Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158
159 == 2.4 Uplink Payload ==
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 Below is an example payload:  [[image:image-20220624140615-3.png]]
308
309
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311
312 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
313
314 Uplink 1:  [[image:image-20220624140735-4.png]]
315
316 Uplink 2:  [[image:image-20220624140842-5.png]]
317
318
319 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
320
321 Uplink 1:  [[image:image-20220624141025-6.png]]
322
323 Uplink 2:  [[image:image-20220624141100-7.png]]
324
325
326
327
328 === 2.4.3 Decoder in TTN V3 ===
329
330 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
331
332
333 Download decoder for suitable platform from:
334
335 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
336
337 and put as below:
338
339 [[image:1656051152438-578.png]]
340
341
342
343 == 2.5 Show data on Application Server ==
344
345 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
346
347
348 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
349
350 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
351
352 [[image:1656051197172-131.png]]
353
354
355 **Add TagoIO:**
356
357 [[image:1656051223585-631.png]]
358
359
360 **Authorization:**
361
362 [[image:1656051248318-368.png]]
363
364
365 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
366
367 [[image:1656051277767-168.png]]
368
369
370
371 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
372
373 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
374
375 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
376 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
377
378 There are two kinds of commands to configure WSC1-L, they are:
379
380 * (% style="color:#4472c4" %)**General Commands**.
381
382 These commands are to configure:
383
384 * General system settings like: uplink interval.
385 * LoRaWAN protocol & radio related command.
386
387 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
388
389 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
390
391
392 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
393
394 These commands only valid for WSC1-L, as below:
395
396
397
398
399
400
401 == 3.1 Set Transmit Interval Time ==
402
403 Feature: Change LoRaWAN End Node Transmit Interval.
404
405 (% style="color:#037691" %)**AT Command: AT+TDC**
406
407 [[image:image-20220624142619-8.png]]
408
409
410 (% style="color:#037691" %)**Downlink Command: 0x01**
411
412 Format: Command Code (0x01) followed by 3 bytes time value.
413
414 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
415
416 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
417 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
418
419
420
421
422 == 3.2 Set Emergency Mode ==
423
424 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
425
426 (% style="color:#037691" %)**AT Command:**
427
428 [[image:image-20220624142956-9.png]]
429
430
431 (% style="color:#037691" %)**Downlink Command:**
432
433 * 0xE101     Same as: AT+ALARMMOD=1
434 * 0xE100     Same as: AT+ALARMMOD=0
435
436
437
438
439 == 3.3 Add or Delete RS485 Sensor ==
440
441 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
442
443 (% style="color:#037691" %)**AT Command: **
444
445 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
446
447 * Type_Code range:  A1 ~~ A4
448 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
449 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
450 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
451 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
452 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
453 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
454
455 **Example:**
456
457 User need to change external sensor use the type code as address code.
458
459 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
460
461 [[image:image-20220624143553-10.png]]
462
463
464 The response frame of the sensor is as follows:
465
466 [[image:image-20220624143618-11.png]]
467
468
469
470 **Then the following parameters should be:**
471
472 * Address_Code range: A1
473 * Query_Length: 8
474 * Query_Command: A103000000019CAA
475 * Read_Length: 8
476 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
477 * has_CRC: 1
478 * timeout: 1500 (Fill in the test according to the actual situation)
479
480 **So the input command is:**
481
482 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
483
484
485 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
486
487 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
488 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
489 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
490
491 **Related commands:**
492
493 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
494
495 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
496
497
498 (% style="color:#037691" %)**Downlink Command:  **
499
500 **delete custom sensor A1:**
501
502 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
503
504 **Remove all custom sensors**
505
506 * 0xE5FF  
507
508
509
510
511 == 3.4 RS485 Test Command ==
512
513 (% style="color:#037691" %)**AT Command:**
514
515 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
516 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
517 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
518 Send command to 485 sensor
519
520 Range : no more than 10 bytes
521 )))|(% style="width:85px" %)OK
522
523 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
524
525 AT+RSWRITE=0103000001840A
526
527
528 (% style="color:#037691" %)**Downlink Command:**
529
530 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
531
532
533
534
535 == 3.5 RS485 response timeout ==
536
537 Feature: Set or get extended time to receive 485 sensor data.
538
539 (% style="color:#037691" %)**AT Command:**
540
541 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
542 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
543 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
544 Set response timeout to:
545
546 Range : 0~~10000
547 )))|(% style="width:85px" %)OK
548
549 (% style="color:#037691" %)**Downlink Command:**
550
551 Format: Command Code (0xE0) followed by 3 bytes time value.
552
553 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
554
555 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
556 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
557
558
559
560
561 == 3.6 Set Sensor Type ==
562
563 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
564
565 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
566
567 [[image:image-20220624144904-12.png]]
568
569
570 (% style="color:#037691" %)**AT Command:**
571
572 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
573 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
574 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
575
576 Eg: The setting command **AT+STYPE=802212** means:
577
578 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
579 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
580 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
581 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
582 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
583 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
584 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
585
586 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
587
588
589 (% style="color:#037691" %)**Downlink Command:**
590
591 * 0xE400802212     Same as: AT+STYPE=80221
592
593 (% style="color:red" %)**Note:**
594
595 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
596
597
598
599
600 = 4. Power consumption and battery =
601
602 == 4.1 Total Power Consumption ==
603
604 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
605
606
607 == 4.2 Reduce power consumption ==
608
609 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
610
611
612 == 4.3 Battery ==
613
614 (((
615 All sensors are only power by external power source. If external power source is off. All sensor won't work.
616 )))
617
618 (((
619 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
620 )))
621
622
623 = 5. Main Process Unit WSC1-L =
624
625 == 5.1 Features ==
626
627 * Wall Attachable.
628 * LoRaWAN v1.0.3 Class A protocol.
629 * RS485 / Modbus protocol
630 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
631 * AT Commands to change parameters
632 * Remote configure parameters via LoRaWAN Downlink
633 * Firmware upgradable via program port
634 * Powered by external 12v battery
635 * Back up rechargeable 1000mAh battery
636 * IP Rating: IP65
637 * Support default sensors or 3rd party RS485 sensors
638
639
640
641
642 == 5.2 Power Consumption ==
643
644 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
645
646
647 == 5.3 Storage & Operation Temperature ==
648
649 -20°C to +60°C
650
651
652 == 5.4 Pin Mapping ==
653
654 [[image:1656054149793-239.png]]
655
656
657 == 5.5 Mechanical ==
658
659 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
660
661
662 == 5.6 Connect to RS485 Sensors ==
663
664 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
665
666
667 [[image:1656054389031-379.png]]
668
669
670 Hardware Design for the Converter Board please see:
671
672 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
673
674
675 = 6. Weather Sensors =
676
677 == 6.1 Rain Gauge ~-~- WSS-01 ==
678
679
680 (((
681 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
682 )))
683
684 (((
685 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
686 )))
687
688 (((
689 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
690 )))
691
692 (((
693 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
694 )))
695
696 (((
697 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
698 )))
699
700
701 === 6.1.1 Feature ===
702
703 * RS485 Rain Gauge
704 * Small dimension, easy to install
705 * Vents under funnel, avoid leaf or other things to avoid rain flow.
706 * ABS enclosure.
707 * Horizontal adjustable.
708
709
710
711
712 === 6.1.2 Specification ===
713
714 * Resolution: 0.2mm
715 * Accuracy: ±3%
716 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
717 * Input Power: DC 5~~24v
718 * Interface: RS485
719 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
720 * Working Humidity: <100% (no dewing)
721 * Power Consumption: 4mA @ 12v.
722
723
724
725
726 === 6.1.3 Dimension ===
727
728 [[image:1656054957406-980.png]]
729
730
731 === 6.1.4 Pin Mapping ===
732
733 [[image:1656054972828-692.png]]
734
735
736 === 6.1.5 Installation Notice ===
737
738 Do not power on while connect the cables. Double check the wiring before power on.
739
740 Installation Photo as reference:
741
742
743 (% style="color:#4472c4" %)** Install on Ground:**
744
745 WSS-01 Rain Gauge include screws so can install in ground directly .
746
747
748 (% style="color:#4472c4" %)** Install on pole:**
749
750 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
751
752 [[image:image-20220624152218-1.png||height="526" width="276"]]
753
754 WS-K2: Bracket Kit for Pole installation
755
756
757 WSSC-K2 dimension document, please see:
758
759 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
760
761
762 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
763
764 [[image:1656055444035-179.png]]
765
766 (((
767 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
768 )))
769
770 (((
771 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
772 )))
773
774 (((
775 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
776 )))
777
778
779 === 6.2.1 Feature ===
780
781 * RS485 wind speed / direction sensor
782 * PC enclosure, resist corrosion
783
784
785
786
787 === 6.2.2 Specification ===
788
789 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
790 * Wind direction range: 0 ~~ 360°
791 * Start wind speed: ≤0.3m/s
792 * Accuracy: ±(0.3+0.03V)m/s , ±1°
793 * Input Power: DC 5~~24v
794 * Interface: RS485
795 * Working Temperature: -30℃~70℃
796 * Working Humidity: <100% (no dewing)
797 * Power Consumption: 13mA ~~ 12v.
798 * Cable Length: 2 meters
799
800
801
802
803 === 6.2.3 Dimension ===
804
805 [[image:image-20220624152813-2.png]]
806
807
808 === 6.2.4 Pin Mapping ===
809
810 [[image:1656056281231-994.png]]
811
812
813 === 6.2.5  Angle Mapping ===
814
815 [[image:1656056303845-585.png]]
816
817
818 === 6.2.6  Installation Notice ===
819
820 Do not power on while connect the cables. Double check the wiring before power on.
821
822 The sensor must be installed with below direction, towards North.
823
824 [[image:image-20220624153901-3.png]]
825
826
827 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
828
829
830 (((
831 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
832 )))
833
834 (((
835 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
836 )))
837
838 (((
839 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
840 )))
841
842
843 === 6.3.1 Feature ===
844
845 * RS485 CO2, PM2.5, PM10 sensor
846 * NDIR to measure CO2 with Internal Temperature Compensation
847 * Laser Beam Scattering to PM2.5 and PM10
848
849
850
851
852 === 6.3.2 Specification ===
853
854 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
855 * CO2 resolution: 1ppm
856 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
857 * PM2.5/PM10 resolution: 1μg/m3
858 * Input Power: DC 7 ~~ 24v
859 * Preheat time: 3min
860 * Interface: RS485
861 * Working Temperature:
862 ** CO2: 0℃~50℃;
863 ** PM2.5/PM10: -30 ~~ 50℃
864 * Working Humidity:
865 ** PM2.5/PM10: 15~80%RH (no dewing)
866 ** CO2: 0~95%RH
867 * Power Consumption: 50mA@ 12v.
868
869
870
871
872 === 6.3.3 Dimension ===
873
874 [[image:1656056708366-230.png]]
875
876
877 === 6.3.4 Pin Mapping ===
878
879 [[image:1656056722648-743.png]]
880
881
882 === 6.3.5 Installation Notice ===
883
884 Do not power on while connect the cables. Double check the wiring before power on.
885
886 [[image:1656057016033-551.png]]
887
888 [[image:1656056751153-304.png]]
889
890 [[image:1656056766224-773.png]]
891
892
893 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
894
895
896 (((
897 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
898 )))
899
900 (((
901 WSS-04 has auto heating feature, this ensures measurement more reliable.
902 )))
903
904 (((
905 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
906 )))
907
908
909
910 === 6.4.1 Feature ===
911
912 * RS485 Rain/Snow detect sensor
913 * Surface heating to dry
914 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
915
916
917
918
919 === 6.4.2 Specification ===
920
921 * Detect if there is rain or snow
922 * Input Power: DC 12 ~~ 24v
923 * Interface: RS485
924 * Working Temperature: -30℃~70℃
925 * Working Humidity: 10~90%RH
926 * Power Consumption:
927 ** No heating: 12mA @ 12v,
928 ** heating: 94ma @ 12v.
929
930
931
932
933 === 6.4.3 Dimension ===
934
935 [[image:1656056844782-155.png]]
936
937
938 === 6.4.4 Pin Mapping ===
939
940 [[image:1656056855590-754.png]]
941
942
943 === 6.4.5 Installation Notice ===
944
945 Do not power on while connect the cables. Double check the wiring before power on.
946
947
948 Install with 15°degree.
949
950 [[image:1656056873783-780.png]]
951
952
953 [[image:1656056883736-804.png]]
954
955
956 === 6.4.6 Heating ===
957
958 (((
959 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
960 )))
961
962
963 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
964
965
966 (((
967 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
968 )))
969
970 (((
971 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
972 )))
973
974
975 === 6.5.1 Feature ===
976
977 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
978
979
980
981
982 === 6.5.2 Specification ===
983
984 * Input Power: DC 12 ~~ 24v
985 * Interface: RS485
986 * Temperature Sensor Spec:
987 ** Range: -30 ~~ 70℃
988 ** resolution 0.1℃
989 ** Accuracy: ±0.5℃
990 * Humidity Sensor Spec:
991 ** Range: 0 ~~ 100% RH
992 ** resolution 0.1 %RH
993 ** Accuracy: 3% RH
994 * Pressure Sensor Spec:
995 ** Range: 10~1100hPa
996 ** Resolution: 0.1hPa
997 ** Accuracy: ±0.1hPa
998 * Illuminate sensor:
999 ** Range: 0~2/20/200kLux
1000 ** Resolution: 10 Lux
1001 ** Accuracy: ±3%FS
1002 * Working Temperature: -30℃~70℃
1003 * Working Humidity: 10~90%RH
1004 * Power Consumption: 4mA @ 12v
1005
1006
1007
1008
1009 === 6.5.3 Dimension ===
1010
1011 [[image:1656057170639-522.png]]
1012
1013
1014 === 6.5.4 Pin Mapping ===
1015
1016 [[image:1656057181899-910.png]]
1017
1018
1019 === 6.5.5 Installation Notice ===
1020
1021 Do not power on while connect the cables. Double check the wiring before power on.
1022
1023 [[image:1656057199955-514.png]]
1024
1025
1026 [[image:1656057212438-475.png]]
1027
1028
1029 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1030
1031
1032 (((
1033 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1034 )))
1035
1036 (((
1037 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1038 )))
1039
1040 (((
1041 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1042 )))
1043
1044
1045
1046 === 6.6.1 Feature ===
1047
1048 * RS485 Total Solar Radiation sensor
1049 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1050 * Measure Reflected Radiation if sense area towards ground.
1051
1052
1053
1054
1055 === 6.6.2 Specification ===
1056
1057 * Input Power: DC 5 ~~ 24v
1058 * Interface: RS485
1059 * Detect spectrum: 0.3~3μm(300~3000nm)
1060 * Measure strength range: 0~2000W/m2
1061 * Resolution: 0.1W/m2
1062 * Accuracy: ±3%
1063 * Yearly Stability: ≤±2%
1064 * Cosine response: ≤7% (@ Sun angle 10°)
1065 * Temperature Effect: ±2%(-10℃~40℃)
1066 * Working Temperature: -40℃~70℃
1067 * Working Humidity: 10~90%RH
1068 * Power Consumption: 4mA @ 12v
1069
1070
1071
1072
1073 === 6.6.3 Dimension ===
1074
1075 [[image:1656057348695-898.png]]
1076
1077
1078 === 6.6.4 Pin Mapping ===
1079
1080 [[image:1656057359343-744.png]]
1081
1082
1083 === 6.6.5 Installation Notice ===
1084
1085 Do not power on while connect the cables. Double check the wiring before power on.
1086
1087 [[image:1656057369259-804.png]]
1088
1089
1090 [[image:1656057377943-564.png]]
1091
1092
1093 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1094
1095
1096 (((
1097 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1098 )))
1099
1100 (((
1101 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1102 )))
1103
1104 (((
1105 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1106 )))
1107
1108
1109 === 6.7.1 Feature ===
1110
1111 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1112
1113 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1114
1115
1116 === 6.7.2 Specification ===
1117
1118 * Input Power: DC 5 ~~ 24v
1119 * Interface: RS485
1120 * Response Spectrum: 400~700nm
1121 * Measure range: 0~2500μmol/m2•s
1122 * Resolution: 1μmol/m2•s
1123 * Accuracy: ±2%
1124 * Yearly Stability: ≤±2%
1125 * Working Temperature: -30℃~75℃
1126 * Working Humidity: 10~90%RH
1127 * Power Consumption: 3mA @ 12v
1128
1129
1130
1131
1132 === 6.7.3 Dimension ===
1133
1134 [[image:1656057538793-888.png]]
1135
1136
1137 === 6.7.4 Pin Mapping ===
1138
1139 [[image:1656057548116-203.png]]
1140
1141
1142 === 6.7.5 Installation Notice ===
1143
1144 Do not power on while connect the cables. Double check the wiring before power on.
1145
1146
1147 [[image:1656057557191-895.png]]
1148
1149
1150 [[image:1656057565783-251.png]]
1151
1152
1153 = 7. FAQ =
1154
1155 == 7.1 What else do I need to purchase to build Weather Station? ==
1156
1157 Below is the installation photo and structure:
1158
1159 [[image:1656057598349-319.png]]
1160
1161
1162 [[image:1656057608049-693.png]]
1163
1164
1165
1166 == 7.2 How to upgrade firmware for WSC1-L? ==
1167
1168 (((
1169 Firmware Location & Change log:
1170 )))
1171
1172 (((
1173 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1174 )))
1175
1176
1177 (((
1178 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1179 )))
1180
1181
1182 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1183
1184 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1185
1186
1187 == 7.4 Can I add my weather sensors? ==
1188
1189 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1190
1191
1192 = 8. Trouble Shooting =
1193
1194 == 8.1 AT Command input doesn't work ==
1195
1196 (((
1197 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1198 )))
1199
1200
1201 = 9. Order Info =
1202
1203 == 9.1 Main Process Unit ==
1204
1205 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1206
1207 (% style="color:blue" %)**XX**(%%): The default frequency band
1208
1209 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1210 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1211 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1212 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1213 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1214 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1215 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1216 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1217
1218 == 9.2 Sensors ==
1219
1220 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1221 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1222 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1223 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1224 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1225 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1226 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1227 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1228 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1229 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1230
1231
1232 = 10. Support =
1233
1234 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1235 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1236
1237
1238 = 11. Appendix I: Field Installation Photo =
1239
1240
1241 [[image:1656058346362-132.png]]
1242
1243 **Storage Battery**: 12v,12AH li battery
1244
1245
1246
1247 **Wind Speed/Direction**
1248
1249 [[image:1656058373174-421.png]]
1250
1251
1252
1253 **Total Solar Radiation sensor**
1254
1255 [[image:1656058397364-282.png]]
1256
1257
1258
1259 **PAR Sensor**
1260
1261 [[image:1656058416171-615.png]]
1262
1263
1264
1265 **CO2/PM2.5/PM10 3 in 1 sensor**
1266
1267 [[image:1656058441194-827.png]]
1268
1269
1270
1271 **Rain / Snow Detect**
1272
1273 [[image:1656058451456-166.png]]
1274
1275
1276
1277 **Rain Gauge**
1278
1279 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0