Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84
85 == 2.2 How it works? ==
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
107
108
109 [[image:1656042612899-422.png]]
110
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20220624115043-1.jpeg]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 **Add APP EUI in the application.**
126
127 [[image:1656042662694-311.png]]
128
129 [[image:1656042673910-429.png]]
130
131
132
133
134 **Choose Manually to add WSC1-L**
135
136 [[image:1656042695755-103.png]]
137
138
139
140 **Add APP KEY and DEV EUI**
141
142 [[image:1656042723199-746.png]]
143
144
145
146 (((
147 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
148 )))
149
150
151 [[image:1656042745346-283.png]]
152
153
154
155 == 2.4 Uplink Payload ==
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
165
166
167 (((
168 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
169 )))
170
171 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
172 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
173 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
174
175 [[image:1656043061044-343.png]]
176
177
178 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
179
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187
188 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
189
190 0x0100, Means: v1.0.0 version.
191
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223
224 ==== (% style="color:#037691" %)**BAT:**(%%) ====
225
226 (((
227 shows the battery voltage for WSC1-L MCU.
228 )))
229
230 (((
231 Ex1: 0x0BD6/1000 = 3.03 V
232 )))
233
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220624140352-2.png]]
298
299
300 (((
301 Below is an example payload:  [[image:image-20220624140615-3.png]]
302 )))
303
304 (((
305
306 )))
307
308 (((
309 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
310 )))
311
312 * (((
313 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
314 )))
315
316 (((
317 Uplink 1:  [[image:image-20220624140735-4.png]]
318 )))
319
320 (((
321
322 )))
323
324 (((
325 Uplink 2:  [[image:image-20220624140842-5.png]]
326 )))
327
328 (((
329
330 )))
331
332 * (((
333 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
334 )))
335
336 (((
337 Uplink 1:  [[image:image-20220624141025-6.png]]
338 )))
339
340 (((
341
342 )))
343
344 Uplink 2:  [[image:image-20220624141100-7.png]]
345
346
347
348
349 === 2.4.3 Decoder in TTN V3 ===
350
351 (((
352 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
353 )))
354
355 (((
356
357 )))
358
359 (((
360 Download decoder for suitable platform from:
361 )))
362
363 (((
364 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
365 )))
366
367 (((
368 and put as below:
369 )))
370
371 [[image:1656051152438-578.png]]
372
373
374
375 == 2.5 Show data on Application Server ==
376
377 (((
378 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
379 )))
380
381 (((
382
383 )))
384
385 (((
386 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
387 )))
388
389 (((
390 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
391 )))
392
393 [[image:1656051197172-131.png]]
394
395
396 **Add TagoIO:**
397
398 [[image:1656051223585-631.png]]
399
400
401 **Authorization:**
402
403 [[image:1656051248318-368.png]]
404
405
406 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
407
408 [[image:1656051277767-168.png]]
409
410
411
412 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
413
414 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
415
416 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
417 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
418
419 There are two kinds of commands to configure WSC1-L, they are:
420
421 * (% style="color:#4472c4" %)**General Commands**.
422
423 These commands are to configure:
424
425 * General system settings like: uplink interval.
426 * LoRaWAN protocol & radio related command.
427
428 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
429
430 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
431
432
433 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
434
435 These commands only valid for WSC1-L, as below:
436
437
438
439
440
441
442 == 3.1 Set Transmit Interval Time ==
443
444 Feature: Change LoRaWAN End Node Transmit Interval.
445
446 (% style="color:#037691" %)**AT Command: AT+TDC**
447
448 [[image:image-20220624142619-8.png]]
449
450
451 (% style="color:#037691" %)**Downlink Command: 0x01**
452
453 Format: Command Code (0x01) followed by 3 bytes time value.
454
455 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
456
457 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
458 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
459
460 == 3.2 Set Emergency Mode ==
461
462 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
463
464 (% style="color:#037691" %)**AT Command:**
465
466 [[image:image-20220624142956-9.png]]
467
468
469 (% style="color:#037691" %)**Downlink Command:**
470
471 * 0xE101     Same as: AT+ALARMMOD=1
472 * 0xE100     Same as: AT+ALARMMOD=0
473
474 == 3.3 Add or Delete RS485 Sensor ==
475
476 (((
477 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
478 )))
479
480 (((
481 (% style="color:#037691" %)**AT Command: **
482 )))
483
484 (((
485 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
486 )))
487
488 * (((
489 Type_Code range:  A1 ~~ A4
490 )))
491 * (((
492 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
493 )))
494 * (((
495 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
496 )))
497 * (((
498 Read_Length:  RS485 response frame length supposed to receive. Max can receive
499 )))
500 * (((
501 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
502 )))
503 * (((
504 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
505 )))
506 * (((
507 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
508 )))
509
510 (((
511 **Example:**
512 )))
513
514 (((
515 User need to change external sensor use the type code as address code.
516 )))
517
518 (((
519 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
520 )))
521
522 [[image:image-20220624143553-10.png]]
523
524
525 The response frame of the sensor is as follows:
526
527 [[image:image-20220624143618-11.png]]
528
529
530
531 **Then the following parameters should be:**
532
533 * Address_Code range: A1
534 * Query_Length: 8
535 * Query_Command: A103000000019CAA
536 * Read_Length: 8
537 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
538 * has_CRC: 1
539 * timeout: 1500 (Fill in the test according to the actual situation)
540
541 **So the input command is:**
542
543 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
544
545
546 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
547
548 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
549 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
550 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
551
552 **Related commands:**
553
554 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
555
556 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
557
558
559 (% style="color:#037691" %)**Downlink Command:  **
560
561 **delete custom sensor A1:**
562
563 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
564
565 **Remove all custom sensors**
566
567 * 0xE5FF  
568
569 == 3.4 RS485 Test Command ==
570
571 (% style="color:#037691" %)**AT Command:**
572
573 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
574 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
575 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
576 Send command to 485 sensor
577
578 Range : no more than 10 bytes
579 )))|(% style="width:85px" %)OK
580
581 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
582
583 AT+RSWRITE=0103000001840A
584
585
586 (% style="color:#037691" %)**Downlink Command:**
587
588 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
589
590 == 3.5 RS485 response timeout ==
591
592 Feature: Set or get extended time to receive 485 sensor data.
593
594 (% style="color:#037691" %)**AT Command:**
595
596 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
597 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
598 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
599 Set response timeout to:
600
601 Range : 0~~10000
602 )))|(% style="width:85px" %)OK
603
604 (% style="color:#037691" %)**Downlink Command:**
605
606 Format: Command Code (0xE0) followed by 3 bytes time value.
607
608 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
609
610 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
611 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
612
613 == 3.6 Set Sensor Type ==
614
615 (((
616 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
617 )))
618
619 (((
620 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
621 )))
622
623 [[image:image-20220624144904-12.png]]
624
625
626 (% style="color:#037691" %)**AT Command:**
627
628 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
629 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
630 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
631
632 Eg: The setting command **AT+STYPE=802212** means:
633
634 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
635 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
636 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
637 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
638 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
639 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
640 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
641
642 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
643
644
645 (% style="color:#037691" %)**Downlink Command:**
646
647 * 0xE400802212     Same as: AT+STYPE=80221
648
649 (% style="color:red" %)**Note:**
650
651 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
652
653
654
655
656 = 4. Power consumption and battery =
657
658 == 4.1 Total Power Consumption ==
659
660 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
661
662
663 == 4.2 Reduce power consumption ==
664
665 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
666
667
668 == 4.3 Battery ==
669
670 (((
671 All sensors are only power by external power source. If external power source is off. All sensor won't work.
672 )))
673
674 (((
675 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
676 )))
677
678
679 = 5. Main Process Unit WSC1-L =
680
681 == 5.1 Features ==
682
683 * Wall Attachable.
684 * LoRaWAN v1.0.3 Class A protocol.
685 * RS485 / Modbus protocol
686 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
687 * AT Commands to change parameters
688 * Remote configure parameters via LoRaWAN Downlink
689 * Firmware upgradable via program port
690 * Powered by external 12v battery
691 * Back up rechargeable 1000mAh battery
692 * IP Rating: IP65
693 * Support default sensors or 3rd party RS485 sensors
694
695 == 5.2 Power Consumption ==
696
697 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
698
699
700 == 5.3 Storage & Operation Temperature ==
701
702 -20°C to +60°C
703
704
705 == 5.4 Pin Mapping ==
706
707 [[image:1656054149793-239.png]]
708
709
710 == 5.5 Mechanical ==
711
712 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
713
714
715 == 5.6 Connect to RS485 Sensors ==
716
717 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
718
719
720 [[image:1656054389031-379.png]]
721
722
723 Hardware Design for the Converter Board please see:
724
725 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
726
727
728 = 6. Weather Sensors =
729
730 == 6.1 Rain Gauge ~-~- WSS-01 ==
731
732
733 (((
734 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
735 )))
736
737 (((
738 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
739 )))
740
741 (((
742 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
743 )))
744
745 (((
746 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
747 )))
748
749 (((
750 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
751 )))
752
753
754 === 6.1.1 Feature ===
755
756 * RS485 Rain Gauge
757 * Small dimension, easy to install
758 * Vents under funnel, avoid leaf or other things to avoid rain flow.
759 * ABS enclosure.
760 * Horizontal adjustable.
761
762 === 6.1.2 Specification ===
763
764 * Resolution: 0.2mm
765 * Accuracy: ±3%
766 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
767 * Input Power: DC 5~~24v
768 * Interface: RS485
769 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
770 * Working Humidity: <100% (no dewing)
771 * Power Consumption: 4mA @ 12v.
772
773 === 6.1.3 Dimension ===
774
775 [[image:1656054957406-980.png]]
776
777
778 === 6.1.4 Pin Mapping ===
779
780 [[image:1656054972828-692.png]]
781
782
783 === 6.1.5 Installation Notice ===
784
785 (((
786 Do not power on while connect the cables. Double check the wiring before power on.
787 )))
788
789 (((
790 Installation Photo as reference:
791 )))
792
793
794 (((
795 (% style="color:#4472c4" %)** Install on Ground:**
796 )))
797
798 (((
799 WSS-01 Rain Gauge include screws so can install in ground directly .
800 )))
801
802
803 (((
804 (% style="color:#4472c4" %)** Install on pole:**
805 )))
806
807 (((
808 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
809 )))
810
811 [[image:image-20220624152218-1.png||height="526" width="276"]]
812
813 WS-K2: Bracket Kit for Pole installation
814
815
816 WSSC-K2 dimension document, please see:
817
818 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
819
820
821 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
822
823 [[image:1656055444035-179.png]]
824
825 (((
826 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
827 )))
828
829 (((
830 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
831 )))
832
833 (((
834 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
835 )))
836
837
838 === 6.2.1 Feature ===
839
840 * RS485 wind speed / direction sensor
841 * PC enclosure, resist corrosion
842
843 === 6.2.2 Specification ===
844
845 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
846 * Wind direction range: 0 ~~ 360°
847 * Start wind speed: ≤0.3m/s
848 * Accuracy: ±(0.3+0.03V)m/s , ±1°
849 * Input Power: DC 5~~24v
850 * Interface: RS485
851 * Working Temperature: -30℃~70℃
852 * Working Humidity: <100% (no dewing)
853 * Power Consumption: 13mA ~~ 12v.
854 * Cable Length: 2 meters
855
856 === 6.2.3 Dimension ===
857
858 [[image:image-20220624152813-2.png]]
859
860
861 === 6.2.4 Pin Mapping ===
862
863 [[image:1656056281231-994.png]]
864
865
866 === 6.2.5  Angle Mapping ===
867
868 [[image:1656056303845-585.png]]
869
870
871 === 6.2.6  Installation Notice ===
872
873 (((
874 Do not power on while connect the cables. Double check the wiring before power on.
875 )))
876
877 (((
878 The sensor must be installed with below direction, towards North.
879 )))
880
881 [[image:image-20220624153901-3.png]]
882
883
884 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
885
886
887 (((
888 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
889 )))
890
891 (((
892 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
893 )))
894
895 (((
896 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
897 )))
898
899
900 === 6.3.1 Feature ===
901
902 * RS485 CO2, PM2.5, PM10 sensor
903 * NDIR to measure CO2 with Internal Temperature Compensation
904 * Laser Beam Scattering to PM2.5 and PM10
905
906 === 6.3.2 Specification ===
907
908 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
909 * CO2 resolution: 1ppm
910 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
911 * PM2.5/PM10 resolution: 1μg/m3
912 * Input Power: DC 7 ~~ 24v
913 * Preheat time: 3min
914 * Interface: RS485
915 * Working Temperature:
916 ** CO2: 0℃~50℃;
917 ** PM2.5/PM10: -30 ~~ 50℃
918 * Working Humidity:
919 ** PM2.5/PM10: 15~80%RH (no dewing)
920 ** CO2: 0~95%RH
921 * Power Consumption: 50mA@ 12v.
922
923 === 6.3.3 Dimension ===
924
925 [[image:1656056708366-230.png]]
926
927
928 === 6.3.4 Pin Mapping ===
929
930 [[image:1656056722648-743.png]]
931
932
933 === 6.3.5 Installation Notice ===
934
935 Do not power on while connect the cables. Double check the wiring before power on.
936
937 [[image:1656056751153-304.png]]
938
939 [[image:1656056766224-773.png]]
940
941
942 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
943
944
945 (((
946 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
947 )))
948
949 (((
950 WSS-04 has auto heating feature, this ensures measurement more reliable.
951 )))
952
953 (((
954 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
955 )))
956
957
958
959 === 6.4.1 Feature ===
960
961 * RS485 Rain/Snow detect sensor
962 * Surface heating to dry
963 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
964
965 === 6.4.2 Specification ===
966
967 * Detect if there is rain or snow
968 * Input Power: DC 12 ~~ 24v
969 * Interface: RS485
970 * Working Temperature: -30℃~70℃
971 * Working Humidity: 10~90%RH
972 * Power Consumption:
973 ** No heating: 12mA @ 12v,
974 ** heating: 94ma @ 12v.
975
976 === 6.4.3 Dimension ===
977
978 [[image:1656056844782-155.png]]
979
980
981 === 6.4.4 Pin Mapping ===
982
983 [[image:1656056855590-754.png]]
984
985
986 === 6.4.5 Installation Notice ===
987
988 Do not power on while connect the cables. Double check the wiring before power on.
989
990
991 (((
992 Install with 15°degree.
993 )))
994
995 [[image:1656056873783-780.png]]
996
997
998 [[image:1656056883736-804.png]]
999
1000
1001 === 6.4.6 Heating ===
1002
1003 (((
1004 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1005 )))
1006
1007
1008 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1009
1010
1011 (((
1012 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1013 )))
1014
1015 (((
1016 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1017 )))
1018
1019
1020 === 6.5.1 Feature ===
1021
1022 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1023
1024
1025
1026
1027
1028
1029 === 6.5.2 Specification ===
1030
1031 * Input Power: DC 12 ~~ 24v
1032 * Interface: RS485
1033 * Temperature Sensor Spec:
1034 ** Range: -30 ~~ 70℃
1035 ** resolution 0.1℃
1036 ** Accuracy: ±0.5℃
1037 * Humidity Sensor Spec:
1038 ** Range: 0 ~~ 100% RH
1039 ** resolution 0.1 %RH
1040 ** Accuracy: 3% RH
1041 * Pressure Sensor Spec:
1042 ** Range: 10~1100hPa
1043 ** Resolution: 0.1hPa
1044 ** Accuracy: ±0.1hPa
1045 * Illuminate sensor:
1046 ** Range: 0~2/20/200kLux
1047 ** Resolution: 10 Lux
1048 ** Accuracy: ±3%FS
1049 * Working Temperature: -30℃~70℃
1050 * Working Humidity: 10~90%RH
1051 * Power Consumption: 4mA @ 12v
1052
1053
1054
1055
1056
1057
1058 === 6.5.3 Dimension ===
1059
1060 [[image:1656057170639-522.png]]
1061
1062
1063 === 6.5.4 Pin Mapping ===
1064
1065 [[image:1656057181899-910.png]]
1066
1067
1068 === 6.5.5 Installation Notice ===
1069
1070 Do not power on while connect the cables. Double check the wiring before power on.
1071
1072 [[image:1656057199955-514.png]]
1073
1074
1075 [[image:1656057212438-475.png]]
1076
1077
1078 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1079
1080
1081 (((
1082 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1083 )))
1084
1085 (((
1086 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1087 )))
1088
1089 (((
1090 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1091 )))
1092
1093
1094
1095 === 6.6.1 Feature ===
1096
1097 * RS485 Total Solar Radiation sensor
1098 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1099 * Measure Reflected Radiation if sense area towards ground.
1100
1101
1102
1103
1104
1105 === 6.6.2 Specification ===
1106
1107 * Input Power: DC 5 ~~ 24v
1108 * Interface: RS485
1109 * Detect spectrum: 0.3~3μm(300~3000nm)
1110 * Measure strength range: 0~2000W/m2
1111 * Resolution: 0.1W/m2
1112 * Accuracy: ±3%
1113 * Yearly Stability: ≤±2%
1114 * Cosine response: ≤7% (@ Sun angle 10°)
1115 * Temperature Effect: ±2%(-10℃~40℃)
1116 * Working Temperature: -40℃~70℃
1117 * Working Humidity: 10~90%RH
1118 * Power Consumption: 4mA @ 12v
1119
1120
1121
1122
1123
1124
1125 === 6.6.3 Dimension ===
1126
1127 [[image:1656057348695-898.png]]
1128
1129
1130 === 6.6.4 Pin Mapping ===
1131
1132 [[image:1656057359343-744.png]]
1133
1134
1135 === 6.6.5 Installation Notice ===
1136
1137 Do not power on while connect the cables. Double check the wiring before power on.
1138
1139 [[image:1656057369259-804.png]]
1140
1141
1142 [[image:1656057377943-564.png]]
1143
1144
1145 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1146
1147
1148 (((
1149 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1150 )))
1151
1152 (((
1153 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1154 )))
1155
1156 (((
1157 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1158 )))
1159
1160
1161 === 6.7.1 Feature ===
1162
1163 (((
1164 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1165 )))
1166
1167 (((
1168 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1169 )))
1170
1171
1172 === 6.7.2 Specification ===
1173
1174 * Input Power: DC 5 ~~ 24v
1175 * Interface: RS485
1176 * Response Spectrum: 400~700nm
1177 * Measure range: 0~2500μmol/m2•s
1178 * Resolution: 1μmol/m2•s
1179 * Accuracy: ±2%
1180 * Yearly Stability: ≤±2%
1181 * Working Temperature: -30℃~75℃
1182 * Working Humidity: 10~90%RH
1183 * Power Consumption: 3mA @ 12v
1184
1185
1186
1187
1188
1189
1190 === 6.7.3 Dimension ===
1191
1192 [[image:1656057538793-888.png]]
1193
1194
1195 === 6.7.4 Pin Mapping ===
1196
1197 [[image:1656057548116-203.png]]
1198
1199
1200 === 6.7.5 Installation Notice ===
1201
1202 Do not power on while connect the cables. Double check the wiring before power on.
1203
1204
1205 [[image:1656057557191-895.png]]
1206
1207
1208 [[image:1656057565783-251.png]]
1209
1210
1211 = 7. FAQ =
1212
1213 == 7.1 What else do I need to purchase to build Weather Station? ==
1214
1215 Below is the installation photo and structure:
1216
1217 [[image:1656057598349-319.png]]
1218
1219
1220 [[image:1656057608049-693.png]]
1221
1222
1223
1224 == 7.2 How to upgrade firmware for WSC1-L? ==
1225
1226 (((
1227 Firmware Location & Change log:
1228 )))
1229
1230 (((
1231 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1232 )))
1233
1234
1235 (((
1236 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1237 )))
1238
1239
1240 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1241
1242 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1243
1244
1245 == 7.4 Can I add my weather sensors? ==
1246
1247 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1248
1249
1250 = 8. Trouble Shooting =
1251
1252 == 8.1 AT Command input doesn't work ==
1253
1254 (((
1255 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1256 )))
1257
1258
1259 = 9. Order Info =
1260
1261 == 9.1 Main Process Unit ==
1262
1263 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1264
1265 (% style="color:blue" %)**XX**(%%): The default frequency band
1266
1267 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1268 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1269 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1270 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1271 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1272 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1273 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1274 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1275
1276
1277
1278 == 9.2 Sensors ==
1279
1280 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1281 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1282 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1283 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1284 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1285 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1286 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1287 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1288 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1289 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1290
1291
1292
1293 = 10. Support =
1294
1295 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1296 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1297
1298
1299
1300 = 11. Appendix I: Field Installation Photo =
1301
1302
1303 [[image:1656058346362-132.png]]
1304
1305 **Storage Battery**: 12v,12AH li battery
1306
1307
1308
1309 **Wind Speed/Direction**
1310
1311 [[image:1656058373174-421.png]]
1312
1313
1314
1315 **Total Solar Radiation sensor**
1316
1317 [[image:1656058397364-282.png]]
1318
1319
1320
1321 **PAR Sensor**
1322
1323 [[image:1656058416171-615.png]]
1324
1325
1326
1327 **CO2/PM2.5/PM10 3 in 1 sensor**
1328
1329 [[image:1656058441194-827.png]]
1330
1331
1332
1333 **Rain / Snow Detect**
1334
1335 [[image:1656058451456-166.png]]
1336
1337
1338
1339 **Rain Gauge**
1340
1341 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0