Version 79.21 by Xiaoling on 2022/06/24 17:22

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 (((
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91 )))
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (((
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146 )))
147
148
149 [[image:1656042745346-283.png]]
150
151
152
153 == 2.4 Uplink Payload ==
154
155 Uplink payloads include two types: Valid Sensor Value and other status / control command.
156
157 * Valid Sensor Value: Use FPORT=2
158 * Other control command: Use FPORT other than 2.
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
238 |Byte3|Byte2|Byte1
239
240 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
241
242 [[image:image-20220624134713-1.png]]
243
244
245 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
246
247 External sensors detected by WSC1-L include :
248
249 custom sensor A1,
250
251 PAR sensor (WSS-07),
252
253 Total Solar Radiation sensor (WSS-06),
254
255 CO2/PM2.5/PM10 (WSS-03),
256
257 Wind Speed/Direction (WSS-02)
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:1656049673488-415.png]]
265
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270 (((
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
272 )))
273
274 (((
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276 )))
277
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
292 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
293
294 (% style="color:#4472c4" %)**Sensor Type Table:**
295
296 [[image:image-20220624140352-2.png]]
297
298
299 (((
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301 )))
302
303 (((
304
305 )))
306
307 (((
308 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
309 )))
310
311 * (((
312 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
313 )))
314
315 (((
316 Uplink 1:  [[image:image-20220624140735-4.png]]
317 )))
318
319 (((
320
321 )))
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325 )))
326
327 (((
328
329 )))
330
331 * (((
332 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
333 )))
334
335 (((
336 Uplink 1:  [[image:image-20220624141025-6.png]]
337 )))
338
339 (((
340
341 )))
342
343 Uplink 2:  [[image:image-20220624141100-7.png]]
344
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
351
352
353 Download decoder for suitable platform from:
354
355 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
356
357 and put as below:
358
359 [[image:1656051152438-578.png]]
360
361
362
363 == 2.5 Show data on Application Server ==
364
365 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
366
367
368 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
369
370 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
371
372 [[image:1656051197172-131.png]]
373
374
375 **Add TagoIO:**
376
377 [[image:1656051223585-631.png]]
378
379
380 **Authorization:**
381
382 [[image:1656051248318-368.png]]
383
384
385 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
386
387 [[image:1656051277767-168.png]]
388
389
390
391 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
392
393 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
394
395 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
396 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
397
398 There are two kinds of commands to configure WSC1-L, they are:
399
400 * (% style="color:#4472c4" %)**General Commands**.
401
402 These commands are to configure:
403
404 * General system settings like: uplink interval.
405 * LoRaWAN protocol & radio related command.
406
407 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
408
409 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
410
411
412 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
413
414 These commands only valid for WSC1-L, as below:
415
416
417
418
419
420
421 == 3.1 Set Transmit Interval Time ==
422
423 Feature: Change LoRaWAN End Node Transmit Interval.
424
425 (% style="color:#037691" %)**AT Command: AT+TDC**
426
427 [[image:image-20220624142619-8.png]]
428
429
430 (% style="color:#037691" %)**Downlink Command: 0x01**
431
432 Format: Command Code (0x01) followed by 3 bytes time value.
433
434 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
435
436 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
437 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
438
439
440 == 3.2 Set Emergency Mode ==
441
442 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
443
444 (% style="color:#037691" %)**AT Command:**
445
446 [[image:image-20220624142956-9.png]]
447
448
449 (% style="color:#037691" %)**Downlink Command:**
450
451 * 0xE101     Same as: AT+ALARMMOD=1
452 * 0xE100     Same as: AT+ALARMMOD=0
453
454
455 == 3.3 Add or Delete RS485 Sensor ==
456
457 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
458
459 (% style="color:#037691" %)**AT Command: **
460
461 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
462
463 * Type_Code range:  A1 ~~ A4
464 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
465 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
466 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
467 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
468 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
469 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
470
471 **Example:**
472
473 User need to change external sensor use the type code as address code.
474
475 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
476
477 [[image:image-20220624143553-10.png]]
478
479
480 The response frame of the sensor is as follows:
481
482 [[image:image-20220624143618-11.png]]
483
484
485
486 **Then the following parameters should be:**
487
488 * Address_Code range: A1
489 * Query_Length: 8
490 * Query_Command: A103000000019CAA
491 * Read_Length: 8
492 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
493 * has_CRC: 1
494 * timeout: 1500 (Fill in the test according to the actual situation)
495
496 **So the input command is:**
497
498 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
499
500
501 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
502
503 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
504 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
505 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
506
507 **Related commands:**
508
509 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
510
511 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
512
513
514 (% style="color:#037691" %)**Downlink Command:  **
515
516 **delete custom sensor A1:**
517
518 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
519
520 **Remove all custom sensors**
521
522 * 0xE5FF  
523
524
525 == 3.4 RS485 Test Command ==
526
527 (% style="color:#037691" %)**AT Command:**
528
529 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
530 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
531 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
532 Send command to 485 sensor
533
534 Range : no more than 10 bytes
535 )))|(% style="width:85px" %)OK
536
537 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
538
539 AT+RSWRITE=0103000001840A
540
541
542 (% style="color:#037691" %)**Downlink Command:**
543
544 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
545
546
547 == 3.5 RS485 response timeout ==
548
549 Feature: Set or get extended time to receive 485 sensor data.
550
551 (% style="color:#037691" %)**AT Command:**
552
553 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
554 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
555 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
556 Set response timeout to:
557
558 Range : 0~~10000
559 )))|(% style="width:85px" %)OK
560
561 (% style="color:#037691" %)**Downlink Command:**
562
563 Format: Command Code (0xE0) followed by 3 bytes time value.
564
565 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
566
567 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
568 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
569
570
571 == 3.6 Set Sensor Type ==
572
573 (((
574 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
575 )))
576
577 (((
578 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
579 )))
580
581 [[image:image-20220624144904-12.png]]
582
583
584 (% style="color:#037691" %)**AT Command:**
585
586 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
587 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
588 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
589
590 Eg: The setting command **AT+STYPE=802212** means:
591
592 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
593 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
594 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
595 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
596 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
597 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
598 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
599
600 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
601
602
603 (% style="color:#037691" %)**Downlink Command:**
604
605 * 0xE400802212     Same as: AT+STYPE=80221
606
607 (% style="color:red" %)**Note:**
608
609 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
610
611
612
613
614 = 4. Power consumption and battery =
615
616 == 4.1 Total Power Consumption ==
617
618 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
619
620
621 == 4.2 Reduce power consumption ==
622
623 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
624
625
626 == 4.3 Battery ==
627
628 (((
629 All sensors are only power by external power source. If external power source is off. All sensor won't work.
630 )))
631
632 (((
633 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
634 )))
635
636
637 = 5. Main Process Unit WSC1-L =
638
639 == 5.1 Features ==
640
641 * Wall Attachable.
642 * LoRaWAN v1.0.3 Class A protocol.
643 * RS485 / Modbus protocol
644 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
645 * AT Commands to change parameters
646 * Remote configure parameters via LoRaWAN Downlink
647 * Firmware upgradable via program port
648 * Powered by external 12v battery
649 * Back up rechargeable 1000mAh battery
650 * IP Rating: IP65
651 * Support default sensors or 3rd party RS485 sensors
652
653
654 == 5.2 Power Consumption ==
655
656 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
657
658
659 == 5.3 Storage & Operation Temperature ==
660
661 -20°C to +60°C
662
663
664 == 5.4 Pin Mapping ==
665
666 [[image:1656054149793-239.png]]
667
668
669 == 5.5 Mechanical ==
670
671 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
672
673
674 == 5.6 Connect to RS485 Sensors ==
675
676 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
677
678
679 [[image:1656054389031-379.png]]
680
681
682 Hardware Design for the Converter Board please see:
683
684 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
685
686
687 = 6. Weather Sensors =
688
689 == 6.1 Rain Gauge ~-~- WSS-01 ==
690
691
692 (((
693 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
694 )))
695
696 (((
697 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
698 )))
699
700 (((
701 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
702 )))
703
704 (((
705 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
706 )))
707
708 (((
709 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
710 )))
711
712
713 === 6.1.1 Feature ===
714
715 * RS485 Rain Gauge
716 * Small dimension, easy to install
717 * Vents under funnel, avoid leaf or other things to avoid rain flow.
718 * ABS enclosure.
719 * Horizontal adjustable.
720
721
722 === 6.1.2 Specification ===
723
724 * Resolution: 0.2mm
725 * Accuracy: ±3%
726 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
727 * Input Power: DC 5~~24v
728 * Interface: RS485
729 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
730 * Working Humidity: <100% (no dewing)
731 * Power Consumption: 4mA @ 12v.
732
733
734 === 6.1.3 Dimension ===
735
736 [[image:1656054957406-980.png]]
737
738
739 === 6.1.4 Pin Mapping ===
740
741 [[image:1656054972828-692.png]]
742
743
744 === 6.1.5 Installation Notice ===
745
746 (((
747 Do not power on while connect the cables. Double check the wiring before power on.
748 )))
749
750 (((
751 Installation Photo as reference:
752 )))
753
754
755 (((
756 (% style="color:#4472c4" %)** Install on Ground:**
757 )))
758
759 (((
760 WSS-01 Rain Gauge include screws so can install in ground directly .
761 )))
762
763
764 (((
765 (% style="color:#4472c4" %)** Install on pole:**
766 )))
767
768 (((
769 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
770 )))
771
772 [[image:image-20220624152218-1.png||height="526" width="276"]]
773
774 WS-K2: Bracket Kit for Pole installation
775
776
777 WSSC-K2 dimension document, please see:
778
779 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
780
781
782 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
783
784 [[image:1656055444035-179.png]]
785
786 (((
787 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
788 )))
789
790 (((
791 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
792 )))
793
794 (((
795 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
796 )))
797
798
799 === 6.2.1 Feature ===
800
801 * RS485 wind speed / direction sensor
802 * PC enclosure, resist corrosion
803
804
805 === 6.2.2 Specification ===
806
807 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
808 * Wind direction range: 0 ~~ 360°
809 * Start wind speed: ≤0.3m/s
810 * Accuracy: ±(0.3+0.03V)m/s , ±1°
811 * Input Power: DC 5~~24v
812 * Interface: RS485
813 * Working Temperature: -30℃~70℃
814 * Working Humidity: <100% (no dewing)
815 * Power Consumption: 13mA ~~ 12v.
816 * Cable Length: 2 meters
817
818
819 === 6.2.3 Dimension ===
820
821 [[image:image-20220624152813-2.png]]
822
823
824 === 6.2.4 Pin Mapping ===
825
826 [[image:1656056281231-994.png]]
827
828
829 === 6.2.5  Angle Mapping ===
830
831 [[image:1656056303845-585.png]]
832
833
834 === 6.2.6  Installation Notice ===
835
836 (((
837 Do not power on while connect the cables. Double check the wiring before power on.
838 )))
839
840 (((
841 The sensor must be installed with below direction, towards North.
842 )))
843
844 [[image:image-20220624153901-3.png]]
845
846
847 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
848
849
850 (((
851 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
852 )))
853
854 (((
855 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
856 )))
857
858 (((
859 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
860 )))
861
862
863 === 6.3.1 Feature ===
864
865 * RS485 CO2, PM2.5, PM10 sensor
866 * NDIR to measure CO2 with Internal Temperature Compensation
867 * Laser Beam Scattering to PM2.5 and PM10
868
869
870 === 6.3.2 Specification ===
871
872 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
873 * CO2 resolution: 1ppm
874 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
875 * PM2.5/PM10 resolution: 1μg/m3
876 * Input Power: DC 7 ~~ 24v
877 * Preheat time: 3min
878 * Interface: RS485
879 * Working Temperature:
880 ** CO2: 0℃~50℃;
881 ** PM2.5/PM10: -30 ~~ 50℃
882 * Working Humidity:
883 ** PM2.5/PM10: 15~80%RH (no dewing)
884 ** CO2: 0~95%RH
885 * Power Consumption: 50mA@ 12v.
886
887
888 === 6.3.3 Dimension ===
889
890 [[image:1656056708366-230.png]]
891
892
893 === 6.3.4 Pin Mapping ===
894
895 [[image:1656056722648-743.png]]
896
897
898 === 6.3.5 Installation Notice ===
899
900 Do not power on while connect the cables. Double check the wiring before power on.
901
902 [[image:1656056751153-304.png]]
903
904 [[image:1656056766224-773.png]]
905
906
907 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
908
909
910 (((
911 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
912 )))
913
914 (((
915 WSS-04 has auto heating feature, this ensures measurement more reliable.
916 )))
917
918 (((
919 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
920 )))
921
922
923
924 === 6.4.1 Feature ===
925
926 * RS485 Rain/Snow detect sensor
927 * Surface heating to dry
928 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
929
930
931 === 6.4.2 Specification ===
932
933 * Detect if there is rain or snow
934 * Input Power: DC 12 ~~ 24v
935 * Interface: RS485
936 * Working Temperature: -30℃~70℃
937 * Working Humidity: 10~90%RH
938 * Power Consumption:
939 ** No heating: 12mA @ 12v,
940 ** heating: 94ma @ 12v.
941
942
943 === 6.4.3 Dimension ===
944
945 [[image:1656056844782-155.png]]
946
947
948 === 6.4.4 Pin Mapping ===
949
950 [[image:1656056855590-754.png]]
951
952
953 === 6.4.5 Installation Notice ===
954
955 Do not power on while connect the cables. Double check the wiring before power on.
956
957
958 (((
959 Install with 15°degree.
960 )))
961
962 [[image:1656056873783-780.png]]
963
964
965 [[image:1656056883736-804.png]]
966
967
968 === 6.4.6 Heating ===
969
970 (((
971 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
972 )))
973
974
975 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
976
977
978 (((
979 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
980 )))
981
982 (((
983 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
984 )))
985
986
987 === 6.5.1 Feature ===
988
989 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
990
991
992 === 6.5.2 Specification ===
993
994 * Input Power: DC 12 ~~ 24v
995 * Interface: RS485
996 * Temperature Sensor Spec:
997 ** Range: -30 ~~ 70℃
998 ** resolution 0.1℃
999 ** Accuracy: ±0.5℃
1000 * Humidity Sensor Spec:
1001 ** Range: 0 ~~ 100% RH
1002 ** resolution 0.1 %RH
1003 ** Accuracy: 3% RH
1004 * Pressure Sensor Spec:
1005 ** Range: 10~1100hPa
1006 ** Resolution: 0.1hPa
1007 ** Accuracy: ±0.1hPa
1008 * Illuminate sensor:
1009 ** Range: 0~2/20/200kLux
1010 ** Resolution: 10 Lux
1011 ** Accuracy: ±3%FS
1012 * Working Temperature: -30℃~70℃
1013 * Working Humidity: 10~90%RH
1014 * Power Consumption: 4mA @ 12v
1015
1016
1017 === 6.5.3 Dimension ===
1018
1019 [[image:1656057170639-522.png]]
1020
1021
1022 === 6.5.4 Pin Mapping ===
1023
1024 [[image:1656057181899-910.png]]
1025
1026
1027 === 6.5.5 Installation Notice ===
1028
1029 Do not power on while connect the cables. Double check the wiring before power on.
1030
1031 [[image:1656057199955-514.png]]
1032
1033
1034 [[image:1656057212438-475.png]]
1035
1036
1037 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1038
1039
1040 (((
1041 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1042 )))
1043
1044 (((
1045 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1046 )))
1047
1048 (((
1049 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1050 )))
1051
1052
1053
1054 === 6.6.1 Feature ===
1055
1056 * RS485 Total Solar Radiation sensor
1057 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1058 * Measure Reflected Radiation if sense area towards ground.
1059
1060
1061 === 6.6.2 Specification ===
1062
1063 * Input Power: DC 5 ~~ 24v
1064 * Interface: RS485
1065 * Detect spectrum: 0.3~3μm(300~3000nm)
1066 * Measure strength range: 0~2000W/m2
1067 * Resolution: 0.1W/m2
1068 * Accuracy: ±3%
1069 * Yearly Stability: ≤±2%
1070 * Cosine response: ≤7% (@ Sun angle 10°)
1071 * Temperature Effect: ±2%(-10℃~40℃)
1072 * Working Temperature: -40℃~70℃
1073 * Working Humidity: 10~90%RH
1074 * Power Consumption: 4mA @ 12v
1075
1076
1077 === 6.6.3 Dimension ===
1078
1079 [[image:1656057348695-898.png]]
1080
1081
1082 === 6.6.4 Pin Mapping ===
1083
1084 [[image:1656057359343-744.png]]
1085
1086
1087 === 6.6.5 Installation Notice ===
1088
1089 Do not power on while connect the cables. Double check the wiring before power on.
1090
1091 [[image:1656057369259-804.png]]
1092
1093
1094 [[image:1656057377943-564.png]]
1095
1096
1097 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1098
1099
1100 (((
1101 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1102 )))
1103
1104 (((
1105 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1106 )))
1107
1108 (((
1109 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1110 )))
1111
1112
1113 === 6.7.1 Feature ===
1114
1115 (((
1116 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1117 )))
1118
1119 (((
1120 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1121 )))
1122
1123
1124 === 6.7.2 Specification ===
1125
1126 * Input Power: DC 5 ~~ 24v
1127 * Interface: RS485
1128 * Response Spectrum: 400~700nm
1129 * Measure range: 0~2500μmol/m2•s
1130 * Resolution: 1μmol/m2•s
1131 * Accuracy: ±2%
1132 * Yearly Stability: ≤±2%
1133 * Working Temperature: -30℃~75℃
1134 * Working Humidity: 10~90%RH
1135 * Power Consumption: 3mA @ 12v
1136
1137
1138 === 6.7.3 Dimension ===
1139
1140 [[image:1656057538793-888.png]]
1141
1142
1143 === 6.7.4 Pin Mapping ===
1144
1145 [[image:1656057548116-203.png]]
1146
1147
1148 === 6.7.5 Installation Notice ===
1149
1150 Do not power on while connect the cables. Double check the wiring before power on.
1151
1152
1153 [[image:1656057557191-895.png]]
1154
1155
1156 [[image:1656057565783-251.png]]
1157
1158
1159 = 7. FAQ =
1160
1161 == 7.1 What else do I need to purchase to build Weather Station? ==
1162
1163 Below is the installation photo and structure:
1164
1165 [[image:1656057598349-319.png]]
1166
1167
1168 [[image:1656057608049-693.png]]
1169
1170
1171
1172 == 7.2 How to upgrade firmware for WSC1-L? ==
1173
1174 (((
1175 Firmware Location & Change log:
1176 )))
1177
1178 (((
1179 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1180 )))
1181
1182
1183 (((
1184 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1185 )))
1186
1187
1188 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1189
1190 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1191
1192
1193 == 7.4 Can I add my weather sensors? ==
1194
1195 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1196
1197
1198 = 8. Trouble Shooting =
1199
1200 == 8.1 AT Command input doesn't work ==
1201
1202 (((
1203 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1204 )))
1205
1206
1207 = 9. Order Info =
1208
1209 == 9.1 Main Process Unit ==
1210
1211 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1212
1213 (% style="color:blue" %)**XX**(%%): The default frequency band
1214
1215 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1216 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1217 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1218 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1219 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1220 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1221 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1222 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1223
1224
1225
1226
1227
1228 == 9.2 Sensors ==
1229
1230 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1231 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1232 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1233 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1234 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1235 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1236 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1237 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1238 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1239 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1240
1241
1242
1243
1244
1245 = 10. Support =
1246
1247 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1248 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1249
1250
1251
1252
1253
1254 = 11. Appendix I: Field Installation Photo =
1255
1256
1257 [[image:1656058346362-132.png]]
1258
1259 **Storage Battery**: 12v,12AH li battery
1260
1261
1262
1263 **Wind Speed/Direction**
1264
1265 [[image:1656058373174-421.png]]
1266
1267
1268
1269 **Total Solar Radiation sensor**
1270
1271 [[image:1656058397364-282.png]]
1272
1273
1274
1275 **PAR Sensor**
1276
1277 [[image:1656058416171-615.png]]
1278
1279
1280
1281 **CO2/PM2.5/PM10 3 in 1 sensor**
1282
1283 [[image:1656058441194-827.png]]
1284
1285
1286
1287 **Rain / Snow Detect**
1288
1289 [[image:1656058451456-166.png]]
1290
1291
1292
1293 **Rain Gauge**
1294
1295 [[image:1656058463455-569.png]]