Version 79.24 by Xiaoling on 2022/06/24 17:24

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (((
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146 )))
147
148
149 [[image:1656042745346-283.png]]
150
151
152
153 == 2.4 Uplink Payload ==
154
155 Uplink payloads include two types: Valid Sensor Value and other status / control command.
156
157 * Valid Sensor Value: Use FPORT=2
158 * Other control command: Use FPORT other than 2.
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
238 |Byte3|Byte2|Byte1
239
240 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
241
242 [[image:image-20220624134713-1.png]]
243
244
245 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
246
247 External sensors detected by WSC1-L include :
248
249 custom sensor A1,
250
251 PAR sensor (WSS-07),
252
253 Total Solar Radiation sensor (WSS-06),
254
255 CO2/PM2.5/PM10 (WSS-03),
256
257 Wind Speed/Direction (WSS-02)
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:1656049673488-415.png]]
265
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270 (((
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
272 )))
273
274 (((
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276 )))
277
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
292 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
293
294 (% style="color:#4472c4" %)**Sensor Type Table:**
295
296 [[image:image-20220624140352-2.png]]
297
298
299 (((
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301 )))
302
303 (((
304
305 )))
306
307 (((
308 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
309 )))
310
311 * (((
312 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
313 )))
314
315 (((
316 Uplink 1:  [[image:image-20220624140735-4.png]]
317 )))
318
319 (((
320
321 )))
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325 )))
326
327 (((
328
329 )))
330
331 * (((
332 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
333 )))
334
335 (((
336 Uplink 1:  [[image:image-20220624141025-6.png]]
337 )))
338
339 (((
340
341 )))
342
343 Uplink 2:  [[image:image-20220624141100-7.png]]
344
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 (((
351 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
352 )))
353
354 (((
355
356 )))
357
358 (((
359 Download decoder for suitable platform from:
360 )))
361
362 (((
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364 )))
365
366 (((
367 and put as below:
368 )))
369
370 [[image:1656051152438-578.png]]
371
372
373
374 == 2.5 Show data on Application Server ==
375
376 (((
377 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
378 )))
379
380 (((
381
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
386 )))
387
388 (((
389 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
390 )))
391
392 [[image:1656051197172-131.png]]
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400 **Authorization:**
401
402 [[image:1656051248318-368.png]]
403
404
405 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
406
407 [[image:1656051277767-168.png]]
408
409
410
411 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
412
413 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
414
415 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
416 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
417
418 There are two kinds of commands to configure WSC1-L, they are:
419
420 * (% style="color:#4472c4" %)**General Commands**.
421
422 These commands are to configure:
423
424 * General system settings like: uplink interval.
425 * LoRaWAN protocol & radio related command.
426
427 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
428
429 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
430
431
432 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
433
434 These commands only valid for WSC1-L, as below:
435
436
437
438
439
440
441 == 3.1 Set Transmit Interval Time ==
442
443 Feature: Change LoRaWAN End Node Transmit Interval.
444
445 (% style="color:#037691" %)**AT Command: AT+TDC**
446
447 [[image:image-20220624142619-8.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command: 0x01**
451
452 Format: Command Code (0x01) followed by 3 bytes time value.
453
454 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
455
456 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
457 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
458
459
460 == 3.2 Set Emergency Mode ==
461
462 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
463
464 (% style="color:#037691" %)**AT Command:**
465
466 [[image:image-20220624142956-9.png]]
467
468
469 (% style="color:#037691" %)**Downlink Command:**
470
471 * 0xE101     Same as: AT+ALARMMOD=1
472 * 0xE100     Same as: AT+ALARMMOD=0
473
474
475 == 3.3 Add or Delete RS485 Sensor ==
476
477 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
478
479 (% style="color:#037691" %)**AT Command: **
480
481 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
482
483 * Type_Code range:  A1 ~~ A4
484 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
485 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
486 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
487 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
488 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
489 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
490
491 **Example:**
492
493 User need to change external sensor use the type code as address code.
494
495 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
496
497 [[image:image-20220624143553-10.png]]
498
499
500 The response frame of the sensor is as follows:
501
502 [[image:image-20220624143618-11.png]]
503
504
505
506 **Then the following parameters should be:**
507
508 * Address_Code range: A1
509 * Query_Length: 8
510 * Query_Command: A103000000019CAA
511 * Read_Length: 8
512 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
513 * has_CRC: 1
514 * timeout: 1500 (Fill in the test according to the actual situation)
515
516 **So the input command is:**
517
518 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
519
520
521 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
522
523 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
524 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
525 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
526
527 **Related commands:**
528
529 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
530
531 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
532
533
534 (% style="color:#037691" %)**Downlink Command:  **
535
536 **delete custom sensor A1:**
537
538 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
539
540 **Remove all custom sensors**
541
542 * 0xE5FF  
543
544
545 == 3.4 RS485 Test Command ==
546
547 (% style="color:#037691" %)**AT Command:**
548
549 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
550 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
551 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
552 Send command to 485 sensor
553
554 Range : no more than 10 bytes
555 )))|(% style="width:85px" %)OK
556
557 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
558
559 AT+RSWRITE=0103000001840A
560
561
562 (% style="color:#037691" %)**Downlink Command:**
563
564 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
565
566
567 == 3.5 RS485 response timeout ==
568
569 Feature: Set or get extended time to receive 485 sensor data.
570
571 (% style="color:#037691" %)**AT Command:**
572
573 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
574 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
575 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
576 Set response timeout to:
577
578 Range : 0~~10000
579 )))|(% style="width:85px" %)OK
580
581 (% style="color:#037691" %)**Downlink Command:**
582
583 Format: Command Code (0xE0) followed by 3 bytes time value.
584
585 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
586
587 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
588 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
589
590
591 == 3.6 Set Sensor Type ==
592
593 (((
594 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
595 )))
596
597 (((
598 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
599 )))
600
601 [[image:image-20220624144904-12.png]]
602
603
604 (% style="color:#037691" %)**AT Command:**
605
606 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
607 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
608 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
609
610 Eg: The setting command **AT+STYPE=802212** means:
611
612 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
613 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
614 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
615 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
616 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
617 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
618 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
619
620 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
621
622
623 (% style="color:#037691" %)**Downlink Command:**
624
625 * 0xE400802212     Same as: AT+STYPE=80221
626
627 (% style="color:red" %)**Note:**
628
629 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
630
631
632
633
634 = 4. Power consumption and battery =
635
636 == 4.1 Total Power Consumption ==
637
638 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
639
640
641 == 4.2 Reduce power consumption ==
642
643 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
644
645
646 == 4.3 Battery ==
647
648 (((
649 All sensors are only power by external power source. If external power source is off. All sensor won't work.
650 )))
651
652 (((
653 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
654 )))
655
656
657 = 5. Main Process Unit WSC1-L =
658
659 == 5.1 Features ==
660
661 * Wall Attachable.
662 * LoRaWAN v1.0.3 Class A protocol.
663 * RS485 / Modbus protocol
664 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
665 * AT Commands to change parameters
666 * Remote configure parameters via LoRaWAN Downlink
667 * Firmware upgradable via program port
668 * Powered by external 12v battery
669 * Back up rechargeable 1000mAh battery
670 * IP Rating: IP65
671 * Support default sensors or 3rd party RS485 sensors
672
673
674 == 5.2 Power Consumption ==
675
676 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
677
678
679 == 5.3 Storage & Operation Temperature ==
680
681 -20°C to +60°C
682
683
684 == 5.4 Pin Mapping ==
685
686 [[image:1656054149793-239.png]]
687
688
689 == 5.5 Mechanical ==
690
691 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
692
693
694 == 5.6 Connect to RS485 Sensors ==
695
696 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
697
698
699 [[image:1656054389031-379.png]]
700
701
702 Hardware Design for the Converter Board please see:
703
704 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
705
706
707 = 6. Weather Sensors =
708
709 == 6.1 Rain Gauge ~-~- WSS-01 ==
710
711
712 (((
713 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
714 )))
715
716 (((
717 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
718 )))
719
720 (((
721 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
722 )))
723
724 (((
725 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
726 )))
727
728 (((
729 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
730 )))
731
732
733 === 6.1.1 Feature ===
734
735 * RS485 Rain Gauge
736 * Small dimension, easy to install
737 * Vents under funnel, avoid leaf or other things to avoid rain flow.
738 * ABS enclosure.
739 * Horizontal adjustable.
740
741
742 === 6.1.2 Specification ===
743
744 * Resolution: 0.2mm
745 * Accuracy: ±3%
746 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
747 * Input Power: DC 5~~24v
748 * Interface: RS485
749 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
750 * Working Humidity: <100% (no dewing)
751 * Power Consumption: 4mA @ 12v.
752
753
754 === 6.1.3 Dimension ===
755
756 [[image:1656054957406-980.png]]
757
758
759 === 6.1.4 Pin Mapping ===
760
761 [[image:1656054972828-692.png]]
762
763
764 === 6.1.5 Installation Notice ===
765
766 (((
767 Do not power on while connect the cables. Double check the wiring before power on.
768 )))
769
770 (((
771 Installation Photo as reference:
772 )))
773
774
775 (((
776 (% style="color:#4472c4" %)** Install on Ground:**
777 )))
778
779 (((
780 WSS-01 Rain Gauge include screws so can install in ground directly .
781 )))
782
783
784 (((
785 (% style="color:#4472c4" %)** Install on pole:**
786 )))
787
788 (((
789 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
790 )))
791
792 [[image:image-20220624152218-1.png||height="526" width="276"]]
793
794 WS-K2: Bracket Kit for Pole installation
795
796
797 WSSC-K2 dimension document, please see:
798
799 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
800
801
802 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
803
804 [[image:1656055444035-179.png]]
805
806 (((
807 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
808 )))
809
810 (((
811 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
812 )))
813
814 (((
815 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
816 )))
817
818
819 === 6.2.1 Feature ===
820
821 * RS485 wind speed / direction sensor
822 * PC enclosure, resist corrosion
823
824
825 === 6.2.2 Specification ===
826
827 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
828 * Wind direction range: 0 ~~ 360°
829 * Start wind speed: ≤0.3m/s
830 * Accuracy: ±(0.3+0.03V)m/s , ±1°
831 * Input Power: DC 5~~24v
832 * Interface: RS485
833 * Working Temperature: -30℃~70℃
834 * Working Humidity: <100% (no dewing)
835 * Power Consumption: 13mA ~~ 12v.
836 * Cable Length: 2 meters
837
838
839 === 6.2.3 Dimension ===
840
841 [[image:image-20220624152813-2.png]]
842
843
844 === 6.2.4 Pin Mapping ===
845
846 [[image:1656056281231-994.png]]
847
848
849 === 6.2.5  Angle Mapping ===
850
851 [[image:1656056303845-585.png]]
852
853
854 === 6.2.6  Installation Notice ===
855
856 (((
857 Do not power on while connect the cables. Double check the wiring before power on.
858 )))
859
860 (((
861 The sensor must be installed with below direction, towards North.
862 )))
863
864 [[image:image-20220624153901-3.png]]
865
866
867 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
868
869
870 (((
871 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
872 )))
873
874 (((
875 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
876 )))
877
878 (((
879 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
880 )))
881
882
883 === 6.3.1 Feature ===
884
885 * RS485 CO2, PM2.5, PM10 sensor
886 * NDIR to measure CO2 with Internal Temperature Compensation
887 * Laser Beam Scattering to PM2.5 and PM10
888
889
890 === 6.3.2 Specification ===
891
892 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
893 * CO2 resolution: 1ppm
894 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
895 * PM2.5/PM10 resolution: 1μg/m3
896 * Input Power: DC 7 ~~ 24v
897 * Preheat time: 3min
898 * Interface: RS485
899 * Working Temperature:
900 ** CO2: 0℃~50℃;
901 ** PM2.5/PM10: -30 ~~ 50℃
902 * Working Humidity:
903 ** PM2.5/PM10: 15~80%RH (no dewing)
904 ** CO2: 0~95%RH
905 * Power Consumption: 50mA@ 12v.
906
907
908 === 6.3.3 Dimension ===
909
910 [[image:1656056708366-230.png]]
911
912
913 === 6.3.4 Pin Mapping ===
914
915 [[image:1656056722648-743.png]]
916
917
918 === 6.3.5 Installation Notice ===
919
920 Do not power on while connect the cables. Double check the wiring before power on.
921
922 [[image:1656056751153-304.png]]
923
924 [[image:1656056766224-773.png]]
925
926
927 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
928
929
930 (((
931 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
932 )))
933
934 (((
935 WSS-04 has auto heating feature, this ensures measurement more reliable.
936 )))
937
938 (((
939 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
940 )))
941
942
943
944 === 6.4.1 Feature ===
945
946 * RS485 Rain/Snow detect sensor
947 * Surface heating to dry
948 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
949
950
951 === 6.4.2 Specification ===
952
953 * Detect if there is rain or snow
954 * Input Power: DC 12 ~~ 24v
955 * Interface: RS485
956 * Working Temperature: -30℃~70℃
957 * Working Humidity: 10~90%RH
958 * Power Consumption:
959 ** No heating: 12mA @ 12v,
960 ** heating: 94ma @ 12v.
961
962
963 === 6.4.3 Dimension ===
964
965 [[image:1656056844782-155.png]]
966
967
968 === 6.4.4 Pin Mapping ===
969
970 [[image:1656056855590-754.png]]
971
972
973 === 6.4.5 Installation Notice ===
974
975 Do not power on while connect the cables. Double check the wiring before power on.
976
977
978 (((
979 Install with 15°degree.
980 )))
981
982 [[image:1656056873783-780.png]]
983
984
985 [[image:1656056883736-804.png]]
986
987
988 === 6.4.6 Heating ===
989
990 (((
991 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
992 )))
993
994
995 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
996
997
998 (((
999 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1000 )))
1001
1002 (((
1003 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1004 )))
1005
1006
1007 === 6.5.1 Feature ===
1008
1009 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1010
1011
1012 === 6.5.2 Specification ===
1013
1014 * Input Power: DC 12 ~~ 24v
1015 * Interface: RS485
1016 * Temperature Sensor Spec:
1017 ** Range: -30 ~~ 70℃
1018 ** resolution 0.1℃
1019 ** Accuracy: ±0.5℃
1020 * Humidity Sensor Spec:
1021 ** Range: 0 ~~ 100% RH
1022 ** resolution 0.1 %RH
1023 ** Accuracy: 3% RH
1024 * Pressure Sensor Spec:
1025 ** Range: 10~1100hPa
1026 ** Resolution: 0.1hPa
1027 ** Accuracy: ±0.1hPa
1028 * Illuminate sensor:
1029 ** Range: 0~2/20/200kLux
1030 ** Resolution: 10 Lux
1031 ** Accuracy: ±3%FS
1032 * Working Temperature: -30℃~70℃
1033 * Working Humidity: 10~90%RH
1034 * Power Consumption: 4mA @ 12v
1035
1036
1037 === 6.5.3 Dimension ===
1038
1039 [[image:1656057170639-522.png]]
1040
1041
1042 === 6.5.4 Pin Mapping ===
1043
1044 [[image:1656057181899-910.png]]
1045
1046
1047 === 6.5.5 Installation Notice ===
1048
1049 Do not power on while connect the cables. Double check the wiring before power on.
1050
1051 [[image:1656057199955-514.png]]
1052
1053
1054 [[image:1656057212438-475.png]]
1055
1056
1057 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1058
1059
1060 (((
1061 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1062 )))
1063
1064 (((
1065 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1066 )))
1067
1068 (((
1069 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1070 )))
1071
1072
1073
1074 === 6.6.1 Feature ===
1075
1076 * RS485 Total Solar Radiation sensor
1077 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1078 * Measure Reflected Radiation if sense area towards ground.
1079
1080
1081 === 6.6.2 Specification ===
1082
1083 * Input Power: DC 5 ~~ 24v
1084 * Interface: RS485
1085 * Detect spectrum: 0.3~3μm(300~3000nm)
1086 * Measure strength range: 0~2000W/m2
1087 * Resolution: 0.1W/m2
1088 * Accuracy: ±3%
1089 * Yearly Stability: ≤±2%
1090 * Cosine response: ≤7% (@ Sun angle 10°)
1091 * Temperature Effect: ±2%(-10℃~40℃)
1092 * Working Temperature: -40℃~70℃
1093 * Working Humidity: 10~90%RH
1094 * Power Consumption: 4mA @ 12v
1095
1096
1097 === 6.6.3 Dimension ===
1098
1099 [[image:1656057348695-898.png]]
1100
1101
1102 === 6.6.4 Pin Mapping ===
1103
1104 [[image:1656057359343-744.png]]
1105
1106
1107 === 6.6.5 Installation Notice ===
1108
1109 Do not power on while connect the cables. Double check the wiring before power on.
1110
1111 [[image:1656057369259-804.png]]
1112
1113
1114 [[image:1656057377943-564.png]]
1115
1116
1117 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1118
1119
1120 (((
1121 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1122 )))
1123
1124 (((
1125 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1126 )))
1127
1128 (((
1129 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1130 )))
1131
1132
1133 === 6.7.1 Feature ===
1134
1135 (((
1136 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1137 )))
1138
1139 (((
1140 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1141 )))
1142
1143
1144 === 6.7.2 Specification ===
1145
1146 * Input Power: DC 5 ~~ 24v
1147 * Interface: RS485
1148 * Response Spectrum: 400~700nm
1149 * Measure range: 0~2500μmol/m2•s
1150 * Resolution: 1μmol/m2•s
1151 * Accuracy: ±2%
1152 * Yearly Stability: ≤±2%
1153 * Working Temperature: -30℃~75℃
1154 * Working Humidity: 10~90%RH
1155 * Power Consumption: 3mA @ 12v
1156
1157
1158 === 6.7.3 Dimension ===
1159
1160 [[image:1656057538793-888.png]]
1161
1162
1163 === 6.7.4 Pin Mapping ===
1164
1165 [[image:1656057548116-203.png]]
1166
1167
1168 === 6.7.5 Installation Notice ===
1169
1170 Do not power on while connect the cables. Double check the wiring before power on.
1171
1172
1173 [[image:1656057557191-895.png]]
1174
1175
1176 [[image:1656057565783-251.png]]
1177
1178
1179 = 7. FAQ =
1180
1181 == 7.1 What else do I need to purchase to build Weather Station? ==
1182
1183 Below is the installation photo and structure:
1184
1185 [[image:1656057598349-319.png]]
1186
1187
1188 [[image:1656057608049-693.png]]
1189
1190
1191
1192 == 7.2 How to upgrade firmware for WSC1-L? ==
1193
1194 (((
1195 Firmware Location & Change log:
1196 )))
1197
1198 (((
1199 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1200 )))
1201
1202
1203 (((
1204 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1205 )))
1206
1207
1208 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1209
1210 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1211
1212
1213 == 7.4 Can I add my weather sensors? ==
1214
1215 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1216
1217
1218 = 8. Trouble Shooting =
1219
1220 == 8.1 AT Command input doesn't work ==
1221
1222 (((
1223 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1224 )))
1225
1226
1227 = 9. Order Info =
1228
1229 == 9.1 Main Process Unit ==
1230
1231 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1232
1233 (% style="color:blue" %)**XX**(%%): The default frequency band
1234
1235 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1236 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1237 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1238 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1239 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1240 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1241 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1242 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1243
1244
1245
1246
1247
1248 == 9.2 Sensors ==
1249
1250 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1251 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1252 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1253 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1254 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1255 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1256 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1257 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1258 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1259 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1260
1261
1262
1263
1264
1265 = 10. Support =
1266
1267 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1268 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1269
1270
1271
1272
1273
1274 = 11. Appendix I: Field Installation Photo =
1275
1276
1277 [[image:1656058346362-132.png]]
1278
1279 **Storage Battery**: 12v,12AH li battery
1280
1281
1282
1283 **Wind Speed/Direction**
1284
1285 [[image:1656058373174-421.png]]
1286
1287
1288
1289 **Total Solar Radiation sensor**
1290
1291 [[image:1656058397364-282.png]]
1292
1293
1294
1295 **PAR Sensor**
1296
1297 [[image:1656058416171-615.png]]
1298
1299
1300
1301 **CO2/PM2.5/PM10 3 in 1 sensor**
1302
1303 [[image:1656058441194-827.png]]
1304
1305
1306
1307 **Rain / Snow Detect**
1308
1309 [[image:1656058451456-166.png]]
1310
1311
1312
1313 **Rain Gauge**
1314
1315 [[image:1656058463455-569.png]]