Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354
355
356 === 2.4.3 Decoder in TTN V3 ===
357
358 (((
359 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
360 )))
361
362 (((
363
364 )))
365
366 (((
367 Download decoder for suitable platform from:
368 )))
369
370 (((
371 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
372 )))
373
374 (((
375 and put as below:
376 )))
377
378 [[image:1656051152438-578.png]]
379
380
381
382 == 2.5 Show data on Application Server ==
383
384 (((
385 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
386 )))
387
388 (((
389
390 )))
391
392 (((
393 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
398 )))
399
400 [[image:1656051197172-131.png]]
401
402
403 **Add TagoIO:**
404
405 [[image:1656051223585-631.png]]
406
407
408 **Authorization:**
409
410 [[image:1656051248318-368.png]]
411
412
413 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
414
415 [[image:1656051277767-168.png]]
416
417
418
419 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
420
421 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
422
423 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
424 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
425
426 There are two kinds of commands to configure WSC1-L, they are:
427
428 * (% style="color:#4472c4" %)**General Commands**.
429
430 These commands are to configure:
431
432 * General system settings like: uplink interval.
433 * LoRaWAN protocol & radio related command.
434
435 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
436
437 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
438
439
440 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
441
442 These commands only valid for WSC1-L, as below:
443
444
445
446 == 3.1 Set Transmit Interval Time ==
447
448 Feature: Change LoRaWAN End Node Transmit Interval.
449
450 (% style="color:#037691" %)**AT Command: AT+TDC**
451
452 [[image:image-20220624142619-8.png]]
453
454
455 (% style="color:#037691" %)**Downlink Command: 0x01**
456
457 Format: Command Code (0x01) followed by 3 bytes time value.
458
459 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
460
461 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
462 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
463
464
465
466
467
468 == 3.2 Set Emergency Mode ==
469
470 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
471
472 (% style="color:#037691" %)**AT Command:**
473
474 [[image:image-20220624142956-9.png]]
475
476
477 (% style="color:#037691" %)**Downlink Command:**
478
479 * 0xE101     Same as: AT+ALARMMOD=1
480 * 0xE100     Same as: AT+ALARMMOD=0
481
482
483
484
485
486 == 3.3 Add or Delete RS485 Sensor ==
487
488 (((
489 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
490 )))
491
492 (((
493 (% style="color:#037691" %)**AT Command: **
494 )))
495
496 (((
497 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
498 )))
499
500 * (((
501 Type_Code range:  A1 ~~ A4
502 )))
503 * (((
504 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
505 )))
506 * (((
507 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
508 )))
509 * (((
510 Read_Length:  RS485 response frame length supposed to receive. Max can receive
511 )))
512 * (((
513 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
514 )))
515 * (((
516 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
517 )))
518 * (((
519 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
520 )))
521
522 (((
523 **Example:**
524 )))
525
526 (((
527 User need to change external sensor use the type code as address code.
528 )))
529
530 (((
531 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
532 )))
533
534 [[image:image-20220624143553-10.png]]
535
536
537 The response frame of the sensor is as follows:
538
539 [[image:image-20220624143618-11.png]]
540
541
542
543 **Then the following parameters should be:**
544
545 * Address_Code range: A1
546 * Query_Length: 8
547 * Query_Command: A103000000019CAA
548 * Read_Length: 8
549 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
550 * has_CRC: 1
551 * timeout: 1500 (Fill in the test according to the actual situation)
552
553 **So the input command is:**
554
555 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
556
557
558 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
559
560 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
561 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
562 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
563
564 **Related commands:**
565
566 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
567
568 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
569
570
571 (% style="color:#037691" %)**Downlink Command:  **
572
573 **delete custom sensor A1:**
574
575 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
576
577 **Remove all custom sensors**
578
579 * 0xE5FF  
580
581 == 3.4 RS485 Test Command ==
582
583 (% style="color:#037691" %)**AT Command:**
584
585 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
586 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
587 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
588 Send command to 485 sensor
589
590 Range : no more than 10 bytes
591 )))|(% style="width:85px" %)OK
592
593 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
594
595 AT+RSWRITE=0103000001840A
596
597
598 (% style="color:#037691" %)**Downlink Command:**
599
600 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
601
602 == 3.5 RS485 response timeout ==
603
604 Feature: Set or get extended time to receive 485 sensor data.
605
606 (% style="color:#037691" %)**AT Command:**
607
608 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
609 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
610 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
611 Set response timeout to:
612
613 Range : 0~~10000
614 )))|(% style="width:85px" %)OK
615
616 (% style="color:#037691" %)**Downlink Command:**
617
618 Format: Command Code (0xE0) followed by 3 bytes time value.
619
620 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
621
622 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
623 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
624
625 == 3.6 Set Sensor Type ==
626
627 (((
628 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
629 )))
630
631 (((
632 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
633 )))
634
635 [[image:image-20220624144904-12.png]]
636
637
638 (% style="color:#037691" %)**AT Command:**
639
640 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
641 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
642 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
643
644 Eg: The setting command **AT+STYPE=802212** means:
645
646 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
647 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
648 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
649 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
650 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
651 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
652 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
653
654 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
655
656
657 (% style="color:#037691" %)**Downlink Command:**
658
659 * 0xE400802212     Same as: AT+STYPE=80221
660
661 (% style="color:red" %)**Note:**
662
663 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
664
665
666
667
668 = 4. Power consumption and battery =
669
670 == 4.1 Total Power Consumption ==
671
672 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
673
674
675 == 4.2 Reduce power consumption ==
676
677 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
678
679
680 == 4.3 Battery ==
681
682 (((
683 All sensors are only power by external power source. If external power source is off. All sensor won't work.
684 )))
685
686 (((
687 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
688 )))
689
690
691 = 5. Main Process Unit WSC1-L =
692
693 == 5.1 Features ==
694
695 * Wall Attachable.
696 * LoRaWAN v1.0.3 Class A protocol.
697 * RS485 / Modbus protocol
698 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
699 * AT Commands to change parameters
700 * Remote configure parameters via LoRaWAN Downlink
701 * Firmware upgradable via program port
702 * Powered by external 12v battery
703 * Back up rechargeable 1000mAh battery
704 * IP Rating: IP65
705 * Support default sensors or 3rd party RS485 sensors
706
707 == 5.2 Power Consumption ==
708
709 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
710
711
712 == 5.3 Storage & Operation Temperature ==
713
714 -20°C to +60°C
715
716
717 == 5.4 Pin Mapping ==
718
719 [[image:1656054149793-239.png]]
720
721
722 == 5.5 Mechanical ==
723
724 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
725
726
727 == 5.6 Connect to RS485 Sensors ==
728
729 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
730
731
732 [[image:1656054389031-379.png]]
733
734
735 Hardware Design for the Converter Board please see:
736
737 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
738
739
740 = 6. Weather Sensors =
741
742 == 6.1 Rain Gauge ~-~- WSS-01 ==
743
744
745 (((
746 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
747 )))
748
749 (((
750 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
751 )))
752
753 (((
754 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
755 )))
756
757 (((
758 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
759 )))
760
761 (((
762 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
763 )))
764
765
766 === 6.1.1 Feature ===
767
768 * RS485 Rain Gauge
769 * Small dimension, easy to install
770 * Vents under funnel, avoid leaf or other things to avoid rain flow.
771 * ABS enclosure.
772 * Horizontal adjustable.
773
774 === 6.1.2 Specification ===
775
776 * Resolution: 0.2mm
777 * Accuracy: ±3%
778 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
779 * Input Power: DC 5~~24v
780 * Interface: RS485
781 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
782 * Working Humidity: <100% (no dewing)
783 * Power Consumption: 4mA @ 12v.
784
785 === 6.1.3 Dimension ===
786
787 [[image:1656054957406-980.png]]
788
789
790 === 6.1.4 Pin Mapping ===
791
792 [[image:1656054972828-692.png]]
793
794
795 === 6.1.5 Installation Notice ===
796
797 (((
798 Do not power on while connect the cables. Double check the wiring before power on.
799 )))
800
801 (((
802 Installation Photo as reference:
803 )))
804
805
806 (((
807 (% style="color:#4472c4" %)** Install on Ground:**
808 )))
809
810 (((
811 WSS-01 Rain Gauge include screws so can install in ground directly .
812 )))
813
814
815 (((
816 (% style="color:#4472c4" %)** Install on pole:**
817 )))
818
819 (((
820 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
821 )))
822
823 [[image:image-20220624152218-1.png||height="526" width="276"]]
824
825 WS-K2: Bracket Kit for Pole installation
826
827
828 WSSC-K2 dimension document, please see:
829
830 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
831
832
833 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
834
835 [[image:1656055444035-179.png]]
836
837 (((
838 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
839 )))
840
841 (((
842 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
843 )))
844
845 (((
846 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
847 )))
848
849
850 === 6.2.1 Feature ===
851
852 * RS485 wind speed / direction sensor
853 * PC enclosure, resist corrosion
854
855 === 6.2.2 Specification ===
856
857 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
858 * Wind direction range: 0 ~~ 360°
859 * Start wind speed: ≤0.3m/s
860 * Accuracy: ±(0.3+0.03V)m/s , ±1°
861 * Input Power: DC 5~~24v
862 * Interface: RS485
863 * Working Temperature: -30℃~70℃
864 * Working Humidity: <100% (no dewing)
865 * Power Consumption: 13mA ~~ 12v.
866 * Cable Length: 2 meters
867
868 === 6.2.3 Dimension ===
869
870 [[image:image-20220624152813-2.png]]
871
872
873 === 6.2.4 Pin Mapping ===
874
875 [[image:1656056281231-994.png]]
876
877
878 === 6.2.5  Angle Mapping ===
879
880 [[image:1656056303845-585.png]]
881
882
883 === 6.2.6  Installation Notice ===
884
885 (((
886 Do not power on while connect the cables. Double check the wiring before power on.
887 )))
888
889 (((
890 The sensor must be installed with below direction, towards North.
891 )))
892
893 [[image:image-20220624153901-3.png]]
894
895
896 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
897
898
899 (((
900 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
901 )))
902
903 (((
904 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
905 )))
906
907 (((
908 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
909 )))
910
911
912 === 6.3.1 Feature ===
913
914 * RS485 CO2, PM2.5, PM10 sensor
915 * NDIR to measure CO2 with Internal Temperature Compensation
916 * Laser Beam Scattering to PM2.5 and PM10
917
918 === 6.3.2 Specification ===
919
920 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
921 * CO2 resolution: 1ppm
922 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
923 * PM2.5/PM10 resolution: 1μg/m3
924 * Input Power: DC 7 ~~ 24v
925 * Preheat time: 3min
926 * Interface: RS485
927 * Working Temperature:
928 ** CO2: 0℃~50℃;
929 ** PM2.5/PM10: -30 ~~ 50℃
930 * Working Humidity:
931 ** PM2.5/PM10: 15~80%RH (no dewing)
932 ** CO2: 0~95%RH
933 * Power Consumption: 50mA@ 12v.
934
935 === 6.3.3 Dimension ===
936
937 [[image:1656056708366-230.png]]
938
939
940 === 6.3.4 Pin Mapping ===
941
942 [[image:1656056722648-743.png]]
943
944
945 === 6.3.5 Installation Notice ===
946
947 Do not power on while connect the cables. Double check the wiring before power on.
948
949 [[image:1656056751153-304.png]]
950
951 [[image:1656056766224-773.png]]
952
953
954 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
955
956
957 (((
958 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
959 )))
960
961 (((
962 WSS-04 has auto heating feature, this ensures measurement more reliable.
963 )))
964
965 (((
966 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
967 )))
968
969
970
971 === 6.4.1 Feature ===
972
973 * RS485 Rain/Snow detect sensor
974 * Surface heating to dry
975 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
976
977 === 6.4.2 Specification ===
978
979 * Detect if there is rain or snow
980 * Input Power: DC 12 ~~ 24v
981 * Interface: RS485
982 * Working Temperature: -30℃~70℃
983 * Working Humidity: 10~90%RH
984 * Power Consumption:
985 ** No heating: 12mA @ 12v,
986 ** heating: 94ma @ 12v.
987
988 === 6.4.3 Dimension ===
989
990 [[image:1656056844782-155.png]]
991
992
993 === 6.4.4 Pin Mapping ===
994
995 [[image:1656056855590-754.png]]
996
997
998 === 6.4.5 Installation Notice ===
999
1000 Do not power on while connect the cables. Double check the wiring before power on.
1001
1002
1003 (((
1004 Install with 15°degree.
1005 )))
1006
1007 [[image:1656056873783-780.png]]
1008
1009
1010 [[image:1656056883736-804.png]]
1011
1012
1013 === 6.4.6 Heating ===
1014
1015 (((
1016 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1017 )))
1018
1019
1020 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1021
1022
1023 (((
1024 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1025 )))
1026
1027 (((
1028 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1029 )))
1030
1031
1032 === 6.5.1 Feature ===
1033
1034 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1035
1036
1037
1038
1039
1040 === 6.5.2 Specification ===
1041
1042 * Input Power: DC 12 ~~ 24v
1043 * Interface: RS485
1044 * Temperature Sensor Spec:
1045 ** Range: -30 ~~ 70℃
1046 ** resolution 0.1℃
1047 ** Accuracy: ±0.5℃
1048 * Humidity Sensor Spec:
1049 ** Range: 0 ~~ 100% RH
1050 ** resolution 0.1 %RH
1051 ** Accuracy: 3% RH
1052 * Pressure Sensor Spec:
1053 ** Range: 10~1100hPa
1054 ** Resolution: 0.1hPa
1055 ** Accuracy: ±0.1hPa
1056 * Illuminate sensor:
1057 ** Range: 0~2/20/200kLux
1058 ** Resolution: 10 Lux
1059 ** Accuracy: ±3%FS
1060 * Working Temperature: -30℃~70℃
1061 * Working Humidity: 10~90%RH
1062 * Power Consumption: 4mA @ 12v
1063
1064
1065
1066
1067
1068 === 6.5.3 Dimension ===
1069
1070 [[image:1656057170639-522.png]]
1071
1072
1073 === 6.5.4 Pin Mapping ===
1074
1075 [[image:1656057181899-910.png]]
1076
1077
1078 === 6.5.5 Installation Notice ===
1079
1080 Do not power on while connect the cables. Double check the wiring before power on.
1081
1082 [[image:1656057199955-514.png]]
1083
1084
1085 [[image:1656057212438-475.png]]
1086
1087
1088 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1089
1090
1091 (((
1092 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1093 )))
1094
1095 (((
1096 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1097 )))
1098
1099 (((
1100 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1101 )))
1102
1103
1104
1105 === 6.6.1 Feature ===
1106
1107 * RS485 Total Solar Radiation sensor
1108 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1109 * Measure Reflected Radiation if sense area towards ground.
1110
1111
1112
1113
1114 === 6.6.2 Specification ===
1115
1116 * Input Power: DC 5 ~~ 24v
1117 * Interface: RS485
1118 * Detect spectrum: 0.3~3μm(300~3000nm)
1119 * Measure strength range: 0~2000W/m2
1120 * Resolution: 0.1W/m2
1121 * Accuracy: ±3%
1122 * Yearly Stability: ≤±2%
1123 * Cosine response: ≤7% (@ Sun angle 10°)
1124 * Temperature Effect: ±2%(-10℃~40℃)
1125 * Working Temperature: -40℃~70℃
1126 * Working Humidity: 10~90%RH
1127 * Power Consumption: 4mA @ 12v
1128
1129
1130
1131
1132
1133 === 6.6.3 Dimension ===
1134
1135 [[image:1656057348695-898.png]]
1136
1137
1138 === 6.6.4 Pin Mapping ===
1139
1140 [[image:1656057359343-744.png]]
1141
1142
1143 === 6.6.5 Installation Notice ===
1144
1145 Do not power on while connect the cables. Double check the wiring before power on.
1146
1147 [[image:1656057369259-804.png]]
1148
1149
1150 [[image:1656057377943-564.png]]
1151
1152
1153 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1154
1155
1156 (((
1157 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1158 )))
1159
1160 (((
1161 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1162 )))
1163
1164 (((
1165 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1166 )))
1167
1168
1169 === 6.7.1 Feature ===
1170
1171 (((
1172 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1173 )))
1174
1175 (((
1176 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1177 )))
1178
1179
1180 === 6.7.2 Specification ===
1181
1182 * Input Power: DC 5 ~~ 24v
1183 * Interface: RS485
1184 * Response Spectrum: 400~700nm
1185 * Measure range: 0~2500μmol/m2•s
1186 * Resolution: 1μmol/m2•s
1187 * Accuracy: ±2%
1188 * Yearly Stability: ≤±2%
1189 * Working Temperature: -30℃~75℃
1190 * Working Humidity: 10~90%RH
1191 * Power Consumption: 3mA @ 12v
1192
1193
1194
1195
1196
1197 === 6.7.3 Dimension ===
1198
1199 [[image:1656057538793-888.png]]
1200
1201
1202 === 6.7.4 Pin Mapping ===
1203
1204 [[image:1656057548116-203.png]]
1205
1206
1207 === 6.7.5 Installation Notice ===
1208
1209 Do not power on while connect the cables. Double check the wiring before power on.
1210
1211
1212 [[image:1656057557191-895.png]]
1213
1214
1215 [[image:1656057565783-251.png]]
1216
1217
1218 = 7. FAQ =
1219
1220 == 7.1 What else do I need to purchase to build Weather Station? ==
1221
1222 Below is the installation photo and structure:
1223
1224 [[image:1656057598349-319.png]]
1225
1226
1227 [[image:1656057608049-693.png]]
1228
1229
1230
1231 == 7.2 How to upgrade firmware for WSC1-L? ==
1232
1233 (((
1234 Firmware Location & Change log:
1235 )))
1236
1237 (((
1238 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1239 )))
1240
1241
1242 (((
1243 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1244 )))
1245
1246
1247 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1248
1249 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1250
1251
1252 == 7.4 Can I add my weather sensors? ==
1253
1254 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1255
1256
1257 = 8. Trouble Shooting =
1258
1259 == 8.1 AT Command input doesn't work ==
1260
1261 (((
1262 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1263 )))
1264
1265
1266 = 9. Order Info =
1267
1268 == 9.1 Main Process Unit ==
1269
1270 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1271
1272 (% style="color:blue" %)**XX**(%%): The default frequency band
1273
1274 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1275 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1276 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1277 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1278 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1279 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1280 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1281 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1282
1283
1284 == 9.2 Sensors ==
1285
1286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1287 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1288 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1289 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1290 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1291 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1292 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1293 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1294 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1295 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1296
1297
1298 = 10. Support =
1299
1300 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1301 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1302
1303
1304 = 11. Appendix I: Field Installation Photo =
1305
1306
1307 [[image:1656058346362-132.png]]
1308
1309 **Storage Battery**: 12v,12AH li battery
1310
1311
1312
1313 **Wind Speed/Direction**
1314
1315 [[image:1656058373174-421.png]]
1316
1317
1318
1319 **Total Solar Radiation sensor**
1320
1321 [[image:1656058397364-282.png]]
1322
1323
1324
1325 **PAR Sensor**
1326
1327 [[image:1656058416171-615.png]]
1328
1329
1330
1331 **CO2/PM2.5/PM10 3 in 1 sensor**
1332
1333 [[image:1656058441194-827.png]]
1334
1335
1336
1337 **Rain / Snow Detect**
1338
1339 [[image:1656058451456-166.png]]
1340
1341
1342
1343 **Rain Gauge**
1344
1345 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0