Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36
37 )))
38
39 (((
40 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
41 )))
42
43 (((
44
45 )))
46
47 (((
48 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
49 )))
50
51
52
53 = 2. How to use =
54
55 == 2.1 Installation ==
56
57 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
58
59 [[image:1656041948552-849.png]]
60
61
62 (% style="color:blue" %)** Wiring:**
63
64 ~1. WSC1-L and sensors all powered by solar power via MPPT
65
66 2. WSC1-L and sensors connect to each other via RS485/Modbus.
67
68 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
69
70
71 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
72
73 [[image:1656042136605-251.png]]
74
75
76 (% style="color:red" %) ** Notice 1:**
77
78 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
79 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
80 * Weather sensors won’t work if solar panel and storage battery fails.
81
82
83
84
85 (% style="color:red" %)** Notice 2:**
86
87 Due to shipment and importation limitation, user is better to purchase below parts locally:
88
89 * Solar Panel
90 * Storage Battery
91 * MPPT Solar Recharger
92 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
93 * Cabinet.
94
95 == 2.2 How it works? ==
96
97 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
98
99
100 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
101
102 [[image:1656042192857-709.png]]
103
104
105 (% style="color:red" %)**Notice:**
106
107 1. WSC1-L will auto scan available weather sensors when power on or reboot.
108 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
109
110
111
112
113 == 2.3 Example to use for LoRaWAN network ==
114
115 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
116
117
118 [[image:1656042612899-422.png]]
119
120
121
122 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
123
124
125 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
126
127 Each WSC1-L is shipped with a sticker with the default device EUI as below:
128
129 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
130
131
132 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
133
134 Add APP EUI in the application.
135
136 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
137
138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
139
140
141
142
143
144
145
146
147
148 Choose Manually to add WSC1-L
149
150
151 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
152
153 Add APP KEY and DEV EUI
154
155 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
156
157
158
159
160 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
161
162
163 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
164
165
166
167
168 == 2.4 Uplink Payload ==
169
170 Uplink payloads include two types: Valid Sensor Value and other status / control command.
171
172 * Valid Sensor Value: Use FPORT=2
173 * Other control command: Use FPORT other than 2.
174
175
176
177
178 === 2.4.1 Uplink FPORT~=5, Device Status ===
179
180 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
181
182
183 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
184
185 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
186 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
187
188 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
189
190
191 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
192
193
194
195 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
196
197 For WSC1-L, this value is 0x0D.
198
199
200
201 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
202
203 0x0100, Means: v1.0.0 version.
204
205
206
207 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
208
209 *0x01: EU868
210
211 *0x02: US915
212
213 *0x03: IN865
214
215 *0x04: AU915
216
217 *0x05: KZ865
218
219 *0x06: RU864
220
221 *0x07: AS923
222
223 *0x08: AS923-1
224
225 *0x09: AS923-2
226
227 *0x0a: AS923-3
228
229
230
231 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
232
233 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
234
235
236
237 ==== (% style="color:#037691" %)**BAT:**(%%) ====
238
239 shows the battery voltage for WSC1-L MCU.
240
241 Ex1: 0x0BD6/1000 = 3.03 V
242
243
244
245 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
246
247 |Byte3|Byte2|Byte1
248
249 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
250
251
252 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
253 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
254 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
255 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
256 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
257 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
258
259 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
260
261 External sensors detected by WSC1-L include :
262
263 custom sensor A1,
264
265 PAR sensor (WSS-07),
266
267 Total Solar Radiation sensor (WSS-06),
268
269 CO2/PM2.5/PM10 (WSS-03),
270
271 Wind Speed/Direction (WSS-02)
272
273
274
275
276 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
277
278 (% style="color:#037691" %)**Downlink:0x26 01**
279
280 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
281
282
283
284
285 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
286
287 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
288
289 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
290
291
292 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
293
294 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
295
296 (% style="color:#4472c4" %)** Uplink Payload**:
297
298 |Type Code|Length (Bytes)|Measured Value
299
300 (% style="color:#4472c4" %)** Sensor Segment Define**:
301
302
303
304 Sensor Type Table:
305
306 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
307 |**Wind Speed**|0x01|(((
308 Speed: 0~60m/s
309
310 Level: 0~17
311 )))|0x03 |(((
312 0x0024/10=3.6m/s
313
314 (0x02FE: No Sensor, 0x02FF: Value Error)
315
316 0x02=2
317
318 (0x14: No Sensor, 0x15: Value Error)
319 )))
320 |**Wind Direction**|0x02|(((
321 Angel: 0~360°
322
323 Direction: 16 positions
324 )))|0x03|(((
325 0x029A/10=66.6°
326
327 (0x0EFE: No Sensor,0x0EFF: Value Error)
328
329 0X03=3(ENE)
330
331 (0x14: No Sensor,0x15: Value Error)
332 )))
333 |**Illumination**|0x03|0~200000Lux|0x02|(((
334 0x04D2 *10=12340Lux
335
336 (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
339 0x00 (00) No Rain or snow detected
340
341 (0x02: No Sensor,0x03: Value Error)
342 )))
343 |**CO2**|0x05|0~5000ppm|0x02|(((
344 0x0378=888ppm
345
346 (0x14FE: No Sensor,0x14FF: Value Error)
347 )))
348 |**Temperature**|0x06|-30℃~70℃|0x02|(((
349 0xFFDD/10=-3.5℃
350
351 (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
354 |**Pressure**|0x08|10~1100hPa|0x02|(((
355 0x2748/10=1005.6hPa
356
357 (0x00: No Sensor,0x01: Value Error)
358 )))
359 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
360 0x0000/10=0mm /min
361
362 (0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
365 0x0023=35μg/m^^3 ^^
366
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
370 0x002D=45μg/m^^3 ^^
371
372 (0x03FE: No Sensor,0x03FF: Value Error)
373 )))
374 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
375 0x00B3=179μmol/m^^2^^•s
376
377 (0x09FE: No Sensor,0x9FF: Value Error)
378 )))
379 |(((
380 **Total Solar**
381
382 **Radiation**
383 )))|0x0D|0~2000W/m^^2^^|0x02|(((
384 0x0073/10=11.5W/m^^2^^
385
386 (0x4EFE: No Sensor,0x4EFF: Value Error)
387 )))
388
389 Below is an example payload:
390
391 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
392
393
394 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
395
396 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
397
398 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
399
400
401 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
402
403 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
404
405 Uplink 2: 0D 02 00 73
406
407
408
409
410 === 2.4.3 Decoder in TTN V3 ===
411
412 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
413
414
415 Download decoder for suitable platform from:
416
417 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
418
419 and put as below:
420
421 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
422
423
424
425 == 2.5 Show data on Application Server ==
426
427 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
428
429
430 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
431
432 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
433
434 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
435
436
437 Add TagoIO:
438
439 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
440
441 Authorization:
442
443 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
444
445
446 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
447
448 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
449
450
451
452 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
453
454 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
455
456 * AT Command Connection: See [[FAQ>>||anchor="H"]].
457 * LoRaWAN Downlink instruction for different platforms:
458
459 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
460
461
462 There are two kinds of commands to configure WSC1-L, they are:
463
464 * (% style="color:#4472c4" %)**General Commands**.
465
466 These commands are to configure:
467
468 * General system settings like: uplink interval.
469 * LoRaWAN protocol & radio related command.
470
471 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
472
473 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
474
475 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
476
477
478 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
479
480 These commands only valid for WSC1-L, as below:
481
482
483 == 3.1 Set Transmit Interval Time ==
484
485 Feature: Change LoRaWAN End Node Transmit Interval.
486
487 (% style="color:#037691" %)**AT Command: AT+TDC**
488
489 |**Command Example**|**Function**|**Response**
490 |AT+TDC?|Show current transmit Interval|(((
491 30000
492
493 OK
494
495 the interval is 30000ms = 30s
496 )))
497 |AT+TDC=60000|Set Transmit Interval|(((
498 OK
499
500 Set transmit interval to 60000ms = 60 seconds
501 )))
502
503 (% style="color:#037691" %)**Downlink Command: 0x01**
504
505 Format: Command Code (0x01) followed by 3 bytes time value.
506
507 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
508
509 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
510 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
511
512 == 3.2 Set Emergency Mode ==
513
514 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
515
516
517 (% style="color:#037691" %)**AT Command:**
518
519 |**Command Example**|**Function**|**Response**
520 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
521 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
522
523 (% style="color:#037691" %)**Downlink Command:**
524
525 * 0xE101     Same as: AT+ALARMMOD=1
526 * 0xE100     Same as: AT+ALARMMOD=0
527
528 == 3.3 Add or Delete RS485 Sensor ==
529
530 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
531
532 (% style="color:#037691" %)**AT Command: **
533
534 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
535
536 * Type_Code range: A1 ~~ A4
537 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
538 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
539 * Read_Length: RS485 response frame length supposed to receive. Max can receive
540 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
541 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
542 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
543
544 Example:
545
546 User need to change external sensor use the type code as address code.
547
548 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
549
550 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
551 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
552 | | | | | | | |
553
554 The response frame of the sensor is as follows:
555
556 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
557 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
558 | | | | | | | |
559
560 Then the following parameters should be:
561
562 * Address_Code range: A1
563 * Query_Length: 8
564 * Query_Command: A103000000019CAA
565 * Read_Length: 8
566 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
567 * has_CRC: 1
568 * timeout: 1500 (Fill in the test according to the actual situation)
569
570 So the input command is:
571
572 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
573
574
575 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
576
577 |Type Code|Length (Bytes)|Measured Value
578 |A1|2|0x000A
579
580 Related commands:
581
582 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
583
584 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
585
586
587 (% style="color:#037691" %)**Downlink Command:  **
588
589 **delete custom sensor A1:**
590
591 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
592
593 **Remove all custom sensors**
594
595 * 0xE5FF  
596
597 == 3.4 RS485 Test Command ==
598
599 (% style="color:#037691" %)**AT Command:**
600
601 |**Command Example**|**Function**|**Response**
602 |AT+RSWRITE=xxxxxx|(((
603 Send command to 485 sensor
604
605 Range : no more than 10 bytes
606 )))|OK
607
608 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
609
610 AT+RSWRITE=0103000001840A
611
612
613 (% style="color:#037691" %)**Downlink Command:**
614
615 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
616
617 == 3.5 RS485 response timeout ==
618
619 Feature: Set or get extended time to receive 485 sensor data.
620
621 (% style="color:#037691" %)**AT Command:**
622
623 |**Command Example**|**Function**|**Response**
624 |AT+DTR=1000|(((
625 Set response timeout to:
626
627 Range : 0~~10000
628 )))|OK
629
630 (% style="color:#037691" %)**Downlink Command:**
631
632 Format: Command Code (0xE0) followed by 3 bytes time value.
633
634 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
635
636 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
637 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
638
639 == 3.6 Set Sensor Type ==
640
641 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
642
643 See [[definition>>||anchor="H"]] for the sensor type.
644
645
646 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
647 | |A4|A3|A2|A1| | |
648 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
649 | | |Solar Radiation|PAR|PM10|PM2.5|(((
650 Rain
651
652 Gauge
653 )))|(((
654 Air
655
656 Pressure
657 )))
658 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
659 |Humidity|Temperature|CO2|(((
660 Rain/Snow
661
662 Detect
663 )))|illuminance|(((
664 Wind
665
666 Direction
667 )))|Wind Speed|BAT
668
669 (% style="color:#037691" %)**AT Command:**
670
671 |**Command Example**|**Function**|**Response**
672 |AT+STYPE=80221|Set sensor types|OK
673
674 Eg: The setting command **AT+STYPE=802212** means:
675
676 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
677 |0|0|0|0|1|0|0|0
678 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
679 |0|0|0|0|0|0|1|0
680 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
681 |0|0|1|0|0|0|0|1
682
683 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
684
685
686 (% style="color:#037691" %)**Downlink Command:**
687
688 * 0xE400802212     Same as: AT+STYPE=80221
689
690 (% style="color:red" %)**Note:**
691
692 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
693
694
695
696
697
698 = 4. Power consumption and battery =
699
700 == 4.1 Total Power Consumption ==
701
702 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
703
704
705 == 4.2 Reduce power consumption ==
706
707 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
708
709
710
711 == 4.3 Battery ==
712
713 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
714
715
716 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
717
718
719
720 = 5. Main Process Unit WSC1-L =
721
722 == 5.1 Features ==
723
724 * Wall Attachable.
725 * LoRaWAN v1.0.3 Class A protocol.
726 * RS485 / Modbus protocol
727 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
728 * AT Commands to change parameters
729 * Remote configure parameters via LoRaWAN Downlink
730 * Firmware upgradable via program port
731 * Powered by external 12v battery
732 * Back up rechargeable 1000mAh battery
733 * IP Rating: IP65
734 * Support default sensors or 3rd party RS485 sensors
735
736 == 5.2 Power Consumption ==
737
738 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
739
740
741
742 == 5.3 Storage & Operation Temperature ==
743
744 -20°C to +60°C
745
746
747 == 5.4 Pin Mapping ==
748
749 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
750
751
752 == 5.5 Mechanical ==
753
754 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
755
756
757
758
759 == 5.6 Connect to RS485 Sensors ==
760
761 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
762
763
764 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
765
766
767 Hardware Design for the Converter Board please see:
768
769 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
770
771
772
773
774
775 = 6. Weather Sensors =
776
777 == 6.1 Rain Gauge ~-~- WSS-01 ==
778
779 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
780
781
782 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
783
784 shape to make sure it works smoothly and is easy to clean.
785
786
787 WSS-01 is designed to support the Dragino Weather station solution.
788
789 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
790
791 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
792
793
794 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
795
796 to screw up and adjust the bottom horizontally.
797
798
799 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
800
801
802
803 === 6.1.1 Feature ===
804
805 * RS485 Rain Gauge
806 * Small dimension, easy to install
807 * Vents under funnel, avoid leaf or other things to avoid rain flow.
808 * ABS enclosure.
809 * Horizontal adjustable.
810
811 === 6.1.2 Specification ===
812
813 * Resolution: 0.2mm
814 * Accuracy: ±3%
815 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
816 * Input Power: DC 5~~24v
817 * Interface: RS485
818 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
819 * Working Humidity: <100% (no dewing)
820 * Power Consumption: 4mA @ 12v.
821
822 === 6.1.3 Dimension ===
823
824 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
825
826
827 === 6.1.4 Pin Mapping ===
828
829 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
830
831
832
833
834 === 6.1.5 Installation Notice ===
835
836 Do not power on while connect the cables. Double check the wiring before power on.
837
838 Installation Photo as reference:
839
840
841 (% style="color:#4472c4" %)** Install on Ground:**
842
843 WSS-01 Rain Gauge include screws so can install in ground directly .
844
845
846 (% style="color:#4472c4" %)** Install on pole:**
847
848 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
849
850 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
851
852
853 WS-K2: Bracket Kit for Pole installation:
854
855 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
856
857 WSSC-K2 dimension document, please see:
858
859 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
860
861
862
863 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
864
865 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
866
867 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
868
869
870 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
871
872
873 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
874
875 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
876
877
878 === 6.2.1 Feature ===
879
880 * RS485 wind speed / direction sensor
881 * PC enclosure, resist corrosion
882
883 === 6.2.2 Specification ===
884
885 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
886 * Wind direction range: 0 ~~ 360°
887 * Start wind speed: ≤0.3m/s
888 * Accuracy: ±(0.3+0.03V)m/s , ±1°
889 * Input Power: DC 5~~24v
890 * Interface: RS485
891 * Working Temperature: -30℃~70℃
892 * Working Humidity: <100% (no dewing)
893 * Power Consumption: 13mA ~~ 12v.
894 * Cable Length: 2 meters
895
896 === 6.2.3 Dimension ===
897
898 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
899
900
901 === 6.2.4 Pin Mapping ===
902
903 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
904
905
906 === 6.2.4 Angle Mapping ===
907
908 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
909
910
911 === 6.2.5 Installation Notice ===
912
913 Do not power on while connect the cables. Double check the wiring before power on.
914
915
916 The sensor must be installed with below direction, towards North.
917
918
919 |(((
920 North
921 )))
922
923 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
924
925
926
927
928
929
930
931
932 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
933
934 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
935
936
937 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
938
939
940 WSS-03 is designed to support the Dragino Weather station solution.
941
942 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
943
944 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
945
946
947 === 6.3.1 Feature ===
948
949 * RS485 CO2, PM2.5, PM10 sensor
950 * NDIR to measure CO2 with Internal Temperature Compensation
951 * Laser Beam Scattering to PM2.5 and PM10
952
953 === 6.3.2 Specification ===
954
955 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
956 * CO2 resolution: 1ppm
957 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
958 * PM2.5/PM10 resolution: 1μg/m3
959 * Input Power: DC 7 ~~ 24v
960 * Preheat time: 3min
961 * Interface: RS485
962 * Working Temperature:
963 ** CO2: 0℃~50℃;
964 ** PM2.5/PM10: -30 ~~ 50℃
965 * Working Humidity:
966 ** PM2.5/PM10: 15~80%RH (no dewing)
967 ** CO2: 0~95%RH
968 * Power Consumption: 50mA@ 12v.
969
970 === 6.3.3 Dimension ===
971
972 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
973
974
975 === 6.3.4 Pin Mapping ===
976
977 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
978
979
980 === 6.3.5 Installation Notice ===
981
982 Do not power on while connect the cables. Double check the wiring before power on.
983
984 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
985
986 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
987
988
989
990
991
992
993 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
994
995 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
996
997
998 WSS-04 has auto heating feature, this ensures measurement more reliable.
999
1000
1001 WSS-04 is designed to support the Dragino Weather station solution.
1002
1003 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
1004
1005 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1006
1007
1008
1009 === 6.4.1 Feature ===
1010
1011 * RS485 Rain/Snow detect sensor
1012 * Surface heating to dry
1013 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1014
1015 === 6.4.2 Specification ===
1016
1017 * Detect if there is rain or snow
1018 * Input Power: DC 12 ~~ 24v
1019 * Interface: RS485
1020 * Working Temperature: -30℃~70℃
1021 * Working Humidity: 10~90%RH
1022 * Power Consumption:
1023 ** No heating: 12mA @ 12v,
1024 ** heating: 94ma @ 12v.
1025
1026 === 6.4.3 Dimension ===
1027
1028 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1029
1030
1031 === 6.4.4 Pin Mapping ===
1032
1033 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1034
1035
1036 === 6.4.5 Installation Notice ===
1037
1038 Do not power on while connect the cables. Double check the wiring before power on.
1039
1040
1041 Install with 15°degree.
1042
1043 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1044
1045 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1046
1047
1048
1049
1050 === 6.4.6 Heating ===
1051
1052
1053 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1054
1055
1056
1057
1058
1059 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1060
1061 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1062
1063
1064 WSS-05 is designed to support the Dragino Weather station solution.
1065
1066 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1067
1068 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1069
1070
1071 === 6.5.1 Feature ===
1072
1073 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1074
1075 === 6.5.2 Specification ===
1076
1077 * Input Power: DC 12 ~~ 24v
1078 * Interface: RS485
1079 * Temperature Sensor Spec:
1080 ** Range: -30 ~~ 70℃
1081 ** resolution 0.1℃
1082 ** Accuracy: ±0.5℃
1083 * Humidity Sensor Spec:
1084 ** Range: 0 ~~ 100% RH
1085 ** resolution 0.1 %RH
1086 ** Accuracy: 3% RH
1087 * Pressure Sensor Spec:
1088 ** Range: 10~1100hPa
1089 ** Resolution: 0.1hPa
1090 ** Accuracy: ±0.1hPa
1091 * Illuminate sensor:
1092 ** Range: 0~2/20/200kLux
1093 ** Resolution: 10 Lux
1094 ** Accuracy: ±3%FS
1095 * Working Temperature: -30℃~70℃
1096 * Working Humidity: 10~90%RH
1097 * Power Consumption: 4mA @ 12v
1098
1099 === 6.5.3 Dimension ===
1100
1101 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1102
1103
1104 === 6.5.4 Pin Mapping ===
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1107
1108
1109 === 6.5.5 Installation Notice ===
1110
1111 Do not power on while connect the cables. Double check the wiring before power on.
1112
1113
1114
1115 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1116
1117
1118 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1119
1120
1121 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1122
1123 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1124
1125
1126 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1127
1128
1129 WSS-06 is designed to support the Dragino Weather station solution.
1130
1131
1132 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1133
1134 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1135
1136
1137
1138 === 6.6.1 Feature ===
1139
1140 * RS485 Total Solar Radiation sensor
1141 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1142 * Measure Reflected Radiation if sense area towards ground.
1143
1144 === 6.6.2 Specification ===
1145
1146 * Input Power: DC 5 ~~ 24v
1147 * Interface: RS485
1148 * Detect spectrum: 0.3~3μm(300~3000nm)
1149 * Measure strength range: 0~2000W/m2
1150 * Resolution: 0.1W/m2
1151 * Accuracy: ±3%
1152 * Yearly Stability: ≤±2%
1153 * Cosine response: ≤7% (@ Sun angle 10°)
1154 * Temperature Effect: ±2%(-10℃~40℃)
1155 * Working Temperature: -40℃~70℃
1156 * Working Humidity: 10~90%RH
1157 * Power Consumption: 4mA @ 12v
1158
1159 === 6.6.3 Dimension ===
1160
1161 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1162
1163
1164 === 6.6.4 Pin Mapping ===
1165
1166 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1167
1168
1169 === 6.6.5 Installation Notice ===
1170
1171 Do not power on while connect the cables. Double check the wiring before power on.
1172
1173 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1174
1175 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1176
1177
1178 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1179
1180 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1181
1182
1183 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1184
1185
1186
1187 WSS-07 is designed to support the Dragino Weather station solution.
1188
1189
1190 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1191
1192 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1193
1194
1195 === 6.7.1 Feature ===
1196
1197 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1198
1199
1200 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1201
1202
1203 === 6.7.2 Specification ===
1204
1205 * Input Power: DC 5 ~~ 24v
1206 * Interface: RS485
1207 * Response Spectrum: 400~700nm
1208 * Measure range: 0~2500μmol/m2•s
1209 * Resolution: 1μmol/m2•s
1210 * Accuracy: ±2%
1211 * Yearly Stability: ≤±2%
1212 * Working Temperature: -30℃~75℃
1213 * Working Humidity: 10~90%RH
1214 * Power Consumption: 3mA @ 12v
1215
1216 === 6.7.3 Dimension ===
1217
1218 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1219
1220
1221 === 6.7.4 Pin Mapping ===
1222
1223 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1224
1225
1226 === 6.7.5 Installation Notice ===
1227
1228 Do not power on while connect the cables. Double check the wiring before power on.
1229
1230
1231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1234
1235
1236 = 7. FAQ =
1237
1238 == 7.1 What else do I need to purchase to build Weather Station? ==
1239
1240 Below is the installation photo and structure:
1241
1242 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1243
1244
1245 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1246
1247
1248
1249
1250 == 7.2 How to upgrade firmware for WSC1-L? ==
1251
1252 Firmware Location & Change log:
1253
1254 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1255
1256
1257 Firmware Upgrade instruction:
1258
1259 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1260
1261
1262 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1263
1264 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1265
1266
1267
1268 == 7.4 Can I add my weather sensors? ==
1269
1270 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1271
1272
1273 = 8. Trouble Shooting =
1274
1275
1276
1277
1278
1279
1280 = 9. Order Info =
1281
1282
1283 == 9.1 Main Process Unit ==
1284
1285 Part Number: **WSC1-L-XX**
1286
1287 **XX**: The default frequency band
1288
1289 * **AS923**: LoRaWAN AS923 band
1290 * **AU915**: LoRaWAN AU915 band
1291 * **EU433**: LoRaWAN EU433 band
1292 * **EU868**: LoRaWAN EU868 band
1293 * **KR920**: LoRaWAN KR920 band
1294 * **US915**: LoRaWAN US915 band
1295 * **IN865**: LoRaWAN IN865 band
1296 * **CN470**: LoRaWAN CN470 band
1297
1298 == 9.2 Sensors ==
1299
1300 |**Sensor Model**|**Part Number**
1301 |**Rain Gauge**|WSS-01
1302 |**Rain Gauge installation Bracket for Pole**|WS-K2
1303 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1304 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1305 |**Rain/Snow Detect Sensor**|WSS-04
1306 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1307 |**Total Solar Radiation Sensor**|WSS-06
1308 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1309
1310 = 10. Support =
1311
1312 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1313 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1314
1315 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1316
1317
1318
1319
1320
1321 = 11. Appendix I: Field Installation Photo =
1322
1323
1324 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1325
1326
1327 **Storage Battery**: 12v,12AH li battery
1328
1329
1330 Wind Speed/Direction.
1331
1332 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1333
1334
1335 Total Solar Radiation sensor
1336
1337 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1338
1339
1340
1341 PAR Sensor
1342
1343 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1344
1345
1346 CO2/PM2.5/PM10 3 in 1 sensor
1347
1348 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1349
1350
1351 Rain / Snow Detect:
1352
1353 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1354
1355
1356 Rain Gauge.
1357
1358 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0