Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158
159 == 2.4 Uplink Payload ==
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 shows the battery voltage for WSC1-L MCU.
234
235 Ex1: 0x0BD6/1000 = 3.03 V
236
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
242 |Byte3|Byte2|Byte1
243
244 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
245
246 [[image:image-20220624134713-1.png]]
247
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 [[image:image-20220624140352-2.png]]
301
302
303 Below is an example payload:  [[image:image-20220624140615-3.png]]
304
305
306 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
307
308 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
309
310 Uplink 1:  [[image:image-20220624140735-4.png]]
311
312 Uplink 2:  [[image:image-20220624140842-5.png]]
313
314
315 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
316
317 Uplink 1:  [[image:image-20220624141025-6.png]]
318
319 Uplink 2:  [[image:image-20220624141100-7.png]]
320
321
322
323
324 === 2.4.3 Decoder in TTN V3 ===
325
326 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
327
328
329 Download decoder for suitable platform from:
330
331 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
332
333 and put as below:
334
335 [[image:1656051152438-578.png]]
336
337
338
339 == 2.5 Show data on Application Server ==
340
341 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
342
343
344 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
345
346 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
347
348 [[image:1656051197172-131.png]]
349
350
351 **Add TagoIO:**
352
353 [[image:1656051223585-631.png]]
354
355
356 **Authorization:**
357
358 [[image:1656051248318-368.png]]
359
360
361 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
362
363 [[image:1656051277767-168.png]]
364
365
366
367 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
368
369 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
370
371 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
372 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
373
374 There are two kinds of commands to configure WSC1-L, they are:
375
376 * (% style="color:#4472c4" %)**General Commands**.
377
378 These commands are to configure:
379
380 * General system settings like: uplink interval.
381 * LoRaWAN protocol & radio related command.
382
383 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
384
385 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
386
387
388 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
389
390 These commands only valid for WSC1-L, as below:
391
392
393
394
395
396
397 == 3.1 Set Transmit Interval Time ==
398
399 Feature: Change LoRaWAN End Node Transmit Interval.
400
401 (% style="color:#037691" %)**AT Command: AT+TDC**
402
403 [[image:image-20220624142619-8.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command: 0x01**
407
408 Format: Command Code (0x01) followed by 3 bytes time value.
409
410 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
411
412 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
413 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
414
415
416
417
418 == 3.2 Set Emergency Mode ==
419
420 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
421
422 (% style="color:#037691" %)**AT Command:**
423
424 [[image:image-20220624142956-9.png]]
425
426
427 (% style="color:#037691" %)**Downlink Command:**
428
429 * 0xE101     Same as: AT+ALARMMOD=1
430 * 0xE100     Same as: AT+ALARMMOD=0
431
432
433
434
435 == 3.3 Add or Delete RS485 Sensor ==
436
437 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
438
439 (% style="color:#037691" %)**AT Command: **
440
441 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
442
443 * Type_Code range:  A1 ~~ A4
444 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
445 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
446 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
447 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
448 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
449 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
450
451 **Example:**
452
453 User need to change external sensor use the type code as address code.
454
455 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
456
457 [[image:image-20220624143553-10.png]]
458
459
460 The response frame of the sensor is as follows:
461
462 [[image:image-20220624143618-11.png]]
463
464
465
466 **Then the following parameters should be:**
467
468 * Address_Code range: A1
469 * Query_Length: 8
470 * Query_Command: A103000000019CAA
471 * Read_Length: 8
472 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
473 * has_CRC: 1
474 * timeout: 1500 (Fill in the test according to the actual situation)
475
476 **So the input command is:**
477
478 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
479
480
481 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
482
483 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
484 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
485 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
486
487 **Related commands:**
488
489 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
490
491 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
492
493
494 (% style="color:#037691" %)**Downlink Command:  **
495
496 **delete custom sensor A1:**
497
498 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
499
500 **Remove all custom sensors**
501
502 * 0xE5FF  
503
504
505
506
507 == 3.4 RS485 Test Command ==
508
509 (% style="color:#037691" %)**AT Command:**
510
511 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
512 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
513 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
514 Send command to 485 sensor
515
516 Range : no more than 10 bytes
517 )))|(% style="width:85px" %)OK
518
519 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
520
521 AT+RSWRITE=0103000001840A
522
523
524 (% style="color:#037691" %)**Downlink Command:**
525
526 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
527
528
529
530
531 == 3.5 RS485 response timeout ==
532
533 Feature: Set or get extended time to receive 485 sensor data.
534
535 (% style="color:#037691" %)**AT Command:**
536
537 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
538 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
539 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
540 Set response timeout to:
541
542 Range : 0~~10000
543 )))|(% style="width:85px" %)OK
544
545 (% style="color:#037691" %)**Downlink Command:**
546
547 Format: Command Code (0xE0) followed by 3 bytes time value.
548
549 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
550
551 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
552 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
553
554
555
556
557 == 3.6 Set Sensor Type ==
558
559 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
560
561 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
562
563 [[image:image-20220624144904-12.png]]
564
565
566 (% style="color:#037691" %)**AT Command:**
567
568 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
569 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
570 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
571
572 Eg: The setting command **AT+STYPE=802212** means:
573
574 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
575 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
576 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
577 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
578 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
579 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
580 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
581
582 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
583
584
585 (% style="color:#037691" %)**Downlink Command:**
586
587 * 0xE400802212     Same as: AT+STYPE=80221
588
589 (% style="color:red" %)**Note:**
590
591 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
592
593
594
595
596 = 4. Power consumption and battery =
597
598 == 4.1 Total Power Consumption ==
599
600 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
601
602
603 == 4.2 Reduce power consumption ==
604
605 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
606
607
608 == 4.3 Battery ==
609
610 (((
611 All sensors are only power by external power source. If external power source is off. All sensor won't work.
612 )))
613
614 (((
615 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
616 )))
617
618
619 = 5. Main Process Unit WSC1-L =
620
621 == 5.1 Features ==
622
623 * Wall Attachable.
624 * LoRaWAN v1.0.3 Class A protocol.
625 * RS485 / Modbus protocol
626 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
627 * AT Commands to change parameters
628 * Remote configure parameters via LoRaWAN Downlink
629 * Firmware upgradable via program port
630 * Powered by external 12v battery
631 * Back up rechargeable 1000mAh battery
632 * IP Rating: IP65
633 * Support default sensors or 3rd party RS485 sensors
634
635
636
637
638 == 5.2 Power Consumption ==
639
640 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
641
642
643 == 5.3 Storage & Operation Temperature ==
644
645 -20°C to +60°C
646
647
648 == 5.4 Pin Mapping ==
649
650 [[image:1656054149793-239.png]]
651
652
653 == 5.5 Mechanical ==
654
655 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
656
657
658 == 5.6 Connect to RS485 Sensors ==
659
660 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
661
662
663 [[image:1656054389031-379.png]]
664
665
666 Hardware Design for the Converter Board please see:
667
668 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
669
670
671 = 6. Weather Sensors =
672
673 == 6.1 Rain Gauge ~-~- WSS-01 ==
674
675
676 (((
677 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
678 )))
679
680 (((
681 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
682 )))
683
684 (((
685 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
686 )))
687
688 (((
689 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
690 )))
691
692 (((
693 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
694 )))
695
696
697 === 6.1.1 Feature ===
698
699 * RS485 Rain Gauge
700 * Small dimension, easy to install
701 * Vents under funnel, avoid leaf or other things to avoid rain flow.
702 * ABS enclosure.
703 * Horizontal adjustable.
704
705
706
707
708 === 6.1.2 Specification ===
709
710 * Resolution: 0.2mm
711 * Accuracy: ±3%
712 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
713 * Input Power: DC 5~~24v
714 * Interface: RS485
715 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
716 * Working Humidity: <100% (no dewing)
717 * Power Consumption: 4mA @ 12v.
718
719
720
721
722 === 6.1.3 Dimension ===
723
724 [[image:1656054957406-980.png]]
725
726
727 === 6.1.4 Pin Mapping ===
728
729 [[image:1656054972828-692.png]]
730
731
732 === 6.1.5 Installation Notice ===
733
734 Do not power on while connect the cables. Double check the wiring before power on.
735
736 Installation Photo as reference:
737
738
739 (% style="color:#4472c4" %)** Install on Ground:**
740
741 WSS-01 Rain Gauge include screws so can install in ground directly .
742
743
744 (% style="color:#4472c4" %)** Install on pole:**
745
746 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
747
748 [[image:image-20220624152218-1.png||height="526" width="276"]]
749
750 WS-K2: Bracket Kit for Pole installation
751
752
753 WSSC-K2 dimension document, please see:
754
755 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
756
757
758 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
759
760 [[image:1656055444035-179.png]]
761
762 (((
763 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
764 )))
765
766 (((
767 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
768 )))
769
770 (((
771 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
772 )))
773
774
775 === 6.2.1 Feature ===
776
777 * RS485 wind speed / direction sensor
778 * PC enclosure, resist corrosion
779
780
781
782
783 === 6.2.2 Specification ===
784
785 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
786 * Wind direction range: 0 ~~ 360°
787 * Start wind speed: ≤0.3m/s
788 * Accuracy: ±(0.3+0.03V)m/s , ±1°
789 * Input Power: DC 5~~24v
790 * Interface: RS485
791 * Working Temperature: -30℃~70℃
792 * Working Humidity: <100% (no dewing)
793 * Power Consumption: 13mA ~~ 12v.
794 * Cable Length: 2 meters
795
796
797
798
799 === 6.2.3 Dimension ===
800
801 [[image:image-20220624152813-2.png]]
802
803
804 === 6.2.4 Pin Mapping ===
805
806 [[image:1656056281231-994.png]]
807
808
809 === 6.2.5  Angle Mapping ===
810
811 [[image:1656056303845-585.png]]
812
813
814 === 6.2.6  Installation Notice ===
815
816 Do not power on while connect the cables. Double check the wiring before power on.
817
818 The sensor must be installed with below direction, towards North.
819
820 [[image:image-20220624153901-3.png]]
821
822
823 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
824
825
826 (((
827 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
828 )))
829
830 (((
831 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
832 )))
833
834 (((
835 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
836 )))
837
838
839 === 6.3.1 Feature ===
840
841 * RS485 CO2, PM2.5, PM10 sensor
842 * NDIR to measure CO2 with Internal Temperature Compensation
843 * Laser Beam Scattering to PM2.5 and PM10
844
845
846
847
848 === 6.3.2 Specification ===
849
850 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
851 * CO2 resolution: 1ppm
852 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
853 * PM2.5/PM10 resolution: 1μg/m3
854 * Input Power: DC 7 ~~ 24v
855 * Preheat time: 3min
856 * Interface: RS485
857 * Working Temperature:
858 ** CO2: 0℃~50℃;
859 ** PM2.5/PM10: -30 ~~ 50℃
860 * Working Humidity:
861 ** PM2.5/PM10: 15~80%RH (no dewing)
862 ** CO2: 0~95%RH
863 * Power Consumption: 50mA@ 12v.
864
865
866
867
868 === 6.3.3 Dimension ===
869
870 [[image:1656056708366-230.png]]
871
872
873 === 6.3.4 Pin Mapping ===
874
875 [[image:1656056722648-743.png]]
876
877
878 === 6.3.5 Installation Notice ===
879
880 Do not power on while connect the cables. Double check the wiring before power on.
881
882 [[image:1656057016033-551.png]]
883
884 [[image:1656056751153-304.png]]
885
886 [[image:1656056766224-773.png]]
887
888
889 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
890
891
892 (((
893 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
894 )))
895
896 (((
897 WSS-04 has auto heating feature, this ensures measurement more reliable.
898 )))
899
900 (((
901 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
902 )))
903
904
905
906 === 6.4.1 Feature ===
907
908 * RS485 Rain/Snow detect sensor
909 * Surface heating to dry
910 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
911
912
913
914
915 === 6.4.2 Specification ===
916
917 * Detect if there is rain or snow
918 * Input Power: DC 12 ~~ 24v
919 * Interface: RS485
920 * Working Temperature: -30℃~70℃
921 * Working Humidity: 10~90%RH
922 * Power Consumption:
923 ** No heating: 12mA @ 12v,
924 ** heating: 94ma @ 12v.
925
926
927
928
929 === 6.4.3 Dimension ===
930
931 [[image:1656056844782-155.png]]
932
933
934 === 6.4.4 Pin Mapping ===
935
936 [[image:1656056855590-754.png]]
937
938
939 === 6.4.5 Installation Notice ===
940
941 Do not power on while connect the cables. Double check the wiring before power on.
942
943
944 Install with 15°degree.
945
946 [[image:1656056873783-780.png]]
947
948
949 [[image:1656056883736-804.png]]
950
951
952 === 6.4.6 Heating ===
953
954 (((
955 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
956 )))
957
958
959 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
960
961
962 (((
963 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
964 )))
965
966 (((
967 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
968 )))
969
970
971 === 6.5.1 Feature ===
972
973 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
974
975
976
977
978 === 6.5.2 Specification ===
979
980 * Input Power: DC 12 ~~ 24v
981 * Interface: RS485
982 * Temperature Sensor Spec:
983 ** Range: -30 ~~ 70℃
984 ** resolution 0.1℃
985 ** Accuracy: ±0.5℃
986 * Humidity Sensor Spec:
987 ** Range: 0 ~~ 100% RH
988 ** resolution 0.1 %RH
989 ** Accuracy: 3% RH
990 * Pressure Sensor Spec:
991 ** Range: 10~1100hPa
992 ** Resolution: 0.1hPa
993 ** Accuracy: ±0.1hPa
994 * Illuminate sensor:
995 ** Range: 0~2/20/200kLux
996 ** Resolution: 10 Lux
997 ** Accuracy: ±3%FS
998 * Working Temperature: -30℃~70℃
999 * Working Humidity: 10~90%RH
1000 * Power Consumption: 4mA @ 12v
1001
1002
1003
1004
1005 === 6.5.3 Dimension ===
1006
1007 [[image:1656057170639-522.png]]
1008
1009
1010 === 6.5.4 Pin Mapping ===
1011
1012 [[image:1656057181899-910.png]]
1013
1014
1015 === 6.5.5 Installation Notice ===
1016
1017 Do not power on while connect the cables. Double check the wiring before power on.
1018
1019 [[image:1656057199955-514.png]]
1020
1021
1022 [[image:1656057212438-475.png]]
1023
1024
1025 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1026
1027
1028 (((
1029 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1030 )))
1031
1032 (((
1033 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1034 )))
1035
1036 (((
1037 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1038 )))
1039
1040
1041
1042 === 6.6.1 Feature ===
1043
1044 * RS485 Total Solar Radiation sensor
1045 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1046 * Measure Reflected Radiation if sense area towards ground.
1047
1048
1049
1050
1051 === 6.6.2 Specification ===
1052
1053 * Input Power: DC 5 ~~ 24v
1054 * Interface: RS485
1055 * Detect spectrum: 0.3~3μm(300~3000nm)
1056 * Measure strength range: 0~2000W/m2
1057 * Resolution: 0.1W/m2
1058 * Accuracy: ±3%
1059 * Yearly Stability: ≤±2%
1060 * Cosine response: ≤7% (@ Sun angle 10°)
1061 * Temperature Effect: ±2%(-10℃~40℃)
1062 * Working Temperature: -40℃~70℃
1063 * Working Humidity: 10~90%RH
1064 * Power Consumption: 4mA @ 12v
1065
1066
1067
1068
1069 === 6.6.3 Dimension ===
1070
1071 [[image:1656057348695-898.png]]
1072
1073
1074 === 6.6.4 Pin Mapping ===
1075
1076 [[image:1656057359343-744.png]]
1077
1078
1079 === 6.6.5 Installation Notice ===
1080
1081 Do not power on while connect the cables. Double check the wiring before power on.
1082
1083 [[image:1656057369259-804.png]]
1084
1085
1086 [[image:1656057377943-564.png]]
1087
1088
1089 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1090
1091
1092 (((
1093 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1094 )))
1095
1096 (((
1097 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1098 )))
1099
1100 (((
1101 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1102 )))
1103
1104
1105 === 6.7.1 Feature ===
1106
1107 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1108
1109 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1110
1111
1112 === 6.7.2 Specification ===
1113
1114 * Input Power: DC 5 ~~ 24v
1115 * Interface: RS485
1116 * Response Spectrum: 400~700nm
1117 * Measure range: 0~2500μmol/m2•s
1118 * Resolution: 1μmol/m2•s
1119 * Accuracy: ±2%
1120 * Yearly Stability: ≤±2%
1121 * Working Temperature: -30℃~75℃
1122 * Working Humidity: 10~90%RH
1123 * Power Consumption: 3mA @ 12v
1124
1125
1126
1127
1128 === 6.7.3 Dimension ===
1129
1130 [[image:1656057538793-888.png]]
1131
1132
1133 === 6.7.4 Pin Mapping ===
1134
1135 [[image:1656057548116-203.png]]
1136
1137
1138 === 6.7.5 Installation Notice ===
1139
1140 Do not power on while connect the cables. Double check the wiring before power on.
1141
1142
1143 [[image:1656057557191-895.png]]
1144
1145
1146 [[image:1656057565783-251.png]]
1147
1148
1149 = 7. FAQ =
1150
1151 == 7.1 What else do I need to purchase to build Weather Station? ==
1152
1153 Below is the installation photo and structure:
1154
1155 [[image:1656057598349-319.png]]
1156
1157
1158 [[image:1656057608049-693.png]]
1159
1160
1161
1162 == 7.2 How to upgrade firmware for WSC1-L? ==
1163
1164 (((
1165 Firmware Location & Change log:
1166 )))
1167
1168 (((
1169 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1170 )))
1171
1172
1173 (((
1174 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1175 )))
1176
1177
1178 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1179
1180 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1181
1182
1183 == 7.4 Can I add my weather sensors? ==
1184
1185 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1186
1187
1188 = 8. Trouble Shooting =
1189
1190 == 8.1 AT Command input doesn't work ==
1191
1192 (((
1193 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1194 )))
1195
1196
1197 = 9. Order Info =
1198
1199 == 9.1 Main Process Unit ==
1200
1201 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1202
1203 (% style="color:blue" %)**XX**(%%): The default frequency band
1204
1205 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1206 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1207 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1208 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1209 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1210 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1211 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1212 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1213
1214 == 9.2 Sensors ==
1215
1216 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1217 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1218 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1219 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1220 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1221 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1222 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1223 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1224 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1225 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1226
1227
1228 = 10. Support =
1229
1230 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1231 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1232
1233
1234 = 11. Appendix I: Field Installation Photo =
1235
1236
1237 [[image:1656058346362-132.png]]
1238
1239 **Storage Battery**: 12v,12AH li battery
1240
1241
1242
1243 **Wind Speed/Direction**
1244
1245 [[image:1656058373174-421.png]]
1246
1247
1248
1249 **Total Solar Radiation sensor**
1250
1251 [[image:1656058397364-282.png]]
1252
1253
1254
1255 **PAR Sensor**
1256
1257 [[image:1656058416171-615.png]]
1258
1259
1260
1261 **CO2/PM2.5/PM10 3 in 1 sensor**
1262
1263 [[image:1656058441194-827.png]]
1264
1265
1266
1267 **Rain / Snow Detect**
1268
1269 [[image:1656058451456-166.png]]
1270
1271
1272
1273 **Rain Gauge**
1274
1275 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0