Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (((
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146 )))
147
148
149 [[image:1656042745346-283.png]]
150
151
152
153 == 2.4 Uplink Payload ==
154
155 Uplink payloads include two types: Valid Sensor Value and other status / control command.
156
157 * Valid Sensor Value: Use FPORT=2
158 * Other control command: Use FPORT other than 2.
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
238 |Byte3|Byte2|Byte1
239
240 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
241
242 [[image:image-20220624134713-1.png]]
243
244
245 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
246
247 External sensors detected by WSC1-L include :
248
249 custom sensor A1,
250
251 PAR sensor (WSS-07),
252
253 Total Solar Radiation sensor (WSS-06),
254
255 CO2/PM2.5/PM10 (WSS-03),
256
257 Wind Speed/Direction (WSS-02)
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:1656049673488-415.png]]
265
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270 (((
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
272 )))
273
274 (((
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276 )))
277
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
292 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
293
294 (% style="color:#4472c4" %)**Sensor Type Table:**
295
296 [[image:image-20220624140352-2.png]]
297
298
299 (((
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301 )))
302
303 (((
304
305 )))
306
307 (((
308 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
309 )))
310
311 * (((
312 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
313 )))
314
315 (((
316 Uplink 1:  [[image:image-20220624140735-4.png]]
317 )))
318
319 (((
320
321 )))
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325 )))
326
327 (((
328
329 )))
330
331 * (((
332 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
333 )))
334
335 (((
336 Uplink 1:  [[image:image-20220624141025-6.png]]
337 )))
338
339 (((
340
341 )))
342
343 Uplink 2:  [[image:image-20220624141100-7.png]]
344
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 (((
351 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
352 )))
353
354 (((
355
356 )))
357
358 (((
359 Download decoder for suitable platform from:
360 )))
361
362 (((
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364 )))
365
366 (((
367 and put as below:
368 )))
369
370 [[image:1656051152438-578.png]]
371
372
373
374 == 2.5 Show data on Application Server ==
375
376 (((
377 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
378 )))
379
380 (((
381
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
386 )))
387
388 (((
389 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
390 )))
391
392 [[image:1656051197172-131.png]]
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400 **Authorization:**
401
402 [[image:1656051248318-368.png]]
403
404
405 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
406
407 [[image:1656051277767-168.png]]
408
409
410
411 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
412
413 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
414
415 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
416 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
417
418 There are two kinds of commands to configure WSC1-L, they are:
419
420 * (% style="color:#4472c4" %)**General Commands**.
421
422 These commands are to configure:
423
424 * General system settings like: uplink interval.
425 * LoRaWAN protocol & radio related command.
426
427 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
428
429 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
430
431
432 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
433
434 These commands only valid for WSC1-L, as below:
435
436
437
438
439
440
441 == 3.1 Set Transmit Interval Time ==
442
443 Feature: Change LoRaWAN End Node Transmit Interval.
444
445 (% style="color:#037691" %)**AT Command: AT+TDC**
446
447 [[image:image-20220624142619-8.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command: 0x01**
451
452 Format: Command Code (0x01) followed by 3 bytes time value.
453
454 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
455
456 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
457 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
458
459
460 == 3.2 Set Emergency Mode ==
461
462 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
463
464 (% style="color:#037691" %)**AT Command:**
465
466 [[image:image-20220624142956-9.png]]
467
468
469 (% style="color:#037691" %)**Downlink Command:**
470
471 * 0xE101     Same as: AT+ALARMMOD=1
472 * 0xE100     Same as: AT+ALARMMOD=0
473
474
475 == 3.3 Add or Delete RS485 Sensor ==
476
477 (((
478 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
479 )))
480
481 (((
482 (% style="color:#037691" %)**AT Command: **
483 )))
484
485 (((
486 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
487 )))
488
489 * (((
490 Type_Code range:  A1 ~~ A4
491 )))
492 * (((
493 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
494 )))
495 * (((
496 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
497 )))
498 * (((
499 Read_Length:  RS485 response frame length supposed to receive. Max can receive
500 )))
501 * (((
502 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
503 )))
504 * (((
505 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
506 )))
507 * (((
508 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
509 )))
510
511 (((
512 **Example:**
513 )))
514
515 (((
516 User need to change external sensor use the type code as address code.
517 )))
518
519 (((
520 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
521 )))
522
523 [[image:image-20220624143553-10.png]]
524
525
526 The response frame of the sensor is as follows:
527
528 [[image:image-20220624143618-11.png]]
529
530
531
532 **Then the following parameters should be:**
533
534 * Address_Code range: A1
535 * Query_Length: 8
536 * Query_Command: A103000000019CAA
537 * Read_Length: 8
538 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
539 * has_CRC: 1
540 * timeout: 1500 (Fill in the test according to the actual situation)
541
542 **So the input command is:**
543
544 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
545
546
547 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
548
549 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
550 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
551 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
552
553 **Related commands:**
554
555 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
556
557 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
558
559
560 (% style="color:#037691" %)**Downlink Command:  **
561
562 **delete custom sensor A1:**
563
564 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
565
566 **Remove all custom sensors**
567
568 * 0xE5FF  
569
570
571 == 3.4 RS485 Test Command ==
572
573 (% style="color:#037691" %)**AT Command:**
574
575 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
576 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
577 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
578 Send command to 485 sensor
579
580 Range : no more than 10 bytes
581 )))|(% style="width:85px" %)OK
582
583 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
584
585 AT+RSWRITE=0103000001840A
586
587
588 (% style="color:#037691" %)**Downlink Command:**
589
590 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
591
592
593 == 3.5 RS485 response timeout ==
594
595 Feature: Set or get extended time to receive 485 sensor data.
596
597 (% style="color:#037691" %)**AT Command:**
598
599 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
600 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
601 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
602 Set response timeout to:
603
604 Range : 0~~10000
605 )))|(% style="width:85px" %)OK
606
607 (% style="color:#037691" %)**Downlink Command:**
608
609 Format: Command Code (0xE0) followed by 3 bytes time value.
610
611 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
612
613 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
614 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
615
616
617 == 3.6 Set Sensor Type ==
618
619 (((
620 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
621 )))
622
623 (((
624 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
625 )))
626
627 [[image:image-20220624144904-12.png]]
628
629
630 (% style="color:#037691" %)**AT Command:**
631
632 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
633 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
634 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
635
636 Eg: The setting command **AT+STYPE=802212** means:
637
638 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
639 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
640 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
641 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
642 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
643 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
644 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
645
646 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
647
648
649 (% style="color:#037691" %)**Downlink Command:**
650
651 * 0xE400802212     Same as: AT+STYPE=80221
652
653 (% style="color:red" %)**Note:**
654
655 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
656
657
658
659
660 = 4. Power consumption and battery =
661
662 == 4.1 Total Power Consumption ==
663
664 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
665
666
667 == 4.2 Reduce power consumption ==
668
669 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
670
671
672 == 4.3 Battery ==
673
674 (((
675 All sensors are only power by external power source. If external power source is off. All sensor won't work.
676 )))
677
678 (((
679 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
680 )))
681
682
683 = 5. Main Process Unit WSC1-L =
684
685 == 5.1 Features ==
686
687 * Wall Attachable.
688 * LoRaWAN v1.0.3 Class A protocol.
689 * RS485 / Modbus protocol
690 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
691 * AT Commands to change parameters
692 * Remote configure parameters via LoRaWAN Downlink
693 * Firmware upgradable via program port
694 * Powered by external 12v battery
695 * Back up rechargeable 1000mAh battery
696 * IP Rating: IP65
697 * Support default sensors or 3rd party RS485 sensors
698
699
700 == 5.2 Power Consumption ==
701
702 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
703
704
705 == 5.3 Storage & Operation Temperature ==
706
707 -20°C to +60°C
708
709
710 == 5.4 Pin Mapping ==
711
712 [[image:1656054149793-239.png]]
713
714
715 == 5.5 Mechanical ==
716
717 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
718
719
720 == 5.6 Connect to RS485 Sensors ==
721
722 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
723
724
725 [[image:1656054389031-379.png]]
726
727
728 Hardware Design for the Converter Board please see:
729
730 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
731
732
733 = 6. Weather Sensors =
734
735 == 6.1 Rain Gauge ~-~- WSS-01 ==
736
737
738 (((
739 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
740 )))
741
742 (((
743 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
744 )))
745
746 (((
747 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
748 )))
749
750 (((
751 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
752 )))
753
754 (((
755 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
756 )))
757
758
759 === 6.1.1 Feature ===
760
761 * RS485 Rain Gauge
762 * Small dimension, easy to install
763 * Vents under funnel, avoid leaf or other things to avoid rain flow.
764 * ABS enclosure.
765 * Horizontal adjustable.
766
767
768 === 6.1.2 Specification ===
769
770 * Resolution: 0.2mm
771 * Accuracy: ±3%
772 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
773 * Input Power: DC 5~~24v
774 * Interface: RS485
775 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
776 * Working Humidity: <100% (no dewing)
777 * Power Consumption: 4mA @ 12v.
778
779
780 === 6.1.3 Dimension ===
781
782 [[image:1656054957406-980.png]]
783
784
785 === 6.1.4 Pin Mapping ===
786
787 [[image:1656054972828-692.png]]
788
789
790 === 6.1.5 Installation Notice ===
791
792 (((
793 Do not power on while connect the cables. Double check the wiring before power on.
794 )))
795
796 (((
797 Installation Photo as reference:
798 )))
799
800
801 (((
802 (% style="color:#4472c4" %)** Install on Ground:**
803 )))
804
805 (((
806 WSS-01 Rain Gauge include screws so can install in ground directly .
807 )))
808
809
810 (((
811 (% style="color:#4472c4" %)** Install on pole:**
812 )))
813
814 (((
815 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
816 )))
817
818 [[image:image-20220624152218-1.png||height="526" width="276"]]
819
820 WS-K2: Bracket Kit for Pole installation
821
822
823 WSSC-K2 dimension document, please see:
824
825 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
826
827
828 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
829
830 [[image:1656055444035-179.png]]
831
832 (((
833 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
834 )))
835
836 (((
837 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
838 )))
839
840 (((
841 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
842 )))
843
844
845 === 6.2.1 Feature ===
846
847 * RS485 wind speed / direction sensor
848 * PC enclosure, resist corrosion
849
850
851 === 6.2.2 Specification ===
852
853 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
854 * Wind direction range: 0 ~~ 360°
855 * Start wind speed: ≤0.3m/s
856 * Accuracy: ±(0.3+0.03V)m/s , ±1°
857 * Input Power: DC 5~~24v
858 * Interface: RS485
859 * Working Temperature: -30℃~70℃
860 * Working Humidity: <100% (no dewing)
861 * Power Consumption: 13mA ~~ 12v.
862 * Cable Length: 2 meters
863
864
865 === 6.2.3 Dimension ===
866
867 [[image:image-20220624152813-2.png]]
868
869
870 === 6.2.4 Pin Mapping ===
871
872 [[image:1656056281231-994.png]]
873
874
875 === 6.2.5  Angle Mapping ===
876
877 [[image:1656056303845-585.png]]
878
879
880 === 6.2.6  Installation Notice ===
881
882 (((
883 Do not power on while connect the cables. Double check the wiring before power on.
884 )))
885
886 (((
887 The sensor must be installed with below direction, towards North.
888 )))
889
890 [[image:image-20220624153901-3.png]]
891
892
893 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
894
895
896 (((
897 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
898 )))
899
900 (((
901 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
902 )))
903
904 (((
905 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
906 )))
907
908
909 === 6.3.1 Feature ===
910
911 * RS485 CO2, PM2.5, PM10 sensor
912 * NDIR to measure CO2 with Internal Temperature Compensation
913 * Laser Beam Scattering to PM2.5 and PM10
914
915
916 === 6.3.2 Specification ===
917
918 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
919 * CO2 resolution: 1ppm
920 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
921 * PM2.5/PM10 resolution: 1μg/m3
922 * Input Power: DC 7 ~~ 24v
923 * Preheat time: 3min
924 * Interface: RS485
925 * Working Temperature:
926 ** CO2: 0℃~50℃;
927 ** PM2.5/PM10: -30 ~~ 50℃
928 * Working Humidity:
929 ** PM2.5/PM10: 15~80%RH (no dewing)
930 ** CO2: 0~95%RH
931 * Power Consumption: 50mA@ 12v.
932
933
934 === 6.3.3 Dimension ===
935
936 [[image:1656056708366-230.png]]
937
938
939 === 6.3.4 Pin Mapping ===
940
941 [[image:1656056722648-743.png]]
942
943
944 === 6.3.5 Installation Notice ===
945
946 Do not power on while connect the cables. Double check the wiring before power on.
947
948 [[image:1656056751153-304.png]]
949
950 [[image:1656056766224-773.png]]
951
952
953 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
954
955
956 (((
957 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
958 )))
959
960 (((
961 WSS-04 has auto heating feature, this ensures measurement more reliable.
962 )))
963
964 (((
965 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
966 )))
967
968
969
970 === 6.4.1 Feature ===
971
972 * RS485 Rain/Snow detect sensor
973 * Surface heating to dry
974 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
975
976
977 === 6.4.2 Specification ===
978
979 * Detect if there is rain or snow
980 * Input Power: DC 12 ~~ 24v
981 * Interface: RS485
982 * Working Temperature: -30℃~70℃
983 * Working Humidity: 10~90%RH
984 * Power Consumption:
985 ** No heating: 12mA @ 12v,
986 ** heating: 94ma @ 12v.
987
988
989 === 6.4.3 Dimension ===
990
991 [[image:1656056844782-155.png]]
992
993
994 === 6.4.4 Pin Mapping ===
995
996 [[image:1656056855590-754.png]]
997
998
999 === 6.4.5 Installation Notice ===
1000
1001 Do not power on while connect the cables. Double check the wiring before power on.
1002
1003
1004 (((
1005 Install with 15°degree.
1006 )))
1007
1008 [[image:1656056873783-780.png]]
1009
1010
1011 [[image:1656056883736-804.png]]
1012
1013
1014 === 6.4.6 Heating ===
1015
1016 (((
1017 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1018 )))
1019
1020
1021 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1022
1023
1024 (((
1025 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1026 )))
1027
1028 (((
1029 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1030 )))
1031
1032
1033 === 6.5.1 Feature ===
1034
1035 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1036
1037
1038 === 6.5.2 Specification ===
1039
1040 * Input Power: DC 12 ~~ 24v
1041 * Interface: RS485
1042 * Temperature Sensor Spec:
1043 ** Range: -30 ~~ 70℃
1044 ** resolution 0.1℃
1045 ** Accuracy: ±0.5℃
1046 * Humidity Sensor Spec:
1047 ** Range: 0 ~~ 100% RH
1048 ** resolution 0.1 %RH
1049 ** Accuracy: 3% RH
1050 * Pressure Sensor Spec:
1051 ** Range: 10~1100hPa
1052 ** Resolution: 0.1hPa
1053 ** Accuracy: ±0.1hPa
1054 * Illuminate sensor:
1055 ** Range: 0~2/20/200kLux
1056 ** Resolution: 10 Lux
1057 ** Accuracy: ±3%FS
1058 * Working Temperature: -30℃~70℃
1059 * Working Humidity: 10~90%RH
1060 * Power Consumption: 4mA @ 12v
1061
1062
1063 === 6.5.3 Dimension ===
1064
1065 [[image:1656057170639-522.png]]
1066
1067
1068 === 6.5.4 Pin Mapping ===
1069
1070 [[image:1656057181899-910.png]]
1071
1072
1073 === 6.5.5 Installation Notice ===
1074
1075 Do not power on while connect the cables. Double check the wiring before power on.
1076
1077 [[image:1656057199955-514.png]]
1078
1079
1080 [[image:1656057212438-475.png]]
1081
1082
1083 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1084
1085
1086 (((
1087 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1088 )))
1089
1090 (((
1091 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1092 )))
1093
1094 (((
1095 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1096 )))
1097
1098
1099
1100 === 6.6.1 Feature ===
1101
1102 * RS485 Total Solar Radiation sensor
1103 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1104 * Measure Reflected Radiation if sense area towards ground.
1105
1106
1107 === 6.6.2 Specification ===
1108
1109 * Input Power: DC 5 ~~ 24v
1110 * Interface: RS485
1111 * Detect spectrum: 0.3~3μm(300~3000nm)
1112 * Measure strength range: 0~2000W/m2
1113 * Resolution: 0.1W/m2
1114 * Accuracy: ±3%
1115 * Yearly Stability: ≤±2%
1116 * Cosine response: ≤7% (@ Sun angle 10°)
1117 * Temperature Effect: ±2%(-10℃~40℃)
1118 * Working Temperature: -40℃~70℃
1119 * Working Humidity: 10~90%RH
1120 * Power Consumption: 4mA @ 12v
1121
1122
1123 === 6.6.3 Dimension ===
1124
1125 [[image:1656057348695-898.png]]
1126
1127
1128 === 6.6.4 Pin Mapping ===
1129
1130 [[image:1656057359343-744.png]]
1131
1132
1133 === 6.6.5 Installation Notice ===
1134
1135 Do not power on while connect the cables. Double check the wiring before power on.
1136
1137 [[image:1656057369259-804.png]]
1138
1139
1140 [[image:1656057377943-564.png]]
1141
1142
1143 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1144
1145
1146 (((
1147 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1148 )))
1149
1150 (((
1151 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1152 )))
1153
1154 (((
1155 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1156 )))
1157
1158
1159 === 6.7.1 Feature ===
1160
1161 (((
1162 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1163 )))
1164
1165 (((
1166 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1167 )))
1168
1169
1170 === 6.7.2 Specification ===
1171
1172 * Input Power: DC 5 ~~ 24v
1173 * Interface: RS485
1174 * Response Spectrum: 400~700nm
1175 * Measure range: 0~2500μmol/m2•s
1176 * Resolution: 1μmol/m2•s
1177 * Accuracy: ±2%
1178 * Yearly Stability: ≤±2%
1179 * Working Temperature: -30℃~75℃
1180 * Working Humidity: 10~90%RH
1181 * Power Consumption: 3mA @ 12v
1182
1183
1184 === 6.7.3 Dimension ===
1185
1186 [[image:1656057538793-888.png]]
1187
1188
1189 === 6.7.4 Pin Mapping ===
1190
1191 [[image:1656057548116-203.png]]
1192
1193
1194 === 6.7.5 Installation Notice ===
1195
1196 Do not power on while connect the cables. Double check the wiring before power on.
1197
1198
1199 [[image:1656057557191-895.png]]
1200
1201
1202 [[image:1656057565783-251.png]]
1203
1204
1205 = 7. FAQ =
1206
1207 == 7.1 What else do I need to purchase to build Weather Station? ==
1208
1209 Below is the installation photo and structure:
1210
1211 [[image:1656057598349-319.png]]
1212
1213
1214 [[image:1656057608049-693.png]]
1215
1216
1217
1218 == 7.2 How to upgrade firmware for WSC1-L? ==
1219
1220 (((
1221 Firmware Location & Change log:
1222 )))
1223
1224 (((
1225 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1226 )))
1227
1228
1229 (((
1230 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1231 )))
1232
1233
1234 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1235
1236 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1237
1238
1239 == 7.4 Can I add my weather sensors? ==
1240
1241 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1242
1243
1244 = 8. Trouble Shooting =
1245
1246 == 8.1 AT Command input doesn't work ==
1247
1248 (((
1249 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1250 )))
1251
1252
1253 = 9. Order Info =
1254
1255 == 9.1 Main Process Unit ==
1256
1257 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1258
1259 (% style="color:blue" %)**XX**(%%): The default frequency band
1260
1261 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1262 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1263 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1264 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1265 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1266 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1267 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1268 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1269
1270
1271
1272
1273
1274 == 9.2 Sensors ==
1275
1276 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1277 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1278 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1279 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1280 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1281 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1282 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1283 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1284 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1285 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1286
1287
1288
1289
1290
1291 = 10. Support =
1292
1293 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1294 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1295
1296
1297
1298
1299
1300 = 11. Appendix I: Field Installation Photo =
1301
1302
1303 [[image:1656058346362-132.png]]
1304
1305 **Storage Battery**: 12v,12AH li battery
1306
1307
1308
1309 **Wind Speed/Direction**
1310
1311 [[image:1656058373174-421.png]]
1312
1313
1314
1315 **Total Solar Radiation sensor**
1316
1317 [[image:1656058397364-282.png]]
1318
1319
1320
1321 **PAR Sensor**
1322
1323 [[image:1656058416171-615.png]]
1324
1325
1326
1327 **CO2/PM2.5/PM10 3 in 1 sensor**
1328
1329 [[image:1656058441194-827.png]]
1330
1331
1332
1333 **Rain / Snow Detect**
1334
1335 [[image:1656058451456-166.png]]
1336
1337
1338
1339 **Rain Gauge**
1340
1341 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0