Version 79.4 by Xiaoling on 2022/06/24 16:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151
152
153 [[image:1656042745346-283.png]]
154
155
156
157 == 2.4 Uplink Payload ==
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164
165
166
167 === 2.4.1 Uplink FPORT~=5, Device Status ===
168
169 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
170
171
172 (((
173 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
174 )))
175
176 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
177 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
178 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
179
180 [[image:1656043061044-343.png]]
181
182
183 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
184
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC1-L, this value is 0x0D.
190
191
192
193 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
194
195 0x0100, Means: v1.0.0 version.
196
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201 *0x01: EU868
202
203 *0x02: US915
204
205 *0x03: IN865
206
207 *0x04: AU915
208
209 *0x05: KZ865
210
211 *0x06: RU864
212
213 *0x07: AS923
214
215 *0x08: AS923-1
216
217 *0x09: AS923-2
218
219 *0x0a: AS923-3
220
221
222
223 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
224
225 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
226
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 shows the battery voltage for WSC1-L MCU.
232
233 Ex1: 0x0BD6/1000 = 3.03 V
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220624140352-2.png]]
299
300
301 Below is an example payload:  [[image:image-20220624140615-3.png]]
302
303
304 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
305
306 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
307
308 Uplink 1:  [[image:image-20220624140735-4.png]]
309
310 Uplink 2:  [[image:image-20220624140842-5.png]]
311
312
313 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
314
315 Uplink 1:  [[image:image-20220624141025-6.png]]
316
317 Uplink 2:  [[image:image-20220624141100-7.png]]
318
319
320
321
322 === 2.4.3 Decoder in TTN V3 ===
323
324 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
325
326
327 Download decoder for suitable platform from:
328
329 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
330
331 and put as below:
332
333 [[image:1656051152438-578.png]]
334
335
336
337 == 2.5 Show data on Application Server ==
338
339 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
340
341
342 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
343
344 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
345
346 [[image:1656051197172-131.png]]
347
348
349 **Add TagoIO:**
350
351 [[image:1656051223585-631.png]]
352
353
354 **Authorization:**
355
356 [[image:1656051248318-368.png]]
357
358
359 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
360
361 [[image:1656051277767-168.png]]
362
363
364
365 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
366
367 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
368
369 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
370 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
371
372 There are two kinds of commands to configure WSC1-L, they are:
373
374 * (% style="color:#4472c4" %)**General Commands**.
375
376 These commands are to configure:
377
378 * General system settings like: uplink interval.
379 * LoRaWAN protocol & radio related command.
380
381 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
382
383 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
384
385
386 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
387
388 These commands only valid for WSC1-L, as below:
389
390
391
392
393
394
395 == 3.1 Set Transmit Interval Time ==
396
397 Feature: Change LoRaWAN End Node Transmit Interval.
398
399 (% style="color:#037691" %)**AT Command: AT+TDC**
400
401 [[image:image-20220624142619-8.png]]
402
403
404 (% style="color:#037691" %)**Downlink Command: 0x01**
405
406 Format: Command Code (0x01) followed by 3 bytes time value.
407
408 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
409
410 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
411 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
412
413
414
415
416 == 3.2 Set Emergency Mode ==
417
418 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
419
420 (% style="color:#037691" %)**AT Command:**
421
422 [[image:image-20220624142956-9.png]]
423
424
425 (% style="color:#037691" %)**Downlink Command:**
426
427 * 0xE101     Same as: AT+ALARMMOD=1
428 * 0xE100     Same as: AT+ALARMMOD=0
429
430
431
432
433 == 3.3 Add or Delete RS485 Sensor ==
434
435 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
436
437 (% style="color:#037691" %)**AT Command: **
438
439 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
440
441 * Type_Code range:  A1 ~~ A4
442 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
443 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
444 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
445 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
446 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
447 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
448
449 **Example:**
450
451 User need to change external sensor use the type code as address code.
452
453 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
454
455 [[image:image-20220624143553-10.png]]
456
457
458 The response frame of the sensor is as follows:
459
460 [[image:image-20220624143618-11.png]]
461
462
463
464 **Then the following parameters should be:**
465
466 * Address_Code range: A1
467 * Query_Length: 8
468 * Query_Command: A103000000019CAA
469 * Read_Length: 8
470 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
471 * has_CRC: 1
472 * timeout: 1500 (Fill in the test according to the actual situation)
473
474 **So the input command is:**
475
476 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
477
478
479 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
480
481 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
482 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
483 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
484
485 **Related commands:**
486
487 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
488
489 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
490
491
492 (% style="color:#037691" %)**Downlink Command:  **
493
494 **delete custom sensor A1:**
495
496 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
497
498 **Remove all custom sensors**
499
500 * 0xE5FF  
501
502
503
504
505 == 3.4 RS485 Test Command ==
506
507 (% style="color:#037691" %)**AT Command:**
508
509 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
510 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
511 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
512 Send command to 485 sensor
513
514 Range : no more than 10 bytes
515 )))|(% style="width:85px" %)OK
516
517 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
518
519 AT+RSWRITE=0103000001840A
520
521
522 (% style="color:#037691" %)**Downlink Command:**
523
524 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
525
526
527
528
529 == 3.5 RS485 response timeout ==
530
531 Feature: Set or get extended time to receive 485 sensor data.
532
533 (% style="color:#037691" %)**AT Command:**
534
535 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
536 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
537 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
538 Set response timeout to:
539
540 Range : 0~~10000
541 )))|(% style="width:85px" %)OK
542
543 (% style="color:#037691" %)**Downlink Command:**
544
545 Format: Command Code (0xE0) followed by 3 bytes time value.
546
547 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
548
549 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
550 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
551
552
553
554
555 == 3.6 Set Sensor Type ==
556
557 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
558
559 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
560
561 [[image:image-20220624144904-12.png]]
562
563
564 (% style="color:#037691" %)**AT Command:**
565
566 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
567 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
568 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
569
570 Eg: The setting command **AT+STYPE=802212** means:
571
572 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
573 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
574 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
575 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
576 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
577 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
578 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
579
580 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
581
582
583 (% style="color:#037691" %)**Downlink Command:**
584
585 * 0xE400802212     Same as: AT+STYPE=80221
586
587 (% style="color:red" %)**Note:**
588
589 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
590
591
592
593
594 = 4. Power consumption and battery =
595
596 == 4.1 Total Power Consumption ==
597
598 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
599
600
601 == 4.2 Reduce power consumption ==
602
603 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
604
605
606 == 4.3 Battery ==
607
608 (((
609 All sensors are only power by external power source. If external power source is off. All sensor won't work.
610 )))
611
612 (((
613 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
614 )))
615
616
617 = 5. Main Process Unit WSC1-L =
618
619 == 5.1 Features ==
620
621 * Wall Attachable.
622 * LoRaWAN v1.0.3 Class A protocol.
623 * RS485 / Modbus protocol
624 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
625 * AT Commands to change parameters
626 * Remote configure parameters via LoRaWAN Downlink
627 * Firmware upgradable via program port
628 * Powered by external 12v battery
629 * Back up rechargeable 1000mAh battery
630 * IP Rating: IP65
631 * Support default sensors or 3rd party RS485 sensors
632
633
634
635
636 == 5.2 Power Consumption ==
637
638 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
639
640
641 == 5.3 Storage & Operation Temperature ==
642
643 -20°C to +60°C
644
645
646 == 5.4 Pin Mapping ==
647
648 [[image:1656054149793-239.png]]
649
650
651 == 5.5 Mechanical ==
652
653 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
654
655
656 == 5.6 Connect to RS485 Sensors ==
657
658 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
659
660
661 [[image:1656054389031-379.png]]
662
663
664 Hardware Design for the Converter Board please see:
665
666 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
667
668
669 = 6. Weather Sensors =
670
671 == 6.1 Rain Gauge ~-~- WSS-01 ==
672
673
674 (((
675 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
676 )))
677
678 (((
679 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
680 )))
681
682 (((
683 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
684 )))
685
686 (((
687 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
688 )))
689
690 (((
691 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
692 )))
693
694
695 === 6.1.1 Feature ===
696
697 * RS485 Rain Gauge
698 * Small dimension, easy to install
699 * Vents under funnel, avoid leaf or other things to avoid rain flow.
700 * ABS enclosure.
701 * Horizontal adjustable.
702
703
704
705
706 === 6.1.2 Specification ===
707
708 * Resolution: 0.2mm
709 * Accuracy: ±3%
710 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
711 * Input Power: DC 5~~24v
712 * Interface: RS485
713 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
714 * Working Humidity: <100% (no dewing)
715 * Power Consumption: 4mA @ 12v.
716
717
718
719
720 === 6.1.3 Dimension ===
721
722 [[image:1656054957406-980.png]]
723
724
725 === 6.1.4 Pin Mapping ===
726
727 [[image:1656054972828-692.png]]
728
729
730 === 6.1.5 Installation Notice ===
731
732 Do not power on while connect the cables. Double check the wiring before power on.
733
734 Installation Photo as reference:
735
736
737 (% style="color:#4472c4" %)** Install on Ground:**
738
739 WSS-01 Rain Gauge include screws so can install in ground directly .
740
741
742 (% style="color:#4472c4" %)** Install on pole:**
743
744 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
745
746 [[image:image-20220624152218-1.png||height="526" width="276"]]
747
748 WS-K2: Bracket Kit for Pole installation
749
750
751 WSSC-K2 dimension document, please see:
752
753 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
754
755
756 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
757
758 [[image:1656055444035-179.png]]
759
760 (((
761 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
762 )))
763
764 (((
765 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
766 )))
767
768 (((
769 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
770 )))
771
772
773 === 6.2.1 Feature ===
774
775 * RS485 wind speed / direction sensor
776 * PC enclosure, resist corrosion
777
778
779
780
781 === 6.2.2 Specification ===
782
783 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
784 * Wind direction range: 0 ~~ 360°
785 * Start wind speed: ≤0.3m/s
786 * Accuracy: ±(0.3+0.03V)m/s , ±1°
787 * Input Power: DC 5~~24v
788 * Interface: RS485
789 * Working Temperature: -30℃~70℃
790 * Working Humidity: <100% (no dewing)
791 * Power Consumption: 13mA ~~ 12v.
792 * Cable Length: 2 meters
793
794
795
796
797 === 6.2.3 Dimension ===
798
799 [[image:image-20220624152813-2.png]]
800
801
802 === 6.2.4 Pin Mapping ===
803
804 [[image:1656056281231-994.png]]
805
806
807 === 6.2.5  Angle Mapping ===
808
809 [[image:1656056303845-585.png]]
810
811
812 === 6.2.6  Installation Notice ===
813
814 Do not power on while connect the cables. Double check the wiring before power on.
815
816 The sensor must be installed with below direction, towards North.
817
818 [[image:image-20220624153901-3.png]]
819
820
821 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
822
823
824 (((
825 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
826 )))
827
828 (((
829 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
830 )))
831
832 (((
833 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
834 )))
835
836
837 === 6.3.1 Feature ===
838
839 * RS485 CO2, PM2.5, PM10 sensor
840 * NDIR to measure CO2 with Internal Temperature Compensation
841 * Laser Beam Scattering to PM2.5 and PM10
842
843
844
845
846 === 6.3.2 Specification ===
847
848 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
849 * CO2 resolution: 1ppm
850 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
851 * PM2.5/PM10 resolution: 1μg/m3
852 * Input Power: DC 7 ~~ 24v
853 * Preheat time: 3min
854 * Interface: RS485
855 * Working Temperature:
856 ** CO2: 0℃~50℃;
857 ** PM2.5/PM10: -30 ~~ 50℃
858 * Working Humidity:
859 ** PM2.5/PM10: 15~80%RH (no dewing)
860 ** CO2: 0~95%RH
861 * Power Consumption: 50mA@ 12v.
862
863
864
865
866 === 6.3.3 Dimension ===
867
868 [[image:1656056708366-230.png]]
869
870
871 === 6.3.4 Pin Mapping ===
872
873 [[image:1656056722648-743.png]]
874
875
876 === 6.3.5 Installation Notice ===
877
878 Do not power on while connect the cables. Double check the wiring before power on.
879
880 [[image:1656057016033-551.png]]
881
882 [[image:1656056751153-304.png]]
883
884 [[image:1656056766224-773.png]]
885
886
887 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
888
889
890 (((
891 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
892 )))
893
894 (((
895 WSS-04 has auto heating feature, this ensures measurement more reliable.
896 )))
897
898 (((
899 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
900 )))
901
902
903
904 === 6.4.1 Feature ===
905
906 * RS485 Rain/Snow detect sensor
907 * Surface heating to dry
908 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
909
910
911
912
913 === 6.4.2 Specification ===
914
915 * Detect if there is rain or snow
916 * Input Power: DC 12 ~~ 24v
917 * Interface: RS485
918 * Working Temperature: -30℃~70℃
919 * Working Humidity: 10~90%RH
920 * Power Consumption:
921 ** No heating: 12mA @ 12v,
922 ** heating: 94ma @ 12v.
923
924
925
926
927 === 6.4.3 Dimension ===
928
929 [[image:1656056844782-155.png]]
930
931
932 === 6.4.4 Pin Mapping ===
933
934 [[image:1656056855590-754.png]]
935
936
937 === 6.4.5 Installation Notice ===
938
939 Do not power on while connect the cables. Double check the wiring before power on.
940
941
942 Install with 15°degree.
943
944 [[image:1656056873783-780.png]]
945
946
947 [[image:1656056883736-804.png]]
948
949
950 === 6.4.6 Heating ===
951
952 (((
953 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
954 )))
955
956
957 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
958
959
960 (((
961 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
962 )))
963
964 (((
965 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
966 )))
967
968
969 === 6.5.1 Feature ===
970
971 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
972
973
974
975
976 === 6.5.2 Specification ===
977
978 * Input Power: DC 12 ~~ 24v
979 * Interface: RS485
980 * Temperature Sensor Spec:
981 ** Range: -30 ~~ 70℃
982 ** resolution 0.1℃
983 ** Accuracy: ±0.5℃
984 * Humidity Sensor Spec:
985 ** Range: 0 ~~ 100% RH
986 ** resolution 0.1 %RH
987 ** Accuracy: 3% RH
988 * Pressure Sensor Spec:
989 ** Range: 10~1100hPa
990 ** Resolution: 0.1hPa
991 ** Accuracy: ±0.1hPa
992 * Illuminate sensor:
993 ** Range: 0~2/20/200kLux
994 ** Resolution: 10 Lux
995 ** Accuracy: ±3%FS
996 * Working Temperature: -30℃~70℃
997 * Working Humidity: 10~90%RH
998 * Power Consumption: 4mA @ 12v
999
1000
1001
1002
1003 === 6.5.3 Dimension ===
1004
1005 [[image:1656057170639-522.png]]
1006
1007
1008 === 6.5.4 Pin Mapping ===
1009
1010 [[image:1656057181899-910.png]]
1011
1012
1013 === 6.5.5 Installation Notice ===
1014
1015 Do not power on while connect the cables. Double check the wiring before power on.
1016
1017 [[image:1656057199955-514.png]]
1018
1019
1020 [[image:1656057212438-475.png]]
1021
1022
1023 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1024
1025
1026 (((
1027 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1028 )))
1029
1030 (((
1031 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1032 )))
1033
1034 (((
1035 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1036 )))
1037
1038
1039
1040 === 6.6.1 Feature ===
1041
1042 * RS485 Total Solar Radiation sensor
1043 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1044 * Measure Reflected Radiation if sense area towards ground.
1045
1046
1047
1048
1049 === 6.6.2 Specification ===
1050
1051 * Input Power: DC 5 ~~ 24v
1052 * Interface: RS485
1053 * Detect spectrum: 0.3~3μm(300~3000nm)
1054 * Measure strength range: 0~2000W/m2
1055 * Resolution: 0.1W/m2
1056 * Accuracy: ±3%
1057 * Yearly Stability: ≤±2%
1058 * Cosine response: ≤7% (@ Sun angle 10°)
1059 * Temperature Effect: ±2%(-10℃~40℃)
1060 * Working Temperature: -40℃~70℃
1061 * Working Humidity: 10~90%RH
1062 * Power Consumption: 4mA @ 12v
1063
1064
1065
1066
1067 === 6.6.3 Dimension ===
1068
1069 [[image:1656057348695-898.png]]
1070
1071
1072 === 6.6.4 Pin Mapping ===
1073
1074 [[image:1656057359343-744.png]]
1075
1076
1077 === 6.6.5 Installation Notice ===
1078
1079 Do not power on while connect the cables. Double check the wiring before power on.
1080
1081 [[image:1656057369259-804.png]]
1082
1083
1084 [[image:1656057377943-564.png]]
1085
1086
1087 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1088
1089
1090 (((
1091 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1092 )))
1093
1094 (((
1095 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1096 )))
1097
1098 (((
1099 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1100 )))
1101
1102
1103 === 6.7.1 Feature ===
1104
1105 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1106
1107 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1108
1109
1110 === 6.7.2 Specification ===
1111
1112 * Input Power: DC 5 ~~ 24v
1113 * Interface: RS485
1114 * Response Spectrum: 400~700nm
1115 * Measure range: 0~2500μmol/m2•s
1116 * Resolution: 1μmol/m2•s
1117 * Accuracy: ±2%
1118 * Yearly Stability: ≤±2%
1119 * Working Temperature: -30℃~75℃
1120 * Working Humidity: 10~90%RH
1121 * Power Consumption: 3mA @ 12v
1122
1123
1124
1125
1126 === 6.7.3 Dimension ===
1127
1128 [[image:1656057538793-888.png]]
1129
1130
1131 === 6.7.4 Pin Mapping ===
1132
1133 [[image:1656057548116-203.png]]
1134
1135
1136 === 6.7.5 Installation Notice ===
1137
1138 Do not power on while connect the cables. Double check the wiring before power on.
1139
1140
1141 [[image:1656057557191-895.png]]
1142
1143
1144 [[image:1656057565783-251.png]]
1145
1146
1147 = 7. FAQ =
1148
1149 == 7.1 What else do I need to purchase to build Weather Station? ==
1150
1151 Below is the installation photo and structure:
1152
1153 [[image:1656057598349-319.png]]
1154
1155
1156 [[image:1656057608049-693.png]]
1157
1158
1159
1160 == 7.2 How to upgrade firmware for WSC1-L? ==
1161
1162 (((
1163 Firmware Location & Change log:
1164 )))
1165
1166 (((
1167 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1168 )))
1169
1170
1171 (((
1172 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1173 )))
1174
1175
1176 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1177
1178 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1179
1180
1181 == 7.4 Can I add my weather sensors? ==
1182
1183 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1184
1185
1186 = 8. Trouble Shooting =
1187
1188 == 8.1 AT Command input doesn't work ==
1189
1190 (((
1191 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1192 )))
1193
1194
1195 = 9. Order Info =
1196
1197 == 9.1 Main Process Unit ==
1198
1199 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1200
1201 (% style="color:blue" %)**XX**(%%): The default frequency band
1202
1203 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1204 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1205 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1206 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1207 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1208 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1209 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1210 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1211
1212 == 9.2 Sensors ==
1213
1214 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1215 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1216 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1217 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1218 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1219 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1220 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1221 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1222 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1223 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1224
1225
1226 = 10. Support =
1227
1228 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1229 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1230
1231
1232 = 11. Appendix I: Field Installation Photo =
1233
1234
1235 [[image:1656058346362-132.png]]
1236
1237 **Storage Battery**: 12v,12AH li battery
1238
1239
1240
1241 **Wind Speed/Direction**
1242
1243 [[image:1656058373174-421.png]]
1244
1245
1246
1247 **Total Solar Radiation sensor**
1248
1249 [[image:1656058397364-282.png]]
1250
1251
1252
1253 **PAR Sensor**
1254
1255 [[image:1656058416171-615.png]]
1256
1257
1258
1259 **CO2/PM2.5/PM10 3 in 1 sensor**
1260
1261 [[image:1656058441194-827.png]]
1262
1263
1264
1265 **Rain / Snow Detect**
1266
1267 [[image:1656058451456-166.png]]
1268
1269
1270
1271 **Rain Gauge**
1272
1273 [[image:1656058463455-569.png]]