Version 79.7 by Xiaoling on 2022/06/24 16:50

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158
159 == 2.4 Uplink Payload ==
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328 Uplink 2:  [[image:image-20220624140842-5.png]]
329 )))
330
331 (((
332
333 )))
334
335 * (((
336 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
337 )))
338
339 (((
340 Uplink 1:  [[image:image-20220624141025-6.png]]
341 )))
342
343 Uplink 2:  [[image:image-20220624141100-7.png]]
344
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
351
352
353 Download decoder for suitable platform from:
354
355 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
356
357 and put as below:
358
359 [[image:1656051152438-578.png]]
360
361
362
363 == 2.5 Show data on Application Server ==
364
365 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
366
367
368 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
369
370 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
371
372 [[image:1656051197172-131.png]]
373
374
375 **Add TagoIO:**
376
377 [[image:1656051223585-631.png]]
378
379
380 **Authorization:**
381
382 [[image:1656051248318-368.png]]
383
384
385 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
386
387 [[image:1656051277767-168.png]]
388
389
390
391 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
392
393 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
394
395 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
396 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
397
398 There are two kinds of commands to configure WSC1-L, they are:
399
400 * (% style="color:#4472c4" %)**General Commands**.
401
402 These commands are to configure:
403
404 * General system settings like: uplink interval.
405 * LoRaWAN protocol & radio related command.
406
407 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
408
409 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
410
411
412 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
413
414 These commands only valid for WSC1-L, as below:
415
416
417
418
419
420
421 == 3.1 Set Transmit Interval Time ==
422
423 Feature: Change LoRaWAN End Node Transmit Interval.
424
425 (% style="color:#037691" %)**AT Command: AT+TDC**
426
427 [[image:image-20220624142619-8.png]]
428
429
430 (% style="color:#037691" %)**Downlink Command: 0x01**
431
432 Format: Command Code (0x01) followed by 3 bytes time value.
433
434 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
435
436 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
437 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
438
439
440
441
442 == 3.2 Set Emergency Mode ==
443
444 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
445
446 (% style="color:#037691" %)**AT Command:**
447
448 [[image:image-20220624142956-9.png]]
449
450
451 (% style="color:#037691" %)**Downlink Command:**
452
453 * 0xE101     Same as: AT+ALARMMOD=1
454 * 0xE100     Same as: AT+ALARMMOD=0
455
456
457
458
459 == 3.3 Add or Delete RS485 Sensor ==
460
461 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
462
463 (% style="color:#037691" %)**AT Command: **
464
465 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
466
467 * Type_Code range:  A1 ~~ A4
468 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
469 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
470 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
471 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
472 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
473 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
474
475 **Example:**
476
477 User need to change external sensor use the type code as address code.
478
479 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
480
481 [[image:image-20220624143553-10.png]]
482
483
484 The response frame of the sensor is as follows:
485
486 [[image:image-20220624143618-11.png]]
487
488
489
490 **Then the following parameters should be:**
491
492 * Address_Code range: A1
493 * Query_Length: 8
494 * Query_Command: A103000000019CAA
495 * Read_Length: 8
496 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
497 * has_CRC: 1
498 * timeout: 1500 (Fill in the test according to the actual situation)
499
500 **So the input command is:**
501
502 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
503
504
505 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
506
507 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
508 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
509 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
510
511 **Related commands:**
512
513 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
514
515 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
516
517
518 (% style="color:#037691" %)**Downlink Command:  **
519
520 **delete custom sensor A1:**
521
522 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
523
524 **Remove all custom sensors**
525
526 * 0xE5FF  
527
528
529
530
531 == 3.4 RS485 Test Command ==
532
533 (% style="color:#037691" %)**AT Command:**
534
535 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
536 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
537 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
538 Send command to 485 sensor
539
540 Range : no more than 10 bytes
541 )))|(% style="width:85px" %)OK
542
543 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
544
545 AT+RSWRITE=0103000001840A
546
547
548 (% style="color:#037691" %)**Downlink Command:**
549
550 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
551
552
553
554
555 == 3.5 RS485 response timeout ==
556
557 Feature: Set or get extended time to receive 485 sensor data.
558
559 (% style="color:#037691" %)**AT Command:**
560
561 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
562 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
563 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
564 Set response timeout to:
565
566 Range : 0~~10000
567 )))|(% style="width:85px" %)OK
568
569 (% style="color:#037691" %)**Downlink Command:**
570
571 Format: Command Code (0xE0) followed by 3 bytes time value.
572
573 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
574
575 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
576 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
577
578
579
580
581 == 3.6 Set Sensor Type ==
582
583 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
584
585 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
586
587 [[image:image-20220624144904-12.png]]
588
589
590 (% style="color:#037691" %)**AT Command:**
591
592 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
593 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
594 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
595
596 Eg: The setting command **AT+STYPE=802212** means:
597
598 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
599 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
600 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
601 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
602 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
603 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
604 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
605
606 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
607
608
609 (% style="color:#037691" %)**Downlink Command:**
610
611 * 0xE400802212     Same as: AT+STYPE=80221
612
613 (% style="color:red" %)**Note:**
614
615 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
616
617
618
619
620 = 4. Power consumption and battery =
621
622 == 4.1 Total Power Consumption ==
623
624 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
625
626
627 == 4.2 Reduce power consumption ==
628
629 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
630
631
632 == 4.3 Battery ==
633
634 (((
635 All sensors are only power by external power source. If external power source is off. All sensor won't work.
636 )))
637
638 (((
639 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
640 )))
641
642
643 = 5. Main Process Unit WSC1-L =
644
645 == 5.1 Features ==
646
647 * Wall Attachable.
648 * LoRaWAN v1.0.3 Class A protocol.
649 * RS485 / Modbus protocol
650 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
651 * AT Commands to change parameters
652 * Remote configure parameters via LoRaWAN Downlink
653 * Firmware upgradable via program port
654 * Powered by external 12v battery
655 * Back up rechargeable 1000mAh battery
656 * IP Rating: IP65
657 * Support default sensors or 3rd party RS485 sensors
658
659
660
661
662 == 5.2 Power Consumption ==
663
664 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
665
666
667 == 5.3 Storage & Operation Temperature ==
668
669 -20°C to +60°C
670
671
672 == 5.4 Pin Mapping ==
673
674 [[image:1656054149793-239.png]]
675
676
677 == 5.5 Mechanical ==
678
679 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
680
681
682 == 5.6 Connect to RS485 Sensors ==
683
684 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
685
686
687 [[image:1656054389031-379.png]]
688
689
690 Hardware Design for the Converter Board please see:
691
692 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
693
694
695 = 6. Weather Sensors =
696
697 == 6.1 Rain Gauge ~-~- WSS-01 ==
698
699
700 (((
701 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
702 )))
703
704 (((
705 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
706 )))
707
708 (((
709 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
710 )))
711
712 (((
713 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
714 )))
715
716 (((
717 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
718 )))
719
720
721 === 6.1.1 Feature ===
722
723 * RS485 Rain Gauge
724 * Small dimension, easy to install
725 * Vents under funnel, avoid leaf or other things to avoid rain flow.
726 * ABS enclosure.
727 * Horizontal adjustable.
728
729
730
731
732 === 6.1.2 Specification ===
733
734 * Resolution: 0.2mm
735 * Accuracy: ±3%
736 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
737 * Input Power: DC 5~~24v
738 * Interface: RS485
739 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
740 * Working Humidity: <100% (no dewing)
741 * Power Consumption: 4mA @ 12v.
742
743
744
745
746 === 6.1.3 Dimension ===
747
748 [[image:1656054957406-980.png]]
749
750
751 === 6.1.4 Pin Mapping ===
752
753 [[image:1656054972828-692.png]]
754
755
756 === 6.1.5 Installation Notice ===
757
758 Do not power on while connect the cables. Double check the wiring before power on.
759
760 Installation Photo as reference:
761
762
763 (% style="color:#4472c4" %)** Install on Ground:**
764
765 WSS-01 Rain Gauge include screws so can install in ground directly .
766
767
768 (% style="color:#4472c4" %)** Install on pole:**
769
770 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
771
772 [[image:image-20220624152218-1.png||height="526" width="276"]]
773
774 WS-K2: Bracket Kit for Pole installation
775
776
777 WSSC-K2 dimension document, please see:
778
779 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
780
781
782 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
783
784 [[image:1656055444035-179.png]]
785
786 (((
787 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
788 )))
789
790 (((
791 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
792 )))
793
794 (((
795 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
796 )))
797
798
799 === 6.2.1 Feature ===
800
801 * RS485 wind speed / direction sensor
802 * PC enclosure, resist corrosion
803
804
805
806
807 === 6.2.2 Specification ===
808
809 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
810 * Wind direction range: 0 ~~ 360°
811 * Start wind speed: ≤0.3m/s
812 * Accuracy: ±(0.3+0.03V)m/s , ±1°
813 * Input Power: DC 5~~24v
814 * Interface: RS485
815 * Working Temperature: -30℃~70℃
816 * Working Humidity: <100% (no dewing)
817 * Power Consumption: 13mA ~~ 12v.
818 * Cable Length: 2 meters
819
820
821
822
823 === 6.2.3 Dimension ===
824
825 [[image:image-20220624152813-2.png]]
826
827
828 === 6.2.4 Pin Mapping ===
829
830 [[image:1656056281231-994.png]]
831
832
833 === 6.2.5  Angle Mapping ===
834
835 [[image:1656056303845-585.png]]
836
837
838 === 6.2.6  Installation Notice ===
839
840 Do not power on while connect the cables. Double check the wiring before power on.
841
842 The sensor must be installed with below direction, towards North.
843
844 [[image:image-20220624153901-3.png]]
845
846
847 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
848
849
850 (((
851 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
852 )))
853
854 (((
855 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
856 )))
857
858 (((
859 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
860 )))
861
862
863 === 6.3.1 Feature ===
864
865 * RS485 CO2, PM2.5, PM10 sensor
866 * NDIR to measure CO2 with Internal Temperature Compensation
867 * Laser Beam Scattering to PM2.5 and PM10
868
869
870
871
872 === 6.3.2 Specification ===
873
874 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
875 * CO2 resolution: 1ppm
876 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
877 * PM2.5/PM10 resolution: 1μg/m3
878 * Input Power: DC 7 ~~ 24v
879 * Preheat time: 3min
880 * Interface: RS485
881 * Working Temperature:
882 ** CO2: 0℃~50℃;
883 ** PM2.5/PM10: -30 ~~ 50℃
884 * Working Humidity:
885 ** PM2.5/PM10: 15~80%RH (no dewing)
886 ** CO2: 0~95%RH
887 * Power Consumption: 50mA@ 12v.
888
889
890
891
892 === 6.3.3 Dimension ===
893
894 [[image:1656056708366-230.png]]
895
896
897 === 6.3.4 Pin Mapping ===
898
899 [[image:1656056722648-743.png]]
900
901
902 === 6.3.5 Installation Notice ===
903
904 Do not power on while connect the cables. Double check the wiring before power on.
905
906 [[image:1656057016033-551.png]]
907
908 [[image:1656056751153-304.png]]
909
910 [[image:1656056766224-773.png]]
911
912
913 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
914
915
916 (((
917 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
918 )))
919
920 (((
921 WSS-04 has auto heating feature, this ensures measurement more reliable.
922 )))
923
924 (((
925 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
926 )))
927
928
929
930 === 6.4.1 Feature ===
931
932 * RS485 Rain/Snow detect sensor
933 * Surface heating to dry
934 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
935
936
937
938
939 === 6.4.2 Specification ===
940
941 * Detect if there is rain or snow
942 * Input Power: DC 12 ~~ 24v
943 * Interface: RS485
944 * Working Temperature: -30℃~70℃
945 * Working Humidity: 10~90%RH
946 * Power Consumption:
947 ** No heating: 12mA @ 12v,
948 ** heating: 94ma @ 12v.
949
950
951
952
953 === 6.4.3 Dimension ===
954
955 [[image:1656056844782-155.png]]
956
957
958 === 6.4.4 Pin Mapping ===
959
960 [[image:1656056855590-754.png]]
961
962
963 === 6.4.5 Installation Notice ===
964
965 Do not power on while connect the cables. Double check the wiring before power on.
966
967
968 Install with 15°degree.
969
970 [[image:1656056873783-780.png]]
971
972
973 [[image:1656056883736-804.png]]
974
975
976 === 6.4.6 Heating ===
977
978 (((
979 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
980 )))
981
982
983 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
984
985
986 (((
987 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
988 )))
989
990 (((
991 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
992 )))
993
994
995 === 6.5.1 Feature ===
996
997 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
998
999
1000
1001
1002 === 6.5.2 Specification ===
1003
1004 * Input Power: DC 12 ~~ 24v
1005 * Interface: RS485
1006 * Temperature Sensor Spec:
1007 ** Range: -30 ~~ 70℃
1008 ** resolution 0.1℃
1009 ** Accuracy: ±0.5℃
1010 * Humidity Sensor Spec:
1011 ** Range: 0 ~~ 100% RH
1012 ** resolution 0.1 %RH
1013 ** Accuracy: 3% RH
1014 * Pressure Sensor Spec:
1015 ** Range: 10~1100hPa
1016 ** Resolution: 0.1hPa
1017 ** Accuracy: ±0.1hPa
1018 * Illuminate sensor:
1019 ** Range: 0~2/20/200kLux
1020 ** Resolution: 10 Lux
1021 ** Accuracy: ±3%FS
1022 * Working Temperature: -30℃~70℃
1023 * Working Humidity: 10~90%RH
1024 * Power Consumption: 4mA @ 12v
1025
1026
1027
1028
1029 === 6.5.3 Dimension ===
1030
1031 [[image:1656057170639-522.png]]
1032
1033
1034 === 6.5.4 Pin Mapping ===
1035
1036 [[image:1656057181899-910.png]]
1037
1038
1039 === 6.5.5 Installation Notice ===
1040
1041 Do not power on while connect the cables. Double check the wiring before power on.
1042
1043 [[image:1656057199955-514.png]]
1044
1045
1046 [[image:1656057212438-475.png]]
1047
1048
1049 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1050
1051
1052 (((
1053 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1054 )))
1055
1056 (((
1057 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1058 )))
1059
1060 (((
1061 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1062 )))
1063
1064
1065
1066 === 6.6.1 Feature ===
1067
1068 * RS485 Total Solar Radiation sensor
1069 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1070 * Measure Reflected Radiation if sense area towards ground.
1071
1072
1073
1074
1075 === 6.6.2 Specification ===
1076
1077 * Input Power: DC 5 ~~ 24v
1078 * Interface: RS485
1079 * Detect spectrum: 0.3~3μm(300~3000nm)
1080 * Measure strength range: 0~2000W/m2
1081 * Resolution: 0.1W/m2
1082 * Accuracy: ±3%
1083 * Yearly Stability: ≤±2%
1084 * Cosine response: ≤7% (@ Sun angle 10°)
1085 * Temperature Effect: ±2%(-10℃~40℃)
1086 * Working Temperature: -40℃~70℃
1087 * Working Humidity: 10~90%RH
1088 * Power Consumption: 4mA @ 12v
1089
1090
1091
1092
1093 === 6.6.3 Dimension ===
1094
1095 [[image:1656057348695-898.png]]
1096
1097
1098 === 6.6.4 Pin Mapping ===
1099
1100 [[image:1656057359343-744.png]]
1101
1102
1103 === 6.6.5 Installation Notice ===
1104
1105 Do not power on while connect the cables. Double check the wiring before power on.
1106
1107 [[image:1656057369259-804.png]]
1108
1109
1110 [[image:1656057377943-564.png]]
1111
1112
1113 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1114
1115
1116 (((
1117 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1118 )))
1119
1120 (((
1121 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1122 )))
1123
1124 (((
1125 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1126 )))
1127
1128
1129 === 6.7.1 Feature ===
1130
1131 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1132
1133 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1134
1135
1136 === 6.7.2 Specification ===
1137
1138 * Input Power: DC 5 ~~ 24v
1139 * Interface: RS485
1140 * Response Spectrum: 400~700nm
1141 * Measure range: 0~2500μmol/m2•s
1142 * Resolution: 1μmol/m2•s
1143 * Accuracy: ±2%
1144 * Yearly Stability: ≤±2%
1145 * Working Temperature: -30℃~75℃
1146 * Working Humidity: 10~90%RH
1147 * Power Consumption: 3mA @ 12v
1148
1149
1150
1151
1152 === 6.7.3 Dimension ===
1153
1154 [[image:1656057538793-888.png]]
1155
1156
1157 === 6.7.4 Pin Mapping ===
1158
1159 [[image:1656057548116-203.png]]
1160
1161
1162 === 6.7.5 Installation Notice ===
1163
1164 Do not power on while connect the cables. Double check the wiring before power on.
1165
1166
1167 [[image:1656057557191-895.png]]
1168
1169
1170 [[image:1656057565783-251.png]]
1171
1172
1173 = 7. FAQ =
1174
1175 == 7.1 What else do I need to purchase to build Weather Station? ==
1176
1177 Below is the installation photo and structure:
1178
1179 [[image:1656057598349-319.png]]
1180
1181
1182 [[image:1656057608049-693.png]]
1183
1184
1185
1186 == 7.2 How to upgrade firmware for WSC1-L? ==
1187
1188 (((
1189 Firmware Location & Change log:
1190 )))
1191
1192 (((
1193 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1194 )))
1195
1196
1197 (((
1198 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1199 )))
1200
1201
1202 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1203
1204 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1205
1206
1207 == 7.4 Can I add my weather sensors? ==
1208
1209 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1210
1211
1212 = 8. Trouble Shooting =
1213
1214 == 8.1 AT Command input doesn't work ==
1215
1216 (((
1217 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1218 )))
1219
1220
1221 = 9. Order Info =
1222
1223 == 9.1 Main Process Unit ==
1224
1225 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1226
1227 (% style="color:blue" %)**XX**(%%): The default frequency band
1228
1229 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1230 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1231 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1232 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1233 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1234 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1235 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1236 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1237
1238 == 9.2 Sensors ==
1239
1240 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1241 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1242 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1243 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1244 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1245 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1246 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1247 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1248 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1249 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1250
1251
1252 = 10. Support =
1253
1254 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1255 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1256
1257
1258 = 11. Appendix I: Field Installation Photo =
1259
1260
1261 [[image:1656058346362-132.png]]
1262
1263 **Storage Battery**: 12v,12AH li battery
1264
1265
1266
1267 **Wind Speed/Direction**
1268
1269 [[image:1656058373174-421.png]]
1270
1271
1272
1273 **Total Solar Radiation sensor**
1274
1275 [[image:1656058397364-282.png]]
1276
1277
1278
1279 **PAR Sensor**
1280
1281 [[image:1656058416171-615.png]]
1282
1283
1284
1285 **CO2/PM2.5/PM10 3 in 1 sensor**
1286
1287 [[image:1656058441194-827.png]]
1288
1289
1290
1291 **Rain / Snow Detect**
1292
1293 [[image:1656058451456-166.png]]
1294
1295
1296
1297 **Rain Gauge**
1298
1299 [[image:1656058463455-569.png]]