.1.3 Dimension ===
794
795 [[image:1656054957406-980.png]]
796
797
798 === 6.1.4 Pin Mapping ===
799
800 [[image:1656054972828-692.png]]
801
802
803 === 6.1.5 Installation Notice ===
804
805 (((
806 Do not power on while connect the cables. Double check the wiring before power on.
807 )))
808
809 (((
810 Installation Photo as reference:
811 )))
812
813
814 (((
815 (% style="color:#4472c4" %)** Install on Ground:**
816 )))
817
818 (((
819 WSS-01 Rain Gauge include screws so can install in ground directly .
820 )))
821
822
823 (((
824 (% style="color:#4472c4" %)** Install on pole:**
825 )))
826
827 (((
828 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
829 )))
830
831 [[image:image-20220624152218-1.png||height="526" width="276"]]
832
833 WS-K2: Bracket Kit for Pole installation
834
835
836 WSSC-K2 dimension document, please see:
837
838 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
839
840
841 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
842
843 [[image:1656055444035-179.png]]
844
845 (((
846 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
847 )))
848
849 (((
850 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
851 )))
852
853 (((
854 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
855 )))
856
857
858 === 6.2.1 Feature ===
859
860 * RS485 wind speed / direction sensor
861 * PC enclosure, resist corrosion
862
863 === 6.2.2 Specification ===
864
865 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
866 * Wind direction range: 0 ~~ 360°
867 * Start wind speed: ≤0.3m/s
868 * Accuracy: ±(0.3+0.03V)m/s , ±1°
869 * Input Power: DC 5~~24v
870 * Interface: RS485
871 * Working Temperature: -30℃~70℃
872 * Working Humidity: <100% (no dewing)
873 * Power Consumption: 13mA ~~ 12v.
874 * Cable Length: 2 meters
875
876 === 6.2.3 Dimension ===
877
878 [[image:image-20220624152813-2.png]]
879
880
881 === 6.2.4 Pin Mapping ===
882
883 [[image:1656056281231-994.png]]
884
885
886 === 6.2.5  Angle Mapping ===
887
888 [[image:1656056303845-585.png]]
889
890
891 === 6.2.6  Installation Notice ===
892
893 (((
894 Do not power on while connect the cables. Double check the wiring before power on.
895 )))
896
897 (((
898 The sensor must be installed with below direction, towards North.
899 )))
900
901 [[image:image-20220624153901-3.png]]
902
903
904 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
905
906
907 (((
908 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
909 )))
910
911 (((
912 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
913 )))
914
915 (((
916 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
917 )))
918
919
920 === 6.3.1 Feature ===
921
922 * RS485 CO2, PM2.5, PM10 sensor
923 * NDIR to measure CO2 with Internal Temperature Compensation
924 * Laser Beam Scattering to PM2.5 and PM10
925
926 === 6.3.2 Specification ===
927
928 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
929 * CO2 resolution: 1ppm
930 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
931 * PM2.5/PM10 resolution: 1μg/m3
932 * Input Power: DC 7 ~~ 24v
933 * Preheat time: 3min
934 * Interface: RS485
935 * Working Temperature:
936 ** CO2: 0℃~50℃;
937 ** PM2.5/PM10: -30 ~~ 50℃
938 * Working Humidity:
939 ** PM2.5/PM10: 15~80%RH (no dewing)
940 ** CO2: 0~95%RH
941 * Power Consumption: 50mA@ 12v.
942
943 === 6.3.3 Dimension ===
944
945 [[image:1656056708366-230.png]]
946
947
948 === 6.3.4 Pin Mapping ===
949
950 [[image:1656056722648-743.png]]
951
952
953 === 6.3.5 Installation Notice ===
954
955 Do not power on while connect the cables. Double check the wiring before power on.
956
957 [[image:1656056751153-304.png]]
958
959 [[image:1656056766224-773.png]]
960
961
962 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
963
964
965 (((
966 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
967 )))
968
969 (((
970 WSS-04 has auto heating feature, this ensures measurement more reliable.
971 )))
972
973 (((
974 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
975 )))
976
977
978
979 === 6.4.1 Feature ===
980
981 * RS485 Rain/Snow detect sensor
982 * Surface heating to dry
983 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
984
985 === 6.4.2 Specification ===
986
987 * Detect if there is rain or snow
988 * Input Power: DC 12 ~~ 24v
989 * Interface: RS485
990 * Working Temperature: -30℃~70℃
991 * Working Humidity: 10~90%RH
992 * Power Consumption:
993 ** No heating: 12mA @ 12v,
994 ** heating: 94ma @ 12v.
995
996 === 6.4.3 Dimension ===
997
998 [[image:1656056844782-155.png]]
999
1000
1001 === 6.4.4 Pin Mapping ===
1002
1003 [[image:1656056855590-754.png]]
1004
1005
1006 === 6.4.5 Installation Notice ===
1007
1008 Do not power on while connect the cables. Double check the wiring before power on.
1009
1010
1011 (((
1012 Install with 15°degree.
1013 )))
1014
1015 [[image:1656056873783-780.png]]
1016
1017
1018 [[image:1656056883736-804.png]]
1019
1020
1021 === 6.4.6 Heating ===
1022
1023 (((
1024 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1025 )))
1026
1027
1028 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1029
1030
1031 (((
1032 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1033 )))
1034
1035 (((
1036 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1037 )))
1038
1039
1040 === 6.5.1 Feature ===
1041
1042 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1043
1044
1045
1046
1047
1048 === 6.5.2 Specification ===
1049
1050 * Input Power: DC 12 ~~ 24v
1051 * Interface: RS485
1052 * Temperature Sensor Spec:
1053 ** Range: -30 ~~ 70℃
1054 ** resolution 0.1℃
1055 ** Accuracy: ±0.5℃
1056 * Humidity Sensor Spec:
1057 ** Range: 0 ~~ 100% RH
1058 ** resolution 0.1 %RH
1059 ** Accuracy: 3% RH
1060 * Pressure Sensor Spec:
1061 ** Range: 10~1100hPa
1062 ** Resolution: 0.1hPa
1063 ** Accuracy: ±0.1hPa
1064 * Illuminate sensor:
1065 ** Range: 0~2/20/200kLux
1066 ** Resolution: 10 Lux
1067 ** Accuracy: ±3%FS
1068 * Working Temperature: -30℃~70℃
1069 * Working Humidity: 10~90%RH
1070 * Power Consumption: 4mA @ 12v
1071
1072
1073
1074
1075
1076 === 6.5.3 Dimension ===
1077
1078 [[image:1656057170639-522.png]]
1079
1080
1081 === 6.5.4 Pin Mapping ===
1082
1083 [[image:1656057181899-910.png]]
1084
1085
1086 === 6.5.5 Installation Notice ===
1087
1088 Do not power on while connect the cables. Double check the wiring before power on.
1089
1090 [[image:1656057199955-514.png]]
1091
1092
1093 [[image:1656057212438-475.png]]
1094
1095
1096 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1097
1098
1099 (((
1100 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1101 )))
1102
1103 (((
1104 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1105 )))
1106
1107 (((
1108 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1109 )))
1110
1111
1112
1113 === 6.6.1 Feature ===
1114
1115 * RS485 Total Solar Radiation sensor
1116 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1117 * Measure Reflected Radiation if sense area towards ground.
1118
1119
1120
1121
1122 === 6.6.2 Specification ===
1123
1124 * Input Power: DC 5 ~~ 24v
1125 * Interface: RS485
1126 * Detect spectrum: 0.3~3μm(300~3000nm)
1127 * Measure strength range: 0~2000W/m2
1128 * Resolution: 0.1W/m2
1129 * Accuracy: ±3%
1130 * Yearly Stability: ≤±2%
1131 * Cosine response: ≤7% (@ Sun angle 10°)
1132 * Temperature Effect: ±2%(-10℃~40℃)
1133 * Working Temperature: -40℃~70℃
1134 * Working Humidity: 10~90%RH
1135 * Power Consumption: 4mA @ 12v
1136
1137
1138
1139
1140
1141 === 6.6.3 Dimension ===
1142
1143 [[image:1656057348695-898.png]]
1144
1145
1146 === 6.6.4 Pin Mapping ===
1147
1148 [[image:1656057359343-744.png]]
1149
1150
1151 === 6.6.5 Installation Notice ===
1152
1153 Do not power on while connect the cables. Double check the wiring before power on.
1154
1155 [[image:1656057369259-804.png]]
1156
1157
1158 [[image:1656057377943-564.png]]
1159
1160
1161 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1162
1163
1164 (((
1165 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1166 )))
1167
1168 (((
1169 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1170 )))
1171
1172 (((
1173 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1174 )))
1175
1176
1177 === 6.7.1 Feature ===
1178
1179 (((
1180 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1181 )))
1182
1183 (((
1184 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1185 )))
1186
1187
1188 === 6.7.2 Specification ===
1189
1190 * Input Power: DC 5 ~~ 24v
1191 * Interface: RS485
1192 * Response Spectrum: 400~700nm
1193 * Measure range: 0~2500μmol/m2•s
1194 * Resolution: 1μmol/m2•s
1195 * Accuracy: ±2%
1196 * Yearly Stability: ≤±2%
1197 * Working Temperature: -30℃~75℃
1198 * Working Humidity: 10~90%RH
1199 * Power Consumption: 3mA @ 12v
1200
1201
1202
1203
1204
1205 === 6.7.3 Dimension ===
1206
1207 [[image:1656057538793-888.png]]
1208
1209
1210 === 6.7.4 Pin Mapping ===
1211
1212 [[image:1656057548116-203.png]]
1213
1214
1215 === 6.7.5 Installation Notice ===
1216
1217 Do not power on while connect the cables. Double check the wiring before power on.
1218
1219
1220 [[image:1656057557191-895.png]]
1221
1222
1223 [[image:1656057565783-251.png]]
1224
1225
1226 = 7. FAQ =
1227
1228 == 7.1 What else do I need to purchase to build Weather Station? ==
1229
1230 Below is the installation photo and structure:
1231
1232 [[image:1656057598349-319.png]]
1233
1234
1235 [[image:1656057608049-693.png]]
1236
1237
1238
1239 == 7.2 How to upgrade firmware for WSC1-L? ==
1240
1241 (((
1242 Firmware Location & Change log:
1243 )))
1244
1245 (((
1246 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1247 )))
1248
1249
1250 (((
1251 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1252 )))
1253
1254
1255 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1256
1257 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1258
1259
1260 == 7.4 Can I add my weather sensors? ==
1261
1262 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1263
1264
1265 = 8. Trouble Shooting =
1266
1267 == 8.1 AT Command input doesn't work ==
1268
1269 (((
1270 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1271 )))
1272
1273
1274 = 9. Order Info =
1275
1276 == 9.1 Main Process Unit ==
1277
1278 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1279
1280 (% style="color:blue" %)**XX**(%%): The default frequency band
1281
1282 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1283 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1284 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1285 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1286 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1287 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1288 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1289 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1290
1291
1292 == 9.2 Sensors ==
1293
1294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1295 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1296 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1297 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1298 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1299 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1300 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1301 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1302 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1303 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1304
1305
1306 = 10. Support =
1307
1308 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1309 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1310
1311
1312 = 11. Appendix I: Field Installation Photo =
1313
1314
1315 [[image:1656058346362-132.png]]
1316
1317 **Storage Battery**: 12v,12AH li battery
1318
1319
1320
1321 **Wind Speed/Direction**
1322
1323 [[image:1656058373174-421.png]]
1324
1325
1326
1327 **Total Solar Radiation sensor**
1328
1329 [[image:1656058397364-282.png]]
1330
1331
1332
1333 **PAR Sensor**
1334
1335 [[image:1656058416171-615.png]]
1336
1337
1338
1339 **CO2/PM2.5/PM10 3 in 1 sensor**
1340
1341 [[image:1656058441194-827.png]]
1342
1343
1344
1345 **Rain / Snow Detect**
1346
1347 [[image:1656058451456-166.png]]
1348
1349
1350
1351 **Rain Gauge**
1352
1353 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0