Version 80.1 by Xiaoling on 2022/06/24 17:56

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (((
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146 )))
147
148
149 [[image:1656042745346-283.png]]
150
151
152
153 == 2.4 Uplink Payload ==
154
155 Uplink payloads include two types: Valid Sensor Value and other status / control command.
156
157 * Valid Sensor Value: Use FPORT=2
158 * Other control command: Use FPORT other than 2.
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
238 |Byte3|Byte2|Byte1
239
240 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
241
242 [[image:image-20220624134713-1.png]]
243
244
245 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
246
247 External sensors detected by WSC1-L include :
248
249 custom sensor A1,
250
251 PAR sensor (WSS-07),
252
253 Total Solar Radiation sensor (WSS-06),
254
255 CO2/PM2.5/PM10 (WSS-03),
256
257 Wind Speed/Direction (WSS-02)
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:1656049673488-415.png]]
265
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270 (((
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
272 )))
273
274 (((
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276 )))
277
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
292 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
293
294 (% style="color:#4472c4" %)**Sensor Type Table:**
295
296 [[image:image-20220624140352-2.png]]
297
298
299 (((
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301 )))
302
303 (((
304
305 )))
306
307 (((
308 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
309 )))
310
311 * (((
312 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
313 )))
314
315 (((
316 Uplink 1:  [[image:image-20220624140735-4.png]]
317 )))
318
319 (((
320
321 )))
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325 )))
326
327 (((
328
329 )))
330
331 * (((
332 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
333 )))
334
335 (((
336 Uplink 1:  [[image:image-20220624141025-6.png]]
337 )))
338
339 (((
340
341 )))
342
343 Uplink 2:  [[image:image-20220624141100-7.png]]
344
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 (((
351 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
352 )))
353
354 (((
355
356 )))
357
358 (((
359 Download decoder for suitable platform from:
360 )))
361
362 (((
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364 )))
365
366 (((
367 and put as below:
368 )))
369
370 [[image:1656051152438-578.png]]
371
372
373
374 == 2.5 Show data on Application Server ==
375
376 (((
377 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
378 )))
379
380 (((
381
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
386 )))
387
388 (((
389 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
390 )))
391
392 [[image:1656051197172-131.png]]
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400 **Authorization:**
401
402 [[image:1656051248318-368.png]]
403
404
405 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
406
407 [[image:1656051277767-168.png]]
408
409
410
411 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
412
413 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
414
415 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
416 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
417
418 There are two kinds of commands to configure WSC1-L, they are:
419
420 * (% style="color:#4472c4" %)**General Commands**.
421
422 These commands are to configure:
423
424 * General system settings like: uplink interval.
425 * LoRaWAN protocol & radio related command.
426
427 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
428
429 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
430
431
432 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
433
434 These commands only valid for WSC1-L, as below:
435
436
437
438
439
440
441 == 3.1 Set Transmit Interval Time ==
442
443 Feature: Change LoRaWAN End Node Transmit Interval.
444
445 (% style="color:#037691" %)**AT Command: AT+TDC**
446
447 [[image:image-20220624142619-8.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command: 0x01**
451
452 Format: Command Code (0x01) followed by 3 bytes time value.
453
454 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
455
456 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
457 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
458
459
460 == 3.2 Set Emergency Mode ==
461
462 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
463
464 (% style="color:#037691" %)**AT Command:**
465
466 [[image:image-20220624142956-9.png]]
467
468
469 (% style="color:#037691" %)**Downlink Command:**
470
471 * 0xE101     Same as: AT+ALARMMOD=1
472 * 0xE100     Same as: AT+ALARMMOD=0
473
474
475 == 3.3 Add or Delete RS485 Sensor ==
476
477 (((
478 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
479 )))
480
481 (((
482 (% style="color:#037691" %)**AT Command: **
483 )))
484
485 (((
486 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
487 )))
488
489 * (((
490 Type_Code range:  A1 ~~ A4
491 )))
492 * (((
493 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
494 )))
495 * (((
496 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
497 )))
498 * (((
499 Read_Length:  RS485 response frame length supposed to receive. Max can receive
500 )))
501 * (((
502 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
503 )))
504 * (((
505 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
506 )))
507 * (((
508 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
509 )))
510
511 (((
512 **Example:**
513 )))
514
515 (((
516 User need to change external sensor use the type code as address code.
517 )))
518
519 (((
520 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
521 )))
522
523 [[image:image-20220624143553-10.png]]
524
525
526 The response frame of the sensor is as follows:
527
528 [[image:image-20220624143618-11.png]]
529
530
531
532 **Then the following parameters should be:**
533
534 * Address_Code range: A1
535 * Query_Length: 8
536 * Query_Command: A103000000019CAA
537 * Read_Length: 8
538 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
539 * has_CRC: 1
540 * timeout: 1500 (Fill in the test according to the actual situation)
541
542 **So the input command is:**
543
544 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
545
546
547 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
548
549 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
550 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
551 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
552
553 **Related commands:**
554
555 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
556
557 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
558
559
560 (% style="color:#037691" %)**Downlink Command:  **
561
562 **delete custom sensor A1:**
563
564 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
565
566 **Remove all custom sensors**
567
568 * 0xE5FF  
569
570
571 == 3.4 RS485 Test Command ==
572
573 (% style="color:#037691" %)**AT Command:**
574
575 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
576 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
577 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
578 Send command to 485 sensor
579
580 Range : no more than 10 bytes
581 )))|(% style="width:85px" %)OK
582
583 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
584
585 AT+RSWRITE=0103000001840A
586
587
588 (% style="color:#037691" %)**Downlink Command:**
589
590 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
591
592
593 == 3.5 RS485 response timeout ==
594
595 Feature: Set or get extended time to receive 485 sensor data.
596
597 (% style="color:#037691" %)**AT Command:**
598
599 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
600 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
601 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
602 Set response timeout to:
603
604 Range : 0~~10000
605 )))|(% style="width:85px" %)OK
606
607 (% style="color:#037691" %)**Downlink Command:**
608
609 Format: Command Code (0xE0) followed by 3 bytes time value.
610
611 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
612
613 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
614 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
615
616
617 == 3.6 Set Sensor Type ==
618
619 (((
620 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
621 )))
622
623 (((
624 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
625 )))
626
627 [[image:image-20220624144904-12.png]]
628
629
630 (% style="color:#037691" %)**AT Command:**
631
632 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
633 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
634 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
635
636
637 Eg: The setting command **AT+STYPE=802212** means:
638
639 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
640 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
641 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
642 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
643 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
644 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
645 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
646
647 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
648
649
650 (% style="color:#037691" %)**Downlink Command:**
651
652 * 0xE400802212     Same as: AT+STYPE=80221
653
654 (% style="color:red" %)**Note:**
655
656 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
657
658
659
660
661 = 4. Power consumption and battery =
662
663 == 4.1 Total Power Consumption ==
664
665 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
666
667
668 == 4.2 Reduce power consumption ==
669
670 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
671
672
673 == 4.3 Battery ==
674
675 (((
676 All sensors are only power by external power source. If external power source is off. All sensor won't work.
677 )))
678
679 (((
680 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
681 )))
682
683
684 = 5. Main Process Unit WSC1-L =
685
686 == 5.1 Features ==
687
688 * Wall Attachable.
689 * LoRaWAN v1.0.3 Class A protocol.
690 * RS485 / Modbus protocol
691 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
692 * AT Commands to change parameters
693 * Remote configure parameters via LoRaWAN Downlink
694 * Firmware upgradable via program port
695 * Powered by external 12v battery
696 * Back up rechargeable 1000mAh battery
697 * IP Rating: IP65
698 * Support default sensors or 3rd party RS485 sensors
699
700
701 == 5.2 Power Consumption ==
702
703 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
704
705
706 == 5.3 Storage & Operation Temperature ==
707
708 -20°C to +60°C
709
710
711 == 5.4 Pin Mapping ==
712
713 [[image:1656054149793-239.png]]
714
715
716 == 5.5 Mechanical ==
717
718 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
719
720
721 == 5.6 Connect to RS485 Sensors ==
722
723 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
724
725
726 [[image:1656054389031-379.png]]
727
728
729 Hardware Design for the Converter Board please see:
730
731 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
732
733
734 = 6. Weather Sensors =
735
736 == 6.1 Rain Gauge ~-~- WSS-01 ==
737
738
739 (((
740 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
741 )))
742
743 (((
744 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
745 )))
746
747 (((
748 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
749 )))
750
751 (((
752 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
753 )))
754
755 (((
756 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
757 )))
758
759
760 === 6.1.1 Feature ===
761
762 * RS485 Rain Gauge
763 * Small dimension, easy to install
764 * Vents under funnel, avoid leaf or other things to avoid rain flow.
765 * ABS enclosure.
766 * Horizontal adjustable.
767
768
769 === 6.1.2 Specification ===
770
771 * Resolution: 0.2mm
772 * Accuracy: ±3%
773 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
774 * Input Power: DC 5~~24v
775 * Interface: RS485
776 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
777 * Working Humidity: <100% (no dewing)
778 * Power Consumption: 4mA @ 12v.
779
780
781 === 6.1.3 Dimension ===
782
783 [[image:1656054957406-980.png]]
784
785
786 === 6.1.4 Pin Mapping ===
787
788 [[image:1656054972828-692.png]]
789
790
791 === 6.1.5 Installation Notice ===
792
793 (((
794 Do not power on while connect the cables. Double check the wiring before power on.
795 )))
796
797 (((
798 Installation Photo as reference:
799 )))
800
801
802 (((
803 (% style="color:#4472c4" %)** Install on Ground:**
804 )))
805
806 (((
807 WSS-01 Rain Gauge include screws so can install in ground directly .
808 )))
809
810
811 (((
812 (% style="color:#4472c4" %)** Install on pole:**
813 )))
814
815 (((
816 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
817 )))
818
819 [[image:image-20220624152218-1.png||height="526" width="276"]]
820
821 WS-K2: Bracket Kit for Pole installation
822
823
824 WSSC-K2 dimension document, please see:
825
826 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
827
828
829 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
830
831 [[image:1656055444035-179.png]]
832
833 (((
834 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
835 )))
836
837 (((
838 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
839 )))
840
841 (((
842 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
843 )))
844
845
846 === 6.2.1 Feature ===
847
848 * RS485 wind speed / direction sensor
849 * PC enclosure, resist corrosion
850
851
852 === 6.2.2 Specification ===
853
854 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
855 * Wind direction range: 0 ~~ 360°
856 * Start wind speed: ≤0.3m/s
857 * Accuracy: ±(0.3+0.03V)m/s , ±1°
858 * Input Power: DC 5~~24v
859 * Interface: RS485
860 * Working Temperature: -30℃~70℃
861 * Working Humidity: <100% (no dewing)
862 * Power Consumption: 13mA ~~ 12v.
863 * Cable Length: 2 meters
864
865
866 === 6.2.3 Dimension ===
867
868 [[image:image-20220624152813-2.png]]
869
870
871 === 6.2.4 Pin Mapping ===
872
873 [[image:1656056281231-994.png]]
874
875
876 === 6.2.5  Angle Mapping ===
877
878 [[image:1656056303845-585.png]]
879
880
881 === 6.2.6  Installation Notice ===
882
883 (((
884 Do not power on while connect the cables. Double check the wiring before power on.
885 )))
886
887 (((
888 The sensor must be installed with below direction, towards North.
889 )))
890
891 [[image:image-20220624153901-3.png]]
892
893
894 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
895
896
897 (((
898 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
899 )))
900
901 (((
902 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
903 )))
904
905 (((
906 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
907 )))
908
909
910 === 6.3.1 Feature ===
911
912 * RS485 CO2, PM2.5, PM10 sensor
913 * NDIR to measure CO2 with Internal Temperature Compensation
914 * Laser Beam Scattering to PM2.5 and PM10
915
916
917 === 6.3.2 Specification ===
918
919 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
920 * CO2 resolution: 1ppm
921 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
922 * PM2.5/PM10 resolution: 1μg/m3
923 * Input Power: DC 7 ~~ 24v
924 * Preheat time: 3min
925 * Interface: RS485
926 * Working Temperature:
927 ** CO2: 0℃~50℃;
928 ** PM2.5/PM10: -30 ~~ 50℃
929 * Working Humidity:
930 ** PM2.5/PM10: 15~80%RH (no dewing)
931 ** CO2: 0~95%RH
932 * Power Consumption: 50mA@ 12v.
933
934
935 === 6.3.3 Dimension ===
936
937 [[image:1656056708366-230.png]]
938
939
940 === 6.3.4 Pin Mapping ===
941
942 [[image:1656056722648-743.png]]
943
944
945 === 6.3.5 Installation Notice ===
946
947 Do not power on while connect the cables. Double check the wiring before power on.
948
949 [[image:1656056751153-304.png]]
950
951 [[image:1656056766224-773.png]]
952
953
954 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
955
956
957 (((
958 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
959 )))
960
961 (((
962 WSS-04 has auto heating feature, this ensures measurement more reliable.
963 )))
964
965 (((
966 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
967 )))
968
969
970
971 === 6.4.1 Feature ===
972
973 * RS485 Rain/Snow detect sensor
974 * Surface heating to dry
975 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
976
977
978 === 6.4.2 Specification ===
979
980 * Detect if there is rain or snow
981 * Input Power: DC 12 ~~ 24v
982 * Interface: RS485
983 * Working Temperature: -30℃~70℃
984 * Working Humidity: 10~90%RH
985 * Power Consumption:
986 ** No heating: 12mA @ 12v,
987 ** heating: 94ma @ 12v.
988
989
990 === 6.4.3 Dimension ===
991
992 [[image:1656056844782-155.png]]
993
994
995 === 6.4.4 Pin Mapping ===
996
997 [[image:1656056855590-754.png]]
998
999
1000 === 6.4.5 Installation Notice ===
1001
1002 Do not power on while connect the cables. Double check the wiring before power on.
1003
1004
1005 (((
1006 Install with 15°degree.
1007 )))
1008
1009 [[image:1656056873783-780.png]]
1010
1011
1012 [[image:1656056883736-804.png]]
1013
1014
1015 === 6.4.6 Heating ===
1016
1017 (((
1018 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1019 )))
1020
1021
1022 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1023
1024
1025 (((
1026 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1027 )))
1028
1029 (((
1030 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1031 )))
1032
1033
1034 === 6.5.1 Feature ===
1035
1036 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1037
1038
1039 === 6.5.2 Specification ===
1040
1041 * Input Power: DC 12 ~~ 24v
1042 * Interface: RS485
1043 * Temperature Sensor Spec:
1044 ** Range: -30 ~~ 70℃
1045 ** resolution 0.1℃
1046 ** Accuracy: ±0.5℃
1047 * Humidity Sensor Spec:
1048 ** Range: 0 ~~ 100% RH
1049 ** resolution 0.1 %RH
1050 ** Accuracy: 3% RH
1051 * Pressure Sensor Spec:
1052 ** Range: 10~1100hPa
1053 ** Resolution: 0.1hPa
1054 ** Accuracy: ±0.1hPa
1055 * Illuminate sensor:
1056 ** Range: 0~2/20/200kLux
1057 ** Resolution: 10 Lux
1058 ** Accuracy: ±3%FS
1059 * Working Temperature: -30℃~70℃
1060 * Working Humidity: 10~90%RH
1061 * Power Consumption: 4mA @ 12v
1062
1063
1064 === 6.5.3 Dimension ===
1065
1066 [[image:1656057170639-522.png]]
1067
1068
1069 === 6.5.4 Pin Mapping ===
1070
1071 [[image:1656057181899-910.png]]
1072
1073
1074 === 6.5.5 Installation Notice ===
1075
1076 Do not power on while connect the cables. Double check the wiring before power on.
1077
1078 [[image:1656057199955-514.png]]
1079
1080
1081 [[image:1656057212438-475.png]]
1082
1083
1084 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1085
1086
1087 (((
1088 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1089 )))
1090
1091 (((
1092 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1093 )))
1094
1095 (((
1096 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1097 )))
1098
1099
1100
1101 === 6.6.1 Feature ===
1102
1103 * RS485 Total Solar Radiation sensor
1104 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1105 * Measure Reflected Radiation if sense area towards ground.
1106
1107
1108 === 6.6.2 Specification ===
1109
1110 * Input Power: DC 5 ~~ 24v
1111 * Interface: RS485
1112 * Detect spectrum: 0.3~3μm(300~3000nm)
1113 * Measure strength range: 0~2000W/m2
1114 * Resolution: 0.1W/m2
1115 * Accuracy: ±3%
1116 * Yearly Stability: ≤±2%
1117 * Cosine response: ≤7% (@ Sun angle 10°)
1118 * Temperature Effect: ±2%(-10℃~40℃)
1119 * Working Temperature: -40℃~70℃
1120 * Working Humidity: 10~90%RH
1121 * Power Consumption: 4mA @ 12v
1122
1123
1124 === 6.6.3 Dimension ===
1125
1126 [[image:1656057348695-898.png]]
1127
1128
1129 === 6.6.4 Pin Mapping ===
1130
1131 [[image:1656057359343-744.png]]
1132
1133
1134 === 6.6.5 Installation Notice ===
1135
1136 Do not power on while connect the cables. Double check the wiring before power on.
1137
1138 [[image:1656057369259-804.png]]
1139
1140
1141 [[image:1656057377943-564.png]]
1142
1143
1144 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1145
1146
1147 (((
1148 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1149 )))
1150
1151 (((
1152 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1153 )))
1154
1155 (((
1156 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1157 )))
1158
1159
1160 === 6.7.1 Feature ===
1161
1162 (((
1163 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1164 )))
1165
1166 (((
1167 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1168 )))
1169
1170
1171 === 6.7.2 Specification ===
1172
1173 * Input Power: DC 5 ~~ 24v
1174 * Interface: RS485
1175 * Response Spectrum: 400~700nm
1176 * Measure range: 0~2500μmol/m2•s
1177 * Resolution: 1μmol/m2•s
1178 * Accuracy: ±2%
1179 * Yearly Stability: ≤±2%
1180 * Working Temperature: -30℃~75℃
1181 * Working Humidity: 10~90%RH
1182 * Power Consumption: 3mA @ 12v
1183
1184
1185 === 6.7.3 Dimension ===
1186
1187 [[image:1656057538793-888.png]]
1188
1189
1190 === 6.7.4 Pin Mapping ===
1191
1192 [[image:1656057548116-203.png]]
1193
1194
1195 === 6.7.5 Installation Notice ===
1196
1197 Do not power on while connect the cables. Double check the wiring before power on.
1198
1199
1200 [[image:1656057557191-895.png]]
1201
1202
1203 [[image:1656057565783-251.png]]
1204
1205
1206 = 7. FAQ =
1207
1208 == 7.1 What else do I need to purchase to build Weather Station? ==
1209
1210 Below is the installation photo and structure:
1211
1212 [[image:1656057598349-319.png]]
1213
1214
1215 [[image:1656057608049-693.png]]
1216
1217
1218
1219 == 7.2 How to upgrade firmware for WSC1-L? ==
1220
1221 (((
1222 Firmware Location & Change log:
1223 )))
1224
1225 (((
1226 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1227 )))
1228
1229
1230 (((
1231 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1232 )))
1233
1234
1235 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1236
1237 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1238
1239
1240 == 7.4 Can I add my weather sensors? ==
1241
1242 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1243
1244
1245 = 8. Trouble Shooting =
1246
1247 == 8.1 AT Command input doesn't work ==
1248
1249 (((
1250 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1251 )))
1252
1253
1254 = 9. Order Info =
1255
1256 == 9.1 Main Process Unit ==
1257
1258 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1259
1260 (% style="color:blue" %)**XX**(%%): The default frequency band
1261
1262 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1263 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1264 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1265 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1266 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1267 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1268 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1269 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1270
1271
1272
1273
1274
1275 == 9.2 Sensors ==
1276
1277 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1278 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1279 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1280 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1281 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1282 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1283 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1284 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1285 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1286 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1287
1288
1289
1290
1291
1292 = 10. Support =
1293
1294 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1295 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1296
1297
1298
1299
1300
1301 = 11. Appendix I: Field Installation Photo =
1302
1303
1304 [[image:1656058346362-132.png]]
1305
1306 **Storage Battery**: 12v,12AH li battery
1307
1308
1309
1310 **Wind Speed/Direction**
1311
1312 [[image:1656058373174-421.png]]
1313
1314
1315
1316 **Total Solar Radiation sensor**
1317
1318 [[image:1656058397364-282.png]]
1319
1320
1321
1322 **PAR Sensor**
1323
1324 [[image:1656058416171-615.png]]
1325
1326
1327
1328 **CO2/PM2.5/PM10 3 in 1 sensor**
1329
1330 [[image:1656058441194-827.png]]
1331
1332
1333
1334 **Rain / Snow Detect**
1335
1336 [[image:1656058451456-166.png]]
1337
1338
1339
1340 **Rain Gauge**
1341
1342 [[image:1656058463455-569.png]]