Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (((
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146 )))
147
148
149 [[image:1656042745346-283.png]]
150
151
152
153 == 2.4 Uplink Payload ==
154
155 Uplink payloads include two types: Valid Sensor Value and other status / control command.
156
157 * Valid Sensor Value: Use FPORT=2
158 * Other control command: Use FPORT other than 2.
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
238 |Byte3|Byte2|Byte1
239
240 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
241
242 [[image:image-20220624134713-1.png]]
243
244
245 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
246
247 External sensors detected by WSC1-L include :
248
249 custom sensor A1,
250
251 PAR sensor (WSS-07),
252
253 Total Solar Radiation sensor (WSS-06),
254
255 CO2/PM2.5/PM10 (WSS-03),
256
257 Wind Speed/Direction (WSS-02)
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:1656049673488-415.png]]
265
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270 (((
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
272 )))
273
274 (((
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276 )))
277
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
292 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
293
294 (% style="color:#4472c4" %)**Sensor Type Table:**
295
296 [[image:image-20220624140352-2.png]]
297
298
299 (((
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301 )))
302
303 (((
304
305 )))
306
307 (((
308 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
309 )))
310
311 * (((
312 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
313 )))
314
315 (((
316 Uplink 1:  [[image:image-20220624140735-4.png]]
317 )))
318
319 (((
320
321 )))
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325 )))
326
327 (((
328
329 )))
330
331 * (((
332 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
333 )))
334
335 (((
336 Uplink 1:  [[image:image-20220624141025-6.png]]
337 )))
338
339 (((
340
341 )))
342
343 Uplink 2:  [[image:image-20220624141100-7.png]]
344
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 (((
351 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
352 )))
353
354 (((
355
356 )))
357
358 (((
359 Download decoder for suitable platform from:
360 )))
361
362 (((
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364 )))
365
366 (((
367 and put as below:
368 )))
369
370 [[image:1656051152438-578.png]]
371
372
373
374 == 2.5 Show data on Application Server ==
375
376 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
377
378
379 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
380
381 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
382
383 [[image:1656051197172-131.png]]
384
385
386 **Add TagoIO:**
387
388 [[image:1656051223585-631.png]]
389
390
391 **Authorization:**
392
393 [[image:1656051248318-368.png]]
394
395
396 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
397
398 [[image:1656051277767-168.png]]
399
400
401
402 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
403
404 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
405
406 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
407 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
408
409 There are two kinds of commands to configure WSC1-L, they are:
410
411 * (% style="color:#4472c4" %)**General Commands**.
412
413 These commands are to configure:
414
415 * General system settings like: uplink interval.
416 * LoRaWAN protocol & radio related command.
417
418 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
419
420 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
421
422
423 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
424
425 These commands only valid for WSC1-L, as below:
426
427
428
429
430
431
432 == 3.1 Set Transmit Interval Time ==
433
434 Feature: Change LoRaWAN End Node Transmit Interval.
435
436 (% style="color:#037691" %)**AT Command: AT+TDC**
437
438 [[image:image-20220624142619-8.png]]
439
440
441 (% style="color:#037691" %)**Downlink Command: 0x01**
442
443 Format: Command Code (0x01) followed by 3 bytes time value.
444
445 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
446
447 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
448 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
449
450
451 == 3.2 Set Emergency Mode ==
452
453 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
454
455 (% style="color:#037691" %)**AT Command:**
456
457 [[image:image-20220624142956-9.png]]
458
459
460 (% style="color:#037691" %)**Downlink Command:**
461
462 * 0xE101     Same as: AT+ALARMMOD=1
463 * 0xE100     Same as: AT+ALARMMOD=0
464
465
466 == 3.3 Add or Delete RS485 Sensor ==
467
468 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
469
470 (% style="color:#037691" %)**AT Command: **
471
472 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
473
474 * Type_Code range:  A1 ~~ A4
475 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
476 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
477 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
478 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
479 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
480 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
481
482 **Example:**
483
484 User need to change external sensor use the type code as address code.
485
486 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
487
488 [[image:image-20220624143553-10.png]]
489
490
491 The response frame of the sensor is as follows:
492
493 [[image:image-20220624143618-11.png]]
494
495
496
497 **Then the following parameters should be:**
498
499 * Address_Code range: A1
500 * Query_Length: 8
501 * Query_Command: A103000000019CAA
502 * Read_Length: 8
503 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
504 * has_CRC: 1
505 * timeout: 1500 (Fill in the test according to the actual situation)
506
507 **So the input command is:**
508
509 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
510
511
512 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
513
514 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
515 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
516 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
517
518 **Related commands:**
519
520 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
521
522 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
523
524
525 (% style="color:#037691" %)**Downlink Command:  **
526
527 **delete custom sensor A1:**
528
529 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
530
531 **Remove all custom sensors**
532
533 * 0xE5FF  
534
535
536 == 3.4 RS485 Test Command ==
537
538 (% style="color:#037691" %)**AT Command:**
539
540 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
541 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
542 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
543 Send command to 485 sensor
544
545 Range : no more than 10 bytes
546 )))|(% style="width:85px" %)OK
547
548 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
549
550 AT+RSWRITE=0103000001840A
551
552
553 (% style="color:#037691" %)**Downlink Command:**
554
555 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
556
557
558 == 3.5 RS485 response timeout ==
559
560 Feature: Set or get extended time to receive 485 sensor data.
561
562 (% style="color:#037691" %)**AT Command:**
563
564 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
565 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
566 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
567 Set response timeout to:
568
569 Range : 0~~10000
570 )))|(% style="width:85px" %)OK
571
572 (% style="color:#037691" %)**Downlink Command:**
573
574 Format: Command Code (0xE0) followed by 3 bytes time value.
575
576 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
577
578 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
579 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
580
581
582 == 3.6 Set Sensor Type ==
583
584 (((
585 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
586 )))
587
588 (((
589 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
590 )))
591
592 [[image:image-20220624144904-12.png]]
593
594
595 (% style="color:#037691" %)**AT Command:**
596
597 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
598 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
599 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
600
601 Eg: The setting command **AT+STYPE=802212** means:
602
603 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
604 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
605 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
606 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
607 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
608 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
609 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
610
611 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
612
613
614 (% style="color:#037691" %)**Downlink Command:**
615
616 * 0xE400802212     Same as: AT+STYPE=80221
617
618 (% style="color:red" %)**Note:**
619
620 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
621
622
623
624
625 = 4. Power consumption and battery =
626
627 == 4.1 Total Power Consumption ==
628
629 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
630
631
632 == 4.2 Reduce power consumption ==
633
634 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
635
636
637 == 4.3 Battery ==
638
639 (((
640 All sensors are only power by external power source. If external power source is off. All sensor won't work.
641 )))
642
643 (((
644 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
645 )))
646
647
648 = 5. Main Process Unit WSC1-L =
649
650 == 5.1 Features ==
651
652 * Wall Attachable.
653 * LoRaWAN v1.0.3 Class A protocol.
654 * RS485 / Modbus protocol
655 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
656 * AT Commands to change parameters
657 * Remote configure parameters via LoRaWAN Downlink
658 * Firmware upgradable via program port
659 * Powered by external 12v battery
660 * Back up rechargeable 1000mAh battery
661 * IP Rating: IP65
662 * Support default sensors or 3rd party RS485 sensors
663
664
665 == 5.2 Power Consumption ==
666
667 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
668
669
670 == 5.3 Storage & Operation Temperature ==
671
672 -20°C to +60°C
673
674
675 == 5.4 Pin Mapping ==
676
677 [[image:1656054149793-239.png]]
678
679
680 == 5.5 Mechanical ==
681
682 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
683
684
685 == 5.6 Connect to RS485 Sensors ==
686
687 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
688
689
690 [[image:1656054389031-379.png]]
691
692
693 Hardware Design for the Converter Board please see:
694
695 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
696
697
698 = 6. Weather Sensors =
699
700 == 6.1 Rain Gauge ~-~- WSS-01 ==
701
702
703 (((
704 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
705 )))
706
707 (((
708 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
709 )))
710
711 (((
712 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
713 )))
714
715 (((
716 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
717 )))
718
719 (((
720 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
721 )))
722
723
724 === 6.1.1 Feature ===
725
726 * RS485 Rain Gauge
727 * Small dimension, easy to install
728 * Vents under funnel, avoid leaf or other things to avoid rain flow.
729 * ABS enclosure.
730 * Horizontal adjustable.
731
732
733 === 6.1.2 Specification ===
734
735 * Resolution: 0.2mm
736 * Accuracy: ±3%
737 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
738 * Input Power: DC 5~~24v
739 * Interface: RS485
740 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
741 * Working Humidity: <100% (no dewing)
742 * Power Consumption: 4mA @ 12v.
743
744
745 === 6.1.3 Dimension ===
746
747 [[image:1656054957406-980.png]]
748
749
750 === 6.1.4 Pin Mapping ===
751
752 [[image:1656054972828-692.png]]
753
754
755 === 6.1.5 Installation Notice ===
756
757 (((
758 Do not power on while connect the cables. Double check the wiring before power on.
759 )))
760
761 (((
762 Installation Photo as reference:
763 )))
764
765
766 (((
767 (% style="color:#4472c4" %)** Install on Ground:**
768 )))
769
770 (((
771 WSS-01 Rain Gauge include screws so can install in ground directly .
772 )))
773
774
775 (((
776 (% style="color:#4472c4" %)** Install on pole:**
777 )))
778
779 (((
780 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
781 )))
782
783 [[image:image-20220624152218-1.png||height="526" width="276"]]
784
785 WS-K2: Bracket Kit for Pole installation
786
787
788 WSSC-K2 dimension document, please see:
789
790 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
791
792
793 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
794
795 [[image:1656055444035-179.png]]
796
797 (((
798 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
799 )))
800
801 (((
802 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
803 )))
804
805 (((
806 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
807 )))
808
809
810 === 6.2.1 Feature ===
811
812 * RS485 wind speed / direction sensor
813 * PC enclosure, resist corrosion
814
815
816 === 6.2.2 Specification ===
817
818 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
819 * Wind direction range: 0 ~~ 360°
820 * Start wind speed: ≤0.3m/s
821 * Accuracy: ±(0.3+0.03V)m/s , ±1°
822 * Input Power: DC 5~~24v
823 * Interface: RS485
824 * Working Temperature: -30℃~70℃
825 * Working Humidity: <100% (no dewing)
826 * Power Consumption: 13mA ~~ 12v.
827 * Cable Length: 2 meters
828
829
830 === 6.2.3 Dimension ===
831
832 [[image:image-20220624152813-2.png]]
833
834
835 === 6.2.4 Pin Mapping ===
836
837 [[image:1656056281231-994.png]]
838
839
840 === 6.2.5  Angle Mapping ===
841
842 [[image:1656056303845-585.png]]
843
844
845 === 6.2.6  Installation Notice ===
846
847 (((
848 Do not power on while connect the cables. Double check the wiring before power on.
849 )))
850
851 (((
852 The sensor must be installed with below direction, towards North.
853 )))
854
855 [[image:image-20220624153901-3.png]]
856
857
858 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
859
860
861 (((
862 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
863 )))
864
865 (((
866 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
867 )))
868
869 (((
870 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
871 )))
872
873
874 === 6.3.1 Feature ===
875
876 * RS485 CO2, PM2.5, PM10 sensor
877 * NDIR to measure CO2 with Internal Temperature Compensation
878 * Laser Beam Scattering to PM2.5 and PM10
879
880
881 === 6.3.2 Specification ===
882
883 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
884 * CO2 resolution: 1ppm
885 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
886 * PM2.5/PM10 resolution: 1μg/m3
887 * Input Power: DC 7 ~~ 24v
888 * Preheat time: 3min
889 * Interface: RS485
890 * Working Temperature:
891 ** CO2: 0℃~50℃;
892 ** PM2.5/PM10: -30 ~~ 50℃
893 * Working Humidity:
894 ** PM2.5/PM10: 15~80%RH (no dewing)
895 ** CO2: 0~95%RH
896 * Power Consumption: 50mA@ 12v.
897
898
899 === 6.3.3 Dimension ===
900
901 [[image:1656056708366-230.png]]
902
903
904 === 6.3.4 Pin Mapping ===
905
906 [[image:1656056722648-743.png]]
907
908
909 === 6.3.5 Installation Notice ===
910
911 Do not power on while connect the cables. Double check the wiring before power on.
912
913 [[image:1656056751153-304.png]]
914
915 [[image:1656056766224-773.png]]
916
917
918 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
919
920
921 (((
922 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
923 )))
924
925 (((
926 WSS-04 has auto heating feature, this ensures measurement more reliable.
927 )))
928
929 (((
930 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
931 )))
932
933
934
935 === 6.4.1 Feature ===
936
937 * RS485 Rain/Snow detect sensor
938 * Surface heating to dry
939 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
940
941
942 === 6.4.2 Specification ===
943
944 * Detect if there is rain or snow
945 * Input Power: DC 12 ~~ 24v
946 * Interface: RS485
947 * Working Temperature: -30℃~70℃
948 * Working Humidity: 10~90%RH
949 * Power Consumption:
950 ** No heating: 12mA @ 12v,
951 ** heating: 94ma @ 12v.
952
953
954 === 6.4.3 Dimension ===
955
956 [[image:1656056844782-155.png]]
957
958
959 === 6.4.4 Pin Mapping ===
960
961 [[image:1656056855590-754.png]]
962
963
964 === 6.4.5 Installation Notice ===
965
966 Do not power on while connect the cables. Double check the wiring before power on.
967
968
969 (((
970 Install with 15°degree.
971 )))
972
973 [[image:1656056873783-780.png]]
974
975
976 [[image:1656056883736-804.png]]
977
978
979 === 6.4.6 Heating ===
980
981 (((
982 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
983 )))
984
985
986 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
987
988
989 (((
990 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
991 )))
992
993 (((
994 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
995 )))
996
997
998 === 6.5.1 Feature ===
999
1000 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1001
1002
1003 === 6.5.2 Specification ===
1004
1005 * Input Power: DC 12 ~~ 24v
1006 * Interface: RS485
1007 * Temperature Sensor Spec:
1008 ** Range: -30 ~~ 70℃
1009 ** resolution 0.1℃
1010 ** Accuracy: ±0.5℃
1011 * Humidity Sensor Spec:
1012 ** Range: 0 ~~ 100% RH
1013 ** resolution 0.1 %RH
1014 ** Accuracy: 3% RH
1015 * Pressure Sensor Spec:
1016 ** Range: 10~1100hPa
1017 ** Resolution: 0.1hPa
1018 ** Accuracy: ±0.1hPa
1019 * Illuminate sensor:
1020 ** Range: 0~2/20/200kLux
1021 ** Resolution: 10 Lux
1022 ** Accuracy: ±3%FS
1023 * Working Temperature: -30℃~70℃
1024 * Working Humidity: 10~90%RH
1025 * Power Consumption: 4mA @ 12v
1026
1027
1028 === 6.5.3 Dimension ===
1029
1030 [[image:1656057170639-522.png]]
1031
1032
1033 === 6.5.4 Pin Mapping ===
1034
1035 [[image:1656057181899-910.png]]
1036
1037
1038 === 6.5.5 Installation Notice ===
1039
1040 Do not power on while connect the cables. Double check the wiring before power on.
1041
1042 [[image:1656057199955-514.png]]
1043
1044
1045 [[image:1656057212438-475.png]]
1046
1047
1048 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1049
1050
1051 (((
1052 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1053 )))
1054
1055 (((
1056 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1057 )))
1058
1059 (((
1060 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1061 )))
1062
1063
1064
1065 === 6.6.1 Feature ===
1066
1067 * RS485 Total Solar Radiation sensor
1068 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1069 * Measure Reflected Radiation if sense area towards ground.
1070
1071
1072 === 6.6.2 Specification ===
1073
1074 * Input Power: DC 5 ~~ 24v
1075 * Interface: RS485
1076 * Detect spectrum: 0.3~3μm(300~3000nm)
1077 * Measure strength range: 0~2000W/m2
1078 * Resolution: 0.1W/m2
1079 * Accuracy: ±3%
1080 * Yearly Stability: ≤±2%
1081 * Cosine response: ≤7% (@ Sun angle 10°)
1082 * Temperature Effect: ±2%(-10℃~40℃)
1083 * Working Temperature: -40℃~70℃
1084 * Working Humidity: 10~90%RH
1085 * Power Consumption: 4mA @ 12v
1086
1087
1088 === 6.6.3 Dimension ===
1089
1090 [[image:1656057348695-898.png]]
1091
1092
1093 === 6.6.4 Pin Mapping ===
1094
1095 [[image:1656057359343-744.png]]
1096
1097
1098 === 6.6.5 Installation Notice ===
1099
1100 Do not power on while connect the cables. Double check the wiring before power on.
1101
1102 [[image:1656057369259-804.png]]
1103
1104
1105 [[image:1656057377943-564.png]]
1106
1107
1108 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1109
1110
1111 (((
1112 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1113 )))
1114
1115 (((
1116 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1117 )))
1118
1119 (((
1120 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1121 )))
1122
1123
1124 === 6.7.1 Feature ===
1125
1126 (((
1127 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1128 )))
1129
1130 (((
1131 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1132 )))
1133
1134
1135 === 6.7.2 Specification ===
1136
1137 * Input Power: DC 5 ~~ 24v
1138 * Interface: RS485
1139 * Response Spectrum: 400~700nm
1140 * Measure range: 0~2500μmol/m2•s
1141 * Resolution: 1μmol/m2•s
1142 * Accuracy: ±2%
1143 * Yearly Stability: ≤±2%
1144 * Working Temperature: -30℃~75℃
1145 * Working Humidity: 10~90%RH
1146 * Power Consumption: 3mA @ 12v
1147
1148
1149 === 6.7.3 Dimension ===
1150
1151 [[image:1656057538793-888.png]]
1152
1153
1154 === 6.7.4 Pin Mapping ===
1155
1156 [[image:1656057548116-203.png]]
1157
1158
1159 === 6.7.5 Installation Notice ===
1160
1161 Do not power on while connect the cables. Double check the wiring before power on.
1162
1163
1164 [[image:1656057557191-895.png]]
1165
1166
1167 [[image:1656057565783-251.png]]
1168
1169
1170 = 7. FAQ =
1171
1172 == 7.1 What else do I need to purchase to build Weather Station? ==
1173
1174 Below is the installation photo and structure:
1175
1176 [[image:1656057598349-319.png]]
1177
1178
1179 [[image:1656057608049-693.png]]
1180
1181
1182
1183 == 7.2 How to upgrade firmware for WSC1-L? ==
1184
1185 (((
1186 Firmware Location & Change log:
1187 )))
1188
1189 (((
1190 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1191 )))
1192
1193
1194 (((
1195 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1196 )))
1197
1198
1199 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1200
1201 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1202
1203
1204 == 7.4 Can I add my weather sensors? ==
1205
1206 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1207
1208
1209 = 8. Trouble Shooting =
1210
1211 == 8.1 AT Command input doesn't work ==
1212
1213 (((
1214 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1215 )))
1216
1217
1218 = 9. Order Info =
1219
1220 == 9.1 Main Process Unit ==
1221
1222 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1223
1224 (% style="color:blue" %)**XX**(%%): The default frequency band
1225
1226 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1227 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1228 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1229 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1230 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1231 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1232 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1233 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1234
1235
1236
1237
1238
1239 == 9.2 Sensors ==
1240
1241 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1242 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1243 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1244 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1245 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1246 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1247 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1248 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1249 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1250 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1251
1252
1253
1254
1255
1256 = 10. Support =
1257
1258 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1259 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1260
1261
1262
1263
1264
1265 = 11. Appendix I: Field Installation Photo =
1266
1267
1268 [[image:1656058346362-132.png]]
1269
1270 **Storage Battery**: 12v,12AH li battery
1271
1272
1273
1274 **Wind Speed/Direction**
1275
1276 [[image:1656058373174-421.png]]
1277
1278
1279
1280 **Total Solar Radiation sensor**
1281
1282 [[image:1656058397364-282.png]]
1283
1284
1285
1286 **PAR Sensor**
1287
1288 [[image:1656058416171-615.png]]
1289
1290
1291
1292 **CO2/PM2.5/PM10 3 in 1 sensor**
1293
1294 [[image:1656058441194-827.png]]
1295
1296
1297
1298 **Rain / Snow Detect**
1299
1300 [[image:1656058451456-166.png]]
1301
1302
1303
1304 **Rain Gauge**
1305
1306 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0