Version 82.4 by Xiaoling on 2022/06/24 18:01

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354
355
356 === 2.4.3 Decoder in TTN V3 ===
357
358 (((
359 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
360 )))
361
362 (((
363
364 )))
365
366 (((
367 Download decoder for suitable platform from:
368 )))
369
370 (((
371 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
372 )))
373
374 (((
375 and put as below:
376 )))
377
378 [[image:1656051152438-578.png]]
379
380
381
382 == 2.5 Show data on Application Server ==
383
384 (((
385 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
386 )))
387
388 (((
389
390 )))
391
392 (((
393 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
398 )))
399
400 [[image:1656051197172-131.png]]
401
402
403 **Add TagoIO:**
404
405 [[image:1656051223585-631.png]]
406
407
408 **Authorization:**
409
410 [[image:1656051248318-368.png]]
411
412
413 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
414
415 [[image:1656051277767-168.png]]
416
417
418
419 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
420
421 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
422
423 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
424 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
425
426 There are two kinds of commands to configure WSC1-L, they are:
427
428 * (% style="color:#4472c4" %)**General Commands**.
429
430 These commands are to configure:
431
432 * General system settings like: uplink interval.
433 * LoRaWAN protocol & radio related command.
434
435 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
436
437 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
438
439
440 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
441
442 These commands only valid for WSC1-L, as below:
443
444
445
446 == 3.1 Set Transmit Interval Time ==
447
448 Feature: Change LoRaWAN End Node Transmit Interval.
449
450 (% style="color:#037691" %)**AT Command: AT+TDC**
451
452 [[image:image-20220624142619-8.png]]
453
454
455 (% style="color:#037691" %)**Downlink Command: 0x01**
456
457 Format: Command Code (0x01) followed by 3 bytes time value.
458
459 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
460
461 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
462 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
463
464
465
466
467
468 == 3.2 Set Emergency Mode ==
469
470 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
471
472 (% style="color:#037691" %)**AT Command:**
473
474 [[image:image-20220624142956-9.png]]
475
476
477 (% style="color:#037691" %)**Downlink Command:**
478
479 * 0xE101     Same as: AT+ALARMMOD=1
480 * 0xE100     Same as: AT+ALARMMOD=0
481
482
483
484
485
486 == 3.3 Add or Delete RS485 Sensor ==
487
488 (((
489 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
490 )))
491
492 (((
493 (% style="color:#037691" %)**AT Command: **
494 )))
495
496 (((
497 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
498 )))
499
500 * (((
501 Type_Code range:  A1 ~~ A4
502 )))
503 * (((
504 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
505 )))
506 * (((
507 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
508 )))
509 * (((
510 Read_Length:  RS485 response frame length supposed to receive. Max can receive
511 )))
512 * (((
513 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
514 )))
515 * (((
516 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
517 )))
518 * (((
519 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
520 )))
521
522 (((
523 **Example:**
524 )))
525
526 (((
527 User need to change external sensor use the type code as address code.
528 )))
529
530 (((
531 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
532 )))
533
534 [[image:image-20220624143553-10.png]]
535
536
537 The response frame of the sensor is as follows:
538
539 [[image:image-20220624143618-11.png]]
540
541
542
543 **Then the following parameters should be:**
544
545 * Address_Code range: A1
546 * Query_Length: 8
547 * Query_Command: A103000000019CAA
548 * Read_Length: 8
549 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
550 * has_CRC: 1
551 * timeout: 1500 (Fill in the test according to the actual situation)
552
553 **So the input command is:**
554
555 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
556
557
558 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
559
560 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
561 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
562 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
563
564 **Related commands:**
565
566 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
567
568 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
569
570
571 (% style="color:#037691" %)**Downlink Command:  **
572
573 **delete custom sensor A1:**
574
575 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
576
577 **Remove all custom sensors**
578
579 * 0xE5FF  
580
581
582
583
584
585 == 3.4 RS485 Test Command ==
586
587 (% style="color:#037691" %)**AT Command:**
588
589 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
590 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
591 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
592 Send command to 485 sensor
593
594 Range : no more than 10 bytes
595 )))|(% style="width:85px" %)OK
596
597 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
598
599 AT+RSWRITE=0103000001840A
600
601
602 (% style="color:#037691" %)**Downlink Command:**
603
604 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
605
606 == 3.5 RS485 response timeout ==
607
608 Feature: Set or get extended time to receive 485 sensor data.
609
610 (% style="color:#037691" %)**AT Command:**
611
612 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
613 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
614 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
615 Set response timeout to:
616
617 Range : 0~~10000
618 )))|(% style="width:85px" %)OK
619
620 (% style="color:#037691" %)**Downlink Command:**
621
622 Format: Command Code (0xE0) followed by 3 bytes time value.
623
624 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
625
626 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
627 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
628
629 == 3.6 Set Sensor Type ==
630
631 (((
632 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
633 )))
634
635 (((
636 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
637 )))
638
639 [[image:image-20220624144904-12.png]]
640
641
642 (% style="color:#037691" %)**AT Command:**
643
644 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
645 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
646 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
647
648 Eg: The setting command **AT+STYPE=802212** means:
649
650 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
651 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
652 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
653 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
655 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
657
658 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
659
660
661 (% style="color:#037691" %)**Downlink Command:**
662
663 * 0xE400802212     Same as: AT+STYPE=80221
664
665 (% style="color:red" %)**Note:**
666
667 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
668
669
670
671
672 = 4. Power consumption and battery =
673
674 == 4.1 Total Power Consumption ==
675
676 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
677
678
679 == 4.2 Reduce power consumption ==
680
681 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
682
683
684 == 4.3 Battery ==
685
686 (((
687 All sensors are only power by external power source. If external power source is off. All sensor won't work.
688 )))
689
690 (((
691 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
692 )))
693
694
695 = 5. Main Process Unit WSC1-L =
696
697 == 5.1 Features ==
698
699 * Wall Attachable.
700 * LoRaWAN v1.0.3 Class A protocol.
701 * RS485 / Modbus protocol
702 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
703 * AT Commands to change parameters
704 * Remote configure parameters via LoRaWAN Downlink
705 * Firmware upgradable via program port
706 * Powered by external 12v battery
707 * Back up rechargeable 1000mAh battery
708 * IP Rating: IP65
709 * Support default sensors or 3rd party RS485 sensors
710
711 == 5.2 Power Consumption ==
712
713 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
714
715
716 == 5.3 Storage & Operation Temperature ==
717
718 -20°C to +60°C
719
720
721 == 5.4 Pin Mapping ==
722
723 [[image:1656054149793-239.png]]
724
725
726 == 5.5 Mechanical ==
727
728 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
729
730
731 == 5.6 Connect to RS485 Sensors ==
732
733 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
734
735
736 [[image:1656054389031-379.png]]
737
738
739 Hardware Design for the Converter Board please see:
740
741 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
742
743
744 = 6. Weather Sensors =
745
746 == 6.1 Rain Gauge ~-~- WSS-01 ==
747
748
749 (((
750 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
751 )))
752
753 (((
754 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
755 )))
756
757 (((
758 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
759 )))
760
761 (((
762 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
763 )))
764
765 (((
766 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
767 )))
768
769
770 === 6.1.1 Feature ===
771
772 * RS485 Rain Gauge
773 * Small dimension, easy to install
774 * Vents under funnel, avoid leaf or other things to avoid rain flow.
775 * ABS enclosure.
776 * Horizontal adjustable.
777
778 === 6.1.2 Specification ===
779
780 * Resolution: 0.2mm
781 * Accuracy: ±3%
782 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
783 * Input Power: DC 5~~24v
784 * Interface: RS485
785 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
786 * Working Humidity: <100% (no dewing)
787 * Power Consumption: 4mA @ 12v.
788
789 === 6.1.3 Dimension ===
790
791 [[image:1656054957406-980.png]]
792
793
794 === 6.1.4 Pin Mapping ===
795
796 [[image:1656054972828-692.png]]
797
798
799 === 6.1.5 Installation Notice ===
800
801 (((
802 Do not power on while connect the cables. Double check the wiring before power on.
803 )))
804
805 (((
806 Installation Photo as reference:
807 )))
808
809
810 (((
811 (% style="color:#4472c4" %)** Install on Ground:**
812 )))
813
814 (((
815 WSS-01 Rain Gauge include screws so can install in ground directly .
816 )))
817
818
819 (((
820 (% style="color:#4472c4" %)** Install on pole:**
821 )))
822
823 (((
824 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
825 )))
826
827 [[image:image-20220624152218-1.png||height="526" width="276"]]
828
829 WS-K2: Bracket Kit for Pole installation
830
831
832 WSSC-K2 dimension document, please see:
833
834 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
835
836
837 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
838
839 [[image:1656055444035-179.png]]
840
841 (((
842 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
843 )))
844
845 (((
846 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
847 )))
848
849 (((
850 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
851 )))
852
853
854 === 6.2.1 Feature ===
855
856 * RS485 wind speed / direction sensor
857 * PC enclosure, resist corrosion
858
859 === 6.2.2 Specification ===
860
861 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
862 * Wind direction range: 0 ~~ 360°
863 * Start wind speed: ≤0.3m/s
864 * Accuracy: ±(0.3+0.03V)m/s , ±1°
865 * Input Power: DC 5~~24v
866 * Interface: RS485
867 * Working Temperature: -30℃~70℃
868 * Working Humidity: <100% (no dewing)
869 * Power Consumption: 13mA ~~ 12v.
870 * Cable Length: 2 meters
871
872 === 6.2.3 Dimension ===
873
874 [[image:image-20220624152813-2.png]]
875
876
877 === 6.2.4 Pin Mapping ===
878
879 [[image:1656056281231-994.png]]
880
881
882 === 6.2.5  Angle Mapping ===
883
884 [[image:1656056303845-585.png]]
885
886
887 === 6.2.6  Installation Notice ===
888
889 (((
890 Do not power on while connect the cables. Double check the wiring before power on.
891 )))
892
893 (((
894 The sensor must be installed with below direction, towards North.
895 )))
896
897 [[image:image-20220624153901-3.png]]
898
899
900 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
901
902
903 (((
904 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
905 )))
906
907 (((
908 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
909 )))
910
911 (((
912 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
913 )))
914
915
916 === 6.3.1 Feature ===
917
918 * RS485 CO2, PM2.5, PM10 sensor
919 * NDIR to measure CO2 with Internal Temperature Compensation
920 * Laser Beam Scattering to PM2.5 and PM10
921
922 === 6.3.2 Specification ===
923
924 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
925 * CO2 resolution: 1ppm
926 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
927 * PM2.5/PM10 resolution: 1μg/m3
928 * Input Power: DC 7 ~~ 24v
929 * Preheat time: 3min
930 * Interface: RS485
931 * Working Temperature:
932 ** CO2: 0℃~50℃;
933 ** PM2.5/PM10: -30 ~~ 50℃
934 * Working Humidity:
935 ** PM2.5/PM10: 15~80%RH (no dewing)
936 ** CO2: 0~95%RH
937 * Power Consumption: 50mA@ 12v.
938
939 === 6.3.3 Dimension ===
940
941 [[image:1656056708366-230.png]]
942
943
944 === 6.3.4 Pin Mapping ===
945
946 [[image:1656056722648-743.png]]
947
948
949 === 6.3.5 Installation Notice ===
950
951 Do not power on while connect the cables. Double check the wiring before power on.
952
953 [[image:1656056751153-304.png]]
954
955 [[image:1656056766224-773.png]]
956
957
958 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
959
960
961 (((
962 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
963 )))
964
965 (((
966 WSS-04 has auto heating feature, this ensures measurement more reliable.
967 )))
968
969 (((
970 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
971 )))
972
973
974
975 === 6.4.1 Feature ===
976
977 * RS485 Rain/Snow detect sensor
978 * Surface heating to dry
979 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
980
981 === 6.4.2 Specification ===
982
983 * Detect if there is rain or snow
984 * Input Power: DC 12 ~~ 24v
985 * Interface: RS485
986 * Working Temperature: -30℃~70℃
987 * Working Humidity: 10~90%RH
988 * Power Consumption:
989 ** No heating: 12mA @ 12v,
990 ** heating: 94ma @ 12v.
991
992 === 6.4.3 Dimension ===
993
994 [[image:1656056844782-155.png]]
995
996
997 === 6.4.4 Pin Mapping ===
998
999 [[image:1656056855590-754.png]]
1000
1001
1002 === 6.4.5 Installation Notice ===
1003
1004 Do not power on while connect the cables. Double check the wiring before power on.
1005
1006
1007 (((
1008 Install with 15°degree.
1009 )))
1010
1011 [[image:1656056873783-780.png]]
1012
1013
1014 [[image:1656056883736-804.png]]
1015
1016
1017 === 6.4.6 Heating ===
1018
1019 (((
1020 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1021 )))
1022
1023
1024 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1025
1026
1027 (((
1028 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1029 )))
1030
1031 (((
1032 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1033 )))
1034
1035
1036 === 6.5.1 Feature ===
1037
1038 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1039
1040
1041
1042
1043
1044 === 6.5.2 Specification ===
1045
1046 * Input Power: DC 12 ~~ 24v
1047 * Interface: RS485
1048 * Temperature Sensor Spec:
1049 ** Range: -30 ~~ 70℃
1050 ** resolution 0.1℃
1051 ** Accuracy: ±0.5℃
1052 * Humidity Sensor Spec:
1053 ** Range: 0 ~~ 100% RH
1054 ** resolution 0.1 %RH
1055 ** Accuracy: 3% RH
1056 * Pressure Sensor Spec:
1057 ** Range: 10~1100hPa
1058 ** Resolution: 0.1hPa
1059 ** Accuracy: ±0.1hPa
1060 * Illuminate sensor:
1061 ** Range: 0~2/20/200kLux
1062 ** Resolution: 10 Lux
1063 ** Accuracy: ±3%FS
1064 * Working Temperature: -30℃~70℃
1065 * Working Humidity: 10~90%RH
1066 * Power Consumption: 4mA @ 12v
1067
1068
1069
1070
1071
1072 === 6.5.3 Dimension ===
1073
1074 [[image:1656057170639-522.png]]
1075
1076
1077 === 6.5.4 Pin Mapping ===
1078
1079 [[image:1656057181899-910.png]]
1080
1081
1082 === 6.5.5 Installation Notice ===
1083
1084 Do not power on while connect the cables. Double check the wiring before power on.
1085
1086 [[image:1656057199955-514.png]]
1087
1088
1089 [[image:1656057212438-475.png]]
1090
1091
1092 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1093
1094
1095 (((
1096 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1097 )))
1098
1099 (((
1100 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1101 )))
1102
1103 (((
1104 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1105 )))
1106
1107
1108
1109 === 6.6.1 Feature ===
1110
1111 * RS485 Total Solar Radiation sensor
1112 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1113 * Measure Reflected Radiation if sense area towards ground.
1114
1115
1116
1117
1118 === 6.6.2 Specification ===
1119
1120 * Input Power: DC 5 ~~ 24v
1121 * Interface: RS485
1122 * Detect spectrum: 0.3~3μm(300~3000nm)
1123 * Measure strength range: 0~2000W/m2
1124 * Resolution: 0.1W/m2
1125 * Accuracy: ±3%
1126 * Yearly Stability: ≤±2%
1127 * Cosine response: ≤7% (@ Sun angle 10°)
1128 * Temperature Effect: ±2%(-10℃~40℃)
1129 * Working Temperature: -40℃~70℃
1130 * Working Humidity: 10~90%RH
1131 * Power Consumption: 4mA @ 12v
1132
1133
1134
1135
1136
1137 === 6.6.3 Dimension ===
1138
1139 [[image:1656057348695-898.png]]
1140
1141
1142 === 6.6.4 Pin Mapping ===
1143
1144 [[image:1656057359343-744.png]]
1145
1146
1147 === 6.6.5 Installation Notice ===
1148
1149 Do not power on while connect the cables. Double check the wiring before power on.
1150
1151 [[image:1656057369259-804.png]]
1152
1153
1154 [[image:1656057377943-564.png]]
1155
1156
1157 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1158
1159
1160 (((
1161 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1162 )))
1163
1164 (((
1165 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1166 )))
1167
1168 (((
1169 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1170 )))
1171
1172
1173 === 6.7.1 Feature ===
1174
1175 (((
1176 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1177 )))
1178
1179 (((
1180 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1181 )))
1182
1183
1184 === 6.7.2 Specification ===
1185
1186 * Input Power: DC 5 ~~ 24v
1187 * Interface: RS485
1188 * Response Spectrum: 400~700nm
1189 * Measure range: 0~2500μmol/m2•s
1190 * Resolution: 1μmol/m2•s
1191 * Accuracy: ±2%
1192 * Yearly Stability: ≤±2%
1193 * Working Temperature: -30℃~75℃
1194 * Working Humidity: 10~90%RH
1195 * Power Consumption: 3mA @ 12v
1196
1197
1198
1199
1200
1201 === 6.7.3 Dimension ===
1202
1203 [[image:1656057538793-888.png]]
1204
1205
1206 === 6.7.4 Pin Mapping ===
1207
1208 [[image:1656057548116-203.png]]
1209
1210
1211 === 6.7.5 Installation Notice ===
1212
1213 Do not power on while connect the cables. Double check the wiring before power on.
1214
1215
1216 [[image:1656057557191-895.png]]
1217
1218
1219 [[image:1656057565783-251.png]]
1220
1221
1222 = 7. FAQ =
1223
1224 == 7.1 What else do I need to purchase to build Weather Station? ==
1225
1226 Below is the installation photo and structure:
1227
1228 [[image:1656057598349-319.png]]
1229
1230
1231 [[image:1656057608049-693.png]]
1232
1233
1234
1235 == 7.2 How to upgrade firmware for WSC1-L? ==
1236
1237 (((
1238 Firmware Location & Change log:
1239 )))
1240
1241 (((
1242 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1243 )))
1244
1245
1246 (((
1247 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1248 )))
1249
1250
1251 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1252
1253 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1254
1255
1256 == 7.4 Can I add my weather sensors? ==
1257
1258 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1259
1260
1261 = 8. Trouble Shooting =
1262
1263 == 8.1 AT Command input doesn't work ==
1264
1265 (((
1266 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1267 )))
1268
1269
1270 = 9. Order Info =
1271
1272 == 9.1 Main Process Unit ==
1273
1274 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1275
1276 (% style="color:blue" %)**XX**(%%): The default frequency band
1277
1278 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1279 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1280 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1281 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1282 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1283 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1284 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1285 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1286
1287
1288 == 9.2 Sensors ==
1289
1290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1291 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1292 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1293 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1294 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1295 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1296 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1297 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1298 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1299 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1300
1301
1302 = 10. Support =
1303
1304 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1305 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1306
1307
1308 = 11. Appendix I: Field Installation Photo =
1309
1310
1311 [[image:1656058346362-132.png]]
1312
1313 **Storage Battery**: 12v,12AH li battery
1314
1315
1316
1317 **Wind Speed/Direction**
1318
1319 [[image:1656058373174-421.png]]
1320
1321
1322
1323 **Total Solar Radiation sensor**
1324
1325 [[image:1656058397364-282.png]]
1326
1327
1328
1329 **PAR Sensor**
1330
1331 [[image:1656058416171-615.png]]
1332
1333
1334
1335 **CO2/PM2.5/PM10 3 in 1 sensor**
1336
1337 [[image:1656058441194-827.png]]
1338
1339
1340
1341 **Rain / Snow Detect**
1342
1343 [[image:1656058451456-166.png]]
1344
1345
1346
1347 **Rain Gauge**
1348
1349 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0