Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81 == 2.2 How it works? ==
82
83 (((
84 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
85 )))
86
87
88 (((
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90 )))
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100 == 2.3 Example to use for LoRaWAN network ==
101
102 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
103
104
105 [[image:1656042612899-422.png]]
106
107
108
109 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
110
111
112 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
113
114 Each WSC1-L is shipped with a sticker with the default device EUI as below:
115
116 [[image:image-20220624115043-1.jpeg]]
117
118
119 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
120
121 **Add APP EUI in the application.**
122
123 [[image:1656042662694-311.png]]
124
125 [[image:1656042673910-429.png]]
126
127
128
129
130 **Choose Manually to add WSC1-L**
131
132 [[image:1656042695755-103.png]]
133
134
135
136 **Add APP KEY and DEV EUI**
137
138 [[image:1656042723199-746.png]]
139
140
141
142 (((
143 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
144 )))
145
146
147 [[image:1656042745346-283.png]]
148
149
150
151 == 2.4 Uplink Payload ==
152
153 Uplink payloads include two types: Valid Sensor Value and other status / control command.
154
155 * Valid Sensor Value: Use FPORT=2
156 * Other control command: Use FPORT other than 2.
157
158 === 2.4.1 Uplink FPORT~=5, Device Status ===
159
160 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
161
162
163 (((
164 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
165 )))
166
167 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
168 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
169 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
170
171 [[image:1656043061044-343.png]]
172
173
174 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
175
176
177
178 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
179
180 For WSC1-L, this value is 0x0D.
181
182
183
184 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
185
186 0x0100, Means: v1.0.0 version.
187
188
189
190 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
191
192 *0x01: EU868
193
194 *0x02: US915
195
196 *0x03: IN865
197
198 *0x04: AU915
199
200 *0x05: KZ865
201
202 *0x06: RU864
203
204 *0x07: AS923
205
206 *0x08: AS923-1
207
208 *0x09: AS923-2
209
210 *0x0a: AS923-3
211
212
213
214 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
215
216 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
217
218
219
220 ==== (% style="color:#037691" %)**BAT:**(%%) ====
221
222 (((
223 shows the battery voltage for WSC1-L MCU.
224 )))
225
226 (((
227 Ex1: 0x0BD6/1000 = 3.03 V
228 )))
229
230
231
232 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
233
234 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
235 |Byte3|Byte2|Byte1
236
237 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
238
239 [[image:image-20220624134713-1.png]]
240
241
242 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
243
244 External sensors detected by WSC1-L include :
245
246 custom sensor A1,
247
248 PAR sensor (WSS-07),
249
250 Total Solar Radiation sensor (WSS-06),
251
252 CO2/PM2.5/PM10 (WSS-03),
253
254 Wind Speed/Direction (WSS-02)
255
256
257 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
258
259 (% style="color:#037691" %)**Downlink:0x26 01**
260
261 [[image:1656049673488-415.png]]
262
263
264
265 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
266
267 (((
268 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
269 )))
270
271 (((
272 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
273 )))
274
275
276 (((
277 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
278 )))
279
280
281 (% style="color:#4472c4" %)** Uplink Payload**:
282
283 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
284 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
285
286 (% style="color:#4472c4" %)** Sensor Segment Define**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
289 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
290
291 (% style="color:#4472c4" %)**Sensor Type Table:**
292
293 [[image:image-20220624140352-2.png]]
294
295
296 (((
297 Below is an example payload:  [[image:image-20220624140615-3.png]]
298 )))
299
300 (((
301
302 )))
303
304 (((
305 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
306 )))
307
308 * (((
309 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
310 )))
311
312 (((
313 Uplink 1:  [[image:image-20220624140735-4.png]]
314 )))
315
316 (((
317
318 )))
319
320 (((
321 Uplink 2:  [[image:image-20220624140842-5.png]]
322 )))
323
324 (((
325
326 )))
327
328 * (((
329 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
330 )))
331
332 (((
333 Uplink 1:  [[image:image-20220624141025-6.png]]
334 )))
335
336 (((
337
338 )))
339
340 Uplink 2:  [[image:image-20220624141100-7.png]]
341
342
343
344
345 === 2.4.3 Decoder in TTN V3 ===
346
347 (((
348 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
349 )))
350
351 (((
352
353 )))
354
355 (((
356 Download decoder for suitable platform from:
357 )))
358
359 (((
360 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
361 )))
362
363 (((
364 and put as below:
365 )))
366
367 [[image:1656051152438-578.png]]
368
369
370
371 == 2.5 Show data on Application Server ==
372
373 (((
374 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
375 )))
376
377 (((
378
379 )))
380
381 (((
382 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
383 )))
384
385 (((
386 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
387 )))
388
389 [[image:1656051197172-131.png]]
390
391
392 **Add TagoIO:**
393
394 [[image:1656051223585-631.png]]
395
396
397 **Authorization:**
398
399 [[image:1656051248318-368.png]]
400
401
402 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
403
404 [[image:1656051277767-168.png]]
405
406
407
408 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
409
410 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
411
412 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
413 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
414
415 There are two kinds of commands to configure WSC1-L, they are:
416
417 * (% style="color:#4472c4" %)**General Commands**.
418
419 These commands are to configure:
420
421 * General system settings like: uplink interval.
422 * LoRaWAN protocol & radio related command.
423
424 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
425
426 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
427
428
429 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
430
431 These commands only valid for WSC1-L, as below:
432
433
434
435
436
437
438 == 3.1 Set Transmit Interval Time ==
439
440 Feature: Change LoRaWAN End Node Transmit Interval.
441
442 (% style="color:#037691" %)**AT Command: AT+TDC**
443
444 [[image:image-20220624142619-8.png]]
445
446
447 (% style="color:#037691" %)**Downlink Command: 0x01**
448
449 Format: Command Code (0x01) followed by 3 bytes time value.
450
451 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
452
453 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
454 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
455
456 == 3.2 Set Emergency Mode ==
457
458 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
459
460 (% style="color:#037691" %)**AT Command:**
461
462 [[image:image-20220624142956-9.png]]
463
464
465 (% style="color:#037691" %)**Downlink Command:**
466
467 * 0xE101     Same as: AT+ALARMMOD=1
468 * 0xE100     Same as: AT+ALARMMOD=0
469
470 == 3.3 Add or Delete RS485 Sensor ==
471
472 (((
473 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
474 )))
475
476 (((
477 (% style="color:#037691" %)**AT Command: **
478 )))
479
480 (((
481 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
482 )))
483
484 * (((
485 Type_Code range:  A1 ~~ A4
486 )))
487 * (((
488 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
489 )))
490 * (((
491 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
492 )))
493 * (((
494 Read_Length:  RS485 response frame length supposed to receive. Max can receive
495 )))
496 * (((
497 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
498 )))
499 * (((
500 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
501 )))
502 * (((
503 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
504 )))
505
506 (((
507 **Example:**
508 )))
509
510 (((
511 User need to change external sensor use the type code as address code.
512 )))
513
514 (((
515 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
516 )))
517
518 [[image:image-20220624143553-10.png]]
519
520
521 The response frame of the sensor is as follows:
522
523 [[image:image-20220624143618-11.png]]
524
525
526
527 **Then the following parameters should be:**
528
529 * Address_Code range: A1
530 * Query_Length: 8
531 * Query_Command: A103000000019CAA
532 * Read_Length: 8
533 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
534 * has_CRC: 1
535 * timeout: 1500 (Fill in the test according to the actual situation)
536
537 **So the input command is:**
538
539 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
540
541
542 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
543
544 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
545 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
546 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
547
548 **Related commands:**
549
550 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
551
552 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
553
554
555 (% style="color:#037691" %)**Downlink Command:  **
556
557 **delete custom sensor A1:**
558
559 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
560
561 **Remove all custom sensors**
562
563 * 0xE5FF  
564
565 == 3.4 RS485 Test Command ==
566
567 (% style="color:#037691" %)**AT Command:**
568
569 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
570 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
571 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
572 Send command to 485 sensor
573
574 Range : no more than 10 bytes
575 )))|(% style="width:85px" %)OK
576
577 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
578
579 AT+RSWRITE=0103000001840A
580
581
582 (% style="color:#037691" %)**Downlink Command:**
583
584 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
585
586 == 3.5 RS485 response timeout ==
587
588 Feature: Set or get extended time to receive 485 sensor data.
589
590 (% style="color:#037691" %)**AT Command:**
591
592 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
593 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
594 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
595 Set response timeout to:
596
597 Range : 0~~10000
598 )))|(% style="width:85px" %)OK
599
600 (% style="color:#037691" %)**Downlink Command:**
601
602 Format: Command Code (0xE0) followed by 3 bytes time value.
603
604 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
605
606 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
607 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
608
609 == 3.6 Set Sensor Type ==
610
611 (((
612 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
613 )))
614
615 (((
616 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
617 )))
618
619 [[image:image-20220624144904-12.png]]
620
621
622 (% style="color:#037691" %)**AT Command:**
623
624 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
625 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
626 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
627
628 Eg: The setting command **AT+STYPE=802212** means:
629
630 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
631 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
632 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
633 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
634 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
635 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
636 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
637
638 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
639
640
641 (% style="color:#037691" %)**Downlink Command:**
642
643 * 0xE400802212     Same as: AT+STYPE=80221
644
645 (% style="color:red" %)**Note:**
646
647 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
648
649
650
651
652 = 4. Power consumption and battery =
653
654 == 4.1 Total Power Consumption ==
655
656 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
657
658
659 == 4.2 Reduce power consumption ==
660
661 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
662
663
664 == 4.3 Battery ==
665
666 (((
667 All sensors are only power by external power source. If external power source is off. All sensor won't work.
668 )))
669
670 (((
671 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
672 )))
673
674
675 = 5. Main Process Unit WSC1-L =
676
677 == 5.1 Features ==
678
679 * Wall Attachable.
680 * LoRaWAN v1.0.3 Class A protocol.
681 * RS485 / Modbus protocol
682 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
683 * AT Commands to change parameters
684 * Remote configure parameters via LoRaWAN Downlink
685 * Firmware upgradable via program port
686 * Powered by external 12v battery
687 * Back up rechargeable 1000mAh battery
688 * IP Rating: IP65
689 * Support default sensors or 3rd party RS485 sensors
690
691 == 5.2 Power Consumption ==
692
693 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
694
695
696 == 5.3 Storage & Operation Temperature ==
697
698 -20°C to +60°C
699
700
701 == 5.4 Pin Mapping ==
702
703 [[image:1656054149793-239.png]]
704
705
706 == 5.5 Mechanical ==
707
708 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
709
710
711 == 5.6 Connect to RS485 Sensors ==
712
713 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
714
715
716 [[image:1656054389031-379.png]]
717
718
719 Hardware Design for the Converter Board please see:
720
721 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
722
723
724 = 6. Weather Sensors =
725
726 == 6.1 Rain Gauge ~-~- WSS-01 ==
727
728
729 (((
730 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
731 )))
732
733 (((
734 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
735 )))
736
737 (((
738 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
739 )))
740
741 (((
742 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
743 )))
744
745 (((
746 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
747 )))
748
749
750 === 6.1.1 Feature ===
751
752 * RS485 Rain Gauge
753 * Small dimension, easy to install
754 * Vents under funnel, avoid leaf or other things to avoid rain flow.
755 * ABS enclosure.
756 * Horizontal adjustable.
757
758 === 6.1.2 Specification ===
759
760 * Resolution: 0.2mm
761 * Accuracy: ±3%
762 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
763 * Input Power: DC 5~~24v
764 * Interface: RS485
765 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
766 * Working Humidity: <100% (no dewing)
767 * Power Consumption: 4mA @ 12v.
768
769 === 6.1.3 Dimension ===
770
771 [[image:1656054957406-980.png]]
772
773
774 === 6.1.4 Pin Mapping ===
775
776 [[image:1656054972828-692.png]]
777
778
779 === 6.1.5 Installation Notice ===
780
781 (((
782 Do not power on while connect the cables. Double check the wiring before power on.
783 )))
784
785 (((
786 Installation Photo as reference:
787 )))
788
789
790 (((
791 (% style="color:#4472c4" %)** Install on Ground:**
792 )))
793
794 (((
795 WSS-01 Rain Gauge include screws so can install in ground directly .
796 )))
797
798
799 (((
800 (% style="color:#4472c4" %)** Install on pole:**
801 )))
802
803 (((
804 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
805 )))
806
807 [[image:image-20220624152218-1.png||height="526" width="276"]]
808
809 WS-K2: Bracket Kit for Pole installation
810
811
812 WSSC-K2 dimension document, please see:
813
814 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
815
816
817 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
818
819 [[image:1656055444035-179.png]]
820
821 (((
822 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
823 )))
824
825 (((
826 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
827 )))
828
829 (((
830 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
831 )))
832
833
834 === 6.2.1 Feature ===
835
836 * RS485 wind speed / direction sensor
837 * PC enclosure, resist corrosion
838
839 === 6.2.2 Specification ===
840
841 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
842 * Wind direction range: 0 ~~ 360°
843 * Start wind speed: ≤0.3m/s
844 * Accuracy: ±(0.3+0.03V)m/s , ±1°
845 * Input Power: DC 5~~24v
846 * Interface: RS485
847 * Working Temperature: -30℃~70℃
848 * Working Humidity: <100% (no dewing)
849 * Power Consumption: 13mA ~~ 12v.
850 * Cable Length: 2 meters
851
852 === 6.2.3 Dimension ===
853
854 [[image:image-20220624152813-2.png]]
855
856
857 === 6.2.4 Pin Mapping ===
858
859 [[image:1656056281231-994.png]]
860
861
862 === 6.2.5  Angle Mapping ===
863
864 [[image:1656056303845-585.png]]
865
866
867 === 6.2.6  Installation Notice ===
868
869 (((
870 Do not power on while connect the cables. Double check the wiring before power on.
871 )))
872
873 (((
874 The sensor must be installed with below direction, towards North.
875 )))
876
877 [[image:image-20220624153901-3.png]]
878
879
880 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
881
882
883 (((
884 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
885 )))
886
887 (((
888 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
889 )))
890
891 (((
892 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
893 )))
894
895
896 === 6.3.1 Feature ===
897
898 * RS485 CO2, PM2.5, PM10 sensor
899 * NDIR to measure CO2 with Internal Temperature Compensation
900 * Laser Beam Scattering to PM2.5 and PM10
901
902 === 6.3.2 Specification ===
903
904 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
905 * CO2 resolution: 1ppm
906 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
907 * PM2.5/PM10 resolution: 1μg/m3
908 * Input Power: DC 7 ~~ 24v
909 * Preheat time: 3min
910 * Interface: RS485
911 * Working Temperature:
912 ** CO2: 0℃~50℃;
913 ** PM2.5/PM10: -30 ~~ 50℃
914 * Working Humidity:
915 ** PM2.5/PM10: 15~80%RH (no dewing)
916 ** CO2: 0~95%RH
917 * Power Consumption: 50mA@ 12v.
918
919 === 6.3.3 Dimension ===
920
921 [[image:1656056708366-230.png]]
922
923
924 === 6.3.4 Pin Mapping ===
925
926 [[image:1656056722648-743.png]]
927
928
929 === 6.3.5 Installation Notice ===
930
931 Do not power on while connect the cables. Double check the wiring before power on.
932
933 [[image:1656056751153-304.png]]
934
935 [[image:1656056766224-773.png]]
936
937
938 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
939
940
941 (((
942 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
943 )))
944
945 (((
946 WSS-04 has auto heating feature, this ensures measurement more reliable.
947 )))
948
949 (((
950 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
951 )))
952
953
954
955 === 6.4.1 Feature ===
956
957 * RS485 Rain/Snow detect sensor
958 * Surface heating to dry
959 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
960
961 === 6.4.2 Specification ===
962
963 * Detect if there is rain or snow
964 * Input Power: DC 12 ~~ 24v
965 * Interface: RS485
966 * Working Temperature: -30℃~70℃
967 * Working Humidity: 10~90%RH
968 * Power Consumption:
969 ** No heating: 12mA @ 12v,
970 ** heating: 94ma @ 12v.
971
972 === 6.4.3 Dimension ===
973
974 [[image:1656056844782-155.png]]
975
976
977 === 6.4.4 Pin Mapping ===
978
979 [[image:1656056855590-754.png]]
980
981
982 === 6.4.5 Installation Notice ===
983
984 Do not power on while connect the cables. Double check the wiring before power on.
985
986
987 (((
988 Install with 15°degree.
989 )))
990
991 [[image:1656056873783-780.png]]
992
993
994 [[image:1656056883736-804.png]]
995
996
997 === 6.4.6 Heating ===
998
999 (((
1000 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1001 )))
1002
1003
1004 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1005
1006
1007 (((
1008 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1009 )))
1010
1011 (((
1012 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1013 )))
1014
1015
1016 === 6.5.1 Feature ===
1017
1018 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1019
1020
1021
1022
1023
1024
1025
1026 === 6.5.2 Specification ===
1027
1028 * Input Power: DC 12 ~~ 24v
1029 * Interface: RS485
1030 * Temperature Sensor Spec:
1031 ** Range: -30 ~~ 70℃
1032 ** resolution 0.1℃
1033 ** Accuracy: ±0.5℃
1034 * Humidity Sensor Spec:
1035 ** Range: 0 ~~ 100% RH
1036 ** resolution 0.1 %RH
1037 ** Accuracy: 3% RH
1038 * Pressure Sensor Spec:
1039 ** Range: 10~1100hPa
1040 ** Resolution: 0.1hPa
1041 ** Accuracy: ±0.1hPa
1042 * Illuminate sensor:
1043 ** Range: 0~2/20/200kLux
1044 ** Resolution: 10 Lux
1045 ** Accuracy: ±3%FS
1046 * Working Temperature: -30℃~70℃
1047 * Working Humidity: 10~90%RH
1048 * Power Consumption: 4mA @ 12v
1049
1050
1051
1052
1053
1054
1055
1056 === 6.5.3 Dimension ===
1057
1058 [[image:1656057170639-522.png]]
1059
1060
1061 === 6.5.4 Pin Mapping ===
1062
1063 [[image:1656057181899-910.png]]
1064
1065
1066 === 6.5.5 Installation Notice ===
1067
1068 Do not power on while connect the cables. Double check the wiring before power on.
1069
1070 [[image:1656057199955-514.png]]
1071
1072
1073 [[image:1656057212438-475.png]]
1074
1075
1076 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1077
1078
1079 (((
1080 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1081 )))
1082
1083 (((
1084 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1085 )))
1086
1087 (((
1088 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1089 )))
1090
1091
1092
1093 === 6.6.1 Feature ===
1094
1095 * RS485 Total Solar Radiation sensor
1096 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1097 * Measure Reflected Radiation if sense area towards ground.
1098
1099
1100
1101
1102
1103
1104 === 6.6.2 Specification ===
1105
1106 * Input Power: DC 5 ~~ 24v
1107 * Interface: RS485
1108 * Detect spectrum: 0.3~3μm(300~3000nm)
1109 * Measure strength range: 0~2000W/m2
1110 * Resolution: 0.1W/m2
1111 * Accuracy: ±3%
1112 * Yearly Stability: ≤±2%
1113 * Cosine response: ≤7% (@ Sun angle 10°)
1114 * Temperature Effect: ±2%(-10℃~40℃)
1115 * Working Temperature: -40℃~70℃
1116 * Working Humidity: 10~90%RH
1117 * Power Consumption: 4mA @ 12v
1118
1119
1120
1121
1122
1123
1124
1125 === 6.6.3 Dimension ===
1126
1127 [[image:1656057348695-898.png]]
1128
1129
1130 === 6.6.4 Pin Mapping ===
1131
1132 [[image:1656057359343-744.png]]
1133
1134
1135 === 6.6.5 Installation Notice ===
1136
1137 Do not power on while connect the cables. Double check the wiring before power on.
1138
1139 [[image:1656057369259-804.png]]
1140
1141
1142 [[image:1656057377943-564.png]]
1143
1144
1145 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1146
1147
1148 (((
1149 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1150 )))
1151
1152 (((
1153 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1154 )))
1155
1156 (((
1157 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1158 )))
1159
1160
1161 === 6.7.1 Feature ===
1162
1163 (((
1164 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1165 )))
1166
1167 (((
1168 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1169 )))
1170
1171
1172 === 6.7.2 Specification ===
1173
1174 * Input Power: DC 5 ~~ 24v
1175 * Interface: RS485
1176 * Response Spectrum: 400~700nm
1177 * Measure range: 0~2500μmol/m2•s
1178 * Resolution: 1μmol/m2•s
1179 * Accuracy: ±2%
1180 * Yearly Stability: ≤±2%
1181 * Working Temperature: -30℃~75℃
1182 * Working Humidity: 10~90%RH
1183 * Power Consumption: 3mA @ 12v
1184
1185
1186
1187
1188
1189
1190
1191 === 6.7.3 Dimension ===
1192
1193 [[image:1656057538793-888.png]]
1194
1195
1196 === 6.7.4 Pin Mapping ===
1197
1198 [[image:1656057548116-203.png]]
1199
1200
1201 === 6.7.5 Installation Notice ===
1202
1203 Do not power on while connect the cables. Double check the wiring before power on.
1204
1205
1206 [[image:1656057557191-895.png]]
1207
1208
1209 [[image:1656057565783-251.png]]
1210
1211
1212 = 7. FAQ =
1213
1214 == 7.1 What else do I need to purchase to build Weather Station? ==
1215
1216 Below is the installation photo and structure:
1217
1218 [[image:1656057598349-319.png]]
1219
1220
1221 [[image:1656057608049-693.png]]
1222
1223
1224
1225 == 7.2 How to upgrade firmware for WSC1-L? ==
1226
1227 (((
1228 Firmware Location & Change log:
1229 )))
1230
1231 (((
1232 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1233 )))
1234
1235
1236 (((
1237 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1238 )))
1239
1240
1241 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1242
1243 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1244
1245
1246 == 7.4 Can I add my weather sensors? ==
1247
1248 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1249
1250
1251 = 8. Trouble Shooting =
1252
1253 == 8.1 AT Command input doesn't work ==
1254
1255 (((
1256 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1257 )))
1258
1259
1260 = 9. Order Info =
1261
1262 == 9.1 Main Process Unit ==
1263
1264 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1265
1266 (% style="color:blue" %)**XX**(%%): The default frequency band
1267
1268 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1269 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1270 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1271 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1272 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1273 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1274 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1275 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1276
1277
1278
1279
1280 == 9.2 Sensors ==
1281
1282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1283 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1284 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1285 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1286 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1287 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1288 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1289 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1290 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1291 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1292
1293
1294
1295
1296 = 10. Support =
1297
1298 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1299 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1300
1301
1302
1303
1304 = 11. Appendix I: Field Installation Photo =
1305
1306
1307 [[image:1656058346362-132.png]]
1308
1309 **Storage Battery**: 12v,12AH li battery
1310
1311
1312
1313 **Wind Speed/Direction**
1314
1315 [[image:1656058373174-421.png]]
1316
1317
1318
1319 **Total Solar Radiation sensor**
1320
1321 [[image:1656058397364-282.png]]
1322
1323
1324
1325 **PAR Sensor**
1326
1327 [[image:1656058416171-615.png]]
1328
1329
1330
1331 **CO2/PM2.5/PM10 3 in 1 sensor**
1332
1333 [[image:1656058441194-827.png]]
1334
1335
1336
1337 **Rain / Snow Detect**
1338
1339 [[image:1656058451456-166.png]]
1340
1341
1342
1343 **Rain Gauge**
1344
1345 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0