Version 79.2 by Xiaoling on 2022/06/24 16:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)**Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82
83
84
85 == 2.2 How it works? ==
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
101
102
103
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161
162
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
167
168
169 (((
170 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
171 )))
172
173 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
174 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
175 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
176
177 [[image:1656043061044-343.png]]
178
179
180 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
181
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195
196 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
197
198 *0x01: EU868
199
200 *0x02: US915
201
202 *0x03: IN865
203
204 *0x04: AU915
205
206 *0x05: KZ865
207
208 *0x06: RU864
209
210 *0x07: AS923
211
212 *0x08: AS923-1
213
214 *0x09: AS923-2
215
216 *0x0a: AS923-3
217
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225
226 ==== (% style="color:#037691" %)**BAT:**(%%) ====
227
228 shows the battery voltage for WSC1-L MCU.
229
230 Ex1: 0x0BD6/1000 = 3.03 V
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220624140352-2.png]]
296
297
298 Below is an example payload:  [[image:image-20220624140615-3.png]]
299
300
301 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
302
303 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
304
305 Uplink 1:  [[image:image-20220624140735-4.png]]
306
307 Uplink 2:  [[image:image-20220624140842-5.png]]
308
309
310 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
311
312 Uplink 1:  [[image:image-20220624141025-6.png]]
313
314 Uplink 2:  [[image:image-20220624141100-7.png]]
315
316
317
318
319 === 2.4.3 Decoder in TTN V3 ===
320
321 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
322
323
324 Download decoder for suitable platform from:
325
326 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
327
328 and put as below:
329
330 [[image:1656051152438-578.png]]
331
332
333
334 == 2.5 Show data on Application Server ==
335
336 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
337
338
339 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
340
341 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
342
343 [[image:1656051197172-131.png]]
344
345
346 **Add TagoIO:**
347
348 [[image:1656051223585-631.png]]
349
350
351 **Authorization:**
352
353 [[image:1656051248318-368.png]]
354
355
356 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
357
358 [[image:1656051277767-168.png]]
359
360
361
362 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
363
364 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
365
366 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
367 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
368
369 There are two kinds of commands to configure WSC1-L, they are:
370
371 * (% style="color:#4472c4" %)**General Commands**.
372
373 These commands are to configure:
374
375 * General system settings like: uplink interval.
376 * LoRaWAN protocol & radio related command.
377
378 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
379
380 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
381
382
383 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
384
385 These commands only valid for WSC1-L, as below:
386
387
388
389
390
391
392 == 3.1 Set Transmit Interval Time ==
393
394 Feature: Change LoRaWAN End Node Transmit Interval.
395
396 (% style="color:#037691" %)**AT Command: AT+TDC**
397
398 [[image:image-20220624142619-8.png]]
399
400
401 (% style="color:#037691" %)**Downlink Command: 0x01**
402
403 Format: Command Code (0x01) followed by 3 bytes time value.
404
405 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
406
407 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
408 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
409
410
411
412
413 == 3.2 Set Emergency Mode ==
414
415 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
416
417 (% style="color:#037691" %)**AT Command:**
418
419 [[image:image-20220624142956-9.png]]
420
421
422 (% style="color:#037691" %)**Downlink Command:**
423
424 * 0xE101     Same as: AT+ALARMMOD=1
425 * 0xE100     Same as: AT+ALARMMOD=0
426
427
428
429
430 == 3.3 Add or Delete RS485 Sensor ==
431
432 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
433
434 (% style="color:#037691" %)**AT Command: **
435
436 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
437
438 * Type_Code range:  A1 ~~ A4
439 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
440 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
441 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
442 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
443 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
444 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
445
446 **Example:**
447
448 User need to change external sensor use the type code as address code.
449
450 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
451
452 [[image:image-20220624143553-10.png]]
453
454
455 The response frame of the sensor is as follows:
456
457 [[image:image-20220624143618-11.png]]
458
459
460
461 **Then the following parameters should be:**
462
463 * Address_Code range: A1
464 * Query_Length: 8
465 * Query_Command: A103000000019CAA
466 * Read_Length: 8
467 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
468 * has_CRC: 1
469 * timeout: 1500 (Fill in the test according to the actual situation)
470
471 **So the input command is:**
472
473 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
474
475
476 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
477
478 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
479 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
480 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
481
482 **Related commands:**
483
484 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
485
486 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
487
488
489 (% style="color:#037691" %)**Downlink Command:  **
490
491 **delete custom sensor A1:**
492
493 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
494
495 **Remove all custom sensors**
496
497 * 0xE5FF  
498
499
500
501
502 == 3.4 RS485 Test Command ==
503
504 (% style="color:#037691" %)**AT Command:**
505
506 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
507 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
508 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
509 Send command to 485 sensor
510
511 Range : no more than 10 bytes
512 )))|(% style="width:85px" %)OK
513
514 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
515
516 AT+RSWRITE=0103000001840A
517
518
519 (% style="color:#037691" %)**Downlink Command:**
520
521 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
522
523
524
525
526 == 3.5 RS485 response timeout ==
527
528 Feature: Set or get extended time to receive 485 sensor data.
529
530 (% style="color:#037691" %)**AT Command:**
531
532 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
533 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
534 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
535 Set response timeout to:
536
537 Range : 0~~10000
538 )))|(% style="width:85px" %)OK
539
540 (% style="color:#037691" %)**Downlink Command:**
541
542 Format: Command Code (0xE0) followed by 3 bytes time value.
543
544 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
545
546 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
547 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
548
549
550
551
552 == 3.6 Set Sensor Type ==
553
554 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
555
556 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
557
558 [[image:image-20220624144904-12.png]]
559
560
561 (% style="color:#037691" %)**AT Command:**
562
563 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
564 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
565 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
566
567 Eg: The setting command **AT+STYPE=802212** means:
568
569 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
570 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
571 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
572 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
573 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
574 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
575 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
576
577 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
578
579
580 (% style="color:#037691" %)**Downlink Command:**
581
582 * 0xE400802212     Same as: AT+STYPE=80221
583
584 (% style="color:red" %)**Note:**
585
586 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
587
588
589
590
591 = 4. Power consumption and battery =
592
593 == 4.1 Total Power Consumption ==
594
595 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
596
597
598 == 4.2 Reduce power consumption ==
599
600 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
601
602
603 == 4.3 Battery ==
604
605 (((
606 All sensors are only power by external power source. If external power source is off. All sensor won't work.
607 )))
608
609 (((
610 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
611 )))
612
613
614 = 5. Main Process Unit WSC1-L =
615
616 == 5.1 Features ==
617
618 * Wall Attachable.
619 * LoRaWAN v1.0.3 Class A protocol.
620 * RS485 / Modbus protocol
621 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
622 * AT Commands to change parameters
623 * Remote configure parameters via LoRaWAN Downlink
624 * Firmware upgradable via program port
625 * Powered by external 12v battery
626 * Back up rechargeable 1000mAh battery
627 * IP Rating: IP65
628 * Support default sensors or 3rd party RS485 sensors
629
630
631
632
633 == 5.2 Power Consumption ==
634
635 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
636
637
638 == 5.3 Storage & Operation Temperature ==
639
640 -20°C to +60°C
641
642
643 == 5.4 Pin Mapping ==
644
645 [[image:1656054149793-239.png]]
646
647
648 == 5.5 Mechanical ==
649
650 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
651
652
653 == 5.6 Connect to RS485 Sensors ==
654
655 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
656
657
658 [[image:1656054389031-379.png]]
659
660
661 Hardware Design for the Converter Board please see:
662
663 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
664
665
666 = 6. Weather Sensors =
667
668 == 6.1 Rain Gauge ~-~- WSS-01 ==
669
670
671 (((
672 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
673 )))
674
675 (((
676 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
677 )))
678
679 (((
680 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
681 )))
682
683 (((
684 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
685 )))
686
687 (((
688 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
689 )))
690
691
692 === 6.1.1 Feature ===
693
694 * RS485 Rain Gauge
695 * Small dimension, easy to install
696 * Vents under funnel, avoid leaf or other things to avoid rain flow.
697 * ABS enclosure.
698 * Horizontal adjustable.
699
700
701
702
703 === 6.1.2 Specification ===
704
705 * Resolution: 0.2mm
706 * Accuracy: ±3%
707 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
708 * Input Power: DC 5~~24v
709 * Interface: RS485
710 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
711 * Working Humidity: <100% (no dewing)
712 * Power Consumption: 4mA @ 12v.
713
714
715
716
717 === 6.1.3 Dimension ===
718
719 [[image:1656054957406-980.png]]
720
721
722 === 6.1.4 Pin Mapping ===
723
724 [[image:1656054972828-692.png]]
725
726
727 === 6.1.5 Installation Notice ===
728
729 Do not power on while connect the cables. Double check the wiring before power on.
730
731 Installation Photo as reference:
732
733
734 (% style="color:#4472c4" %)** Install on Ground:**
735
736 WSS-01 Rain Gauge include screws so can install in ground directly .
737
738
739 (% style="color:#4472c4" %)** Install on pole:**
740
741 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
742
743 [[image:image-20220624152218-1.png||height="526" width="276"]]
744
745 WS-K2: Bracket Kit for Pole installation
746
747
748 WSSC-K2 dimension document, please see:
749
750 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
751
752
753 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
754
755 [[image:1656055444035-179.png]]
756
757 (((
758 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
759 )))
760
761 (((
762 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
763 )))
764
765 (((
766 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
767 )))
768
769
770 === 6.2.1 Feature ===
771
772 * RS485 wind speed / direction sensor
773 * PC enclosure, resist corrosion
774
775
776
777
778 === 6.2.2 Specification ===
779
780 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
781 * Wind direction range: 0 ~~ 360°
782 * Start wind speed: ≤0.3m/s
783 * Accuracy: ±(0.3+0.03V)m/s , ±1°
784 * Input Power: DC 5~~24v
785 * Interface: RS485
786 * Working Temperature: -30℃~70℃
787 * Working Humidity: <100% (no dewing)
788 * Power Consumption: 13mA ~~ 12v.
789 * Cable Length: 2 meters
790
791
792
793
794 === 6.2.3 Dimension ===
795
796 [[image:image-20220624152813-2.png]]
797
798
799 === 6.2.4 Pin Mapping ===
800
801 [[image:1656056281231-994.png]]
802
803
804 === 6.2.5  Angle Mapping ===
805
806 [[image:1656056303845-585.png]]
807
808
809 === 6.2.6  Installation Notice ===
810
811 Do not power on while connect the cables. Double check the wiring before power on.
812
813 The sensor must be installed with below direction, towards North.
814
815 [[image:image-20220624153901-3.png]]
816
817
818 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
819
820
821 (((
822 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
823 )))
824
825 (((
826 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
827 )))
828
829 (((
830 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
831 )))
832
833
834 === 6.3.1 Feature ===
835
836 * RS485 CO2, PM2.5, PM10 sensor
837 * NDIR to measure CO2 with Internal Temperature Compensation
838 * Laser Beam Scattering to PM2.5 and PM10
839
840
841
842
843 === 6.3.2 Specification ===
844
845 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
846 * CO2 resolution: 1ppm
847 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
848 * PM2.5/PM10 resolution: 1μg/m3
849 * Input Power: DC 7 ~~ 24v
850 * Preheat time: 3min
851 * Interface: RS485
852 * Working Temperature:
853 ** CO2: 0℃~50℃;
854 ** PM2.5/PM10: -30 ~~ 50℃
855 * Working Humidity:
856 ** PM2.5/PM10: 15~80%RH (no dewing)
857 ** CO2: 0~95%RH
858 * Power Consumption: 50mA@ 12v.
859
860
861
862
863 === 6.3.3 Dimension ===
864
865 [[image:1656056708366-230.png]]
866
867
868 === 6.3.4 Pin Mapping ===
869
870 [[image:1656056722648-743.png]]
871
872
873 === 6.3.5 Installation Notice ===
874
875 Do not power on while connect the cables. Double check the wiring before power on.
876
877 [[image:1656057016033-551.png]]
878
879 [[image:1656056751153-304.png]]
880
881 [[image:1656056766224-773.png]]
882
883
884 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
885
886
887 (((
888 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
889 )))
890
891 (((
892 WSS-04 has auto heating feature, this ensures measurement more reliable.
893 )))
894
895 (((
896 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
897 )))
898
899
900
901 === 6.4.1 Feature ===
902
903 * RS485 Rain/Snow detect sensor
904 * Surface heating to dry
905 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
906
907
908
909
910 === 6.4.2 Specification ===
911
912 * Detect if there is rain or snow
913 * Input Power: DC 12 ~~ 24v
914 * Interface: RS485
915 * Working Temperature: -30℃~70℃
916 * Working Humidity: 10~90%RH
917 * Power Consumption:
918 ** No heating: 12mA @ 12v,
919 ** heating: 94ma @ 12v.
920
921
922
923
924 === 6.4.3 Dimension ===
925
926 [[image:1656056844782-155.png]]
927
928
929 === 6.4.4 Pin Mapping ===
930
931 [[image:1656056855590-754.png]]
932
933
934 === 6.4.5 Installation Notice ===
935
936 Do not power on while connect the cables. Double check the wiring before power on.
937
938
939 Install with 15°degree.
940
941 [[image:1656056873783-780.png]]
942
943
944 [[image:1656056883736-804.png]]
945
946
947 === 6.4.6 Heating ===
948
949 (((
950 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
951 )))
952
953
954 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
955
956
957 (((
958 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
959 )))
960
961 (((
962 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
963 )))
964
965
966 === 6.5.1 Feature ===
967
968 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
969
970
971
972
973 === 6.5.2 Specification ===
974
975 * Input Power: DC 12 ~~ 24v
976 * Interface: RS485
977 * Temperature Sensor Spec:
978 ** Range: -30 ~~ 70℃
979 ** resolution 0.1℃
980 ** Accuracy: ±0.5℃
981 * Humidity Sensor Spec:
982 ** Range: 0 ~~ 100% RH
983 ** resolution 0.1 %RH
984 ** Accuracy: 3% RH
985 * Pressure Sensor Spec:
986 ** Range: 10~1100hPa
987 ** Resolution: 0.1hPa
988 ** Accuracy: ±0.1hPa
989 * Illuminate sensor:
990 ** Range: 0~2/20/200kLux
991 ** Resolution: 10 Lux
992 ** Accuracy: ±3%FS
993 * Working Temperature: -30℃~70℃
994 * Working Humidity: 10~90%RH
995 * Power Consumption: 4mA @ 12v
996
997
998
999
1000 === 6.5.3 Dimension ===
1001
1002 [[image:1656057170639-522.png]]
1003
1004
1005 === 6.5.4 Pin Mapping ===
1006
1007 [[image:1656057181899-910.png]]
1008
1009
1010 === 6.5.5 Installation Notice ===
1011
1012 Do not power on while connect the cables. Double check the wiring before power on.
1013
1014 [[image:1656057199955-514.png]]
1015
1016
1017 [[image:1656057212438-475.png]]
1018
1019
1020 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1021
1022
1023 (((
1024 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1025 )))
1026
1027 (((
1028 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1029 )))
1030
1031 (((
1032 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1033 )))
1034
1035
1036
1037 === 6.6.1 Feature ===
1038
1039 * RS485 Total Solar Radiation sensor
1040 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1041 * Measure Reflected Radiation if sense area towards ground.
1042
1043
1044
1045
1046 === 6.6.2 Specification ===
1047
1048 * Input Power: DC 5 ~~ 24v
1049 * Interface: RS485
1050 * Detect spectrum: 0.3~3μm(300~3000nm)
1051 * Measure strength range: 0~2000W/m2
1052 * Resolution: 0.1W/m2
1053 * Accuracy: ±3%
1054 * Yearly Stability: ≤±2%
1055 * Cosine response: ≤7% (@ Sun angle 10°)
1056 * Temperature Effect: ±2%(-10℃~40℃)
1057 * Working Temperature: -40℃~70℃
1058 * Working Humidity: 10~90%RH
1059 * Power Consumption: 4mA @ 12v
1060
1061
1062
1063
1064 === 6.6.3 Dimension ===
1065
1066 [[image:1656057348695-898.png]]
1067
1068
1069 === 6.6.4 Pin Mapping ===
1070
1071 [[image:1656057359343-744.png]]
1072
1073
1074 === 6.6.5 Installation Notice ===
1075
1076 Do not power on while connect the cables. Double check the wiring before power on.
1077
1078 [[image:1656057369259-804.png]]
1079
1080
1081 [[image:1656057377943-564.png]]
1082
1083
1084 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1085
1086
1087 (((
1088 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1089 )))
1090
1091 (((
1092 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1093 )))
1094
1095 (((
1096 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1097 )))
1098
1099
1100 === 6.7.1 Feature ===
1101
1102 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1103
1104 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1105
1106
1107 === 6.7.2 Specification ===
1108
1109 * Input Power: DC 5 ~~ 24v
1110 * Interface: RS485
1111 * Response Spectrum: 400~700nm
1112 * Measure range: 0~2500μmol/m2•s
1113 * Resolution: 1μmol/m2•s
1114 * Accuracy: ±2%
1115 * Yearly Stability: ≤±2%
1116 * Working Temperature: -30℃~75℃
1117 * Working Humidity: 10~90%RH
1118 * Power Consumption: 3mA @ 12v
1119
1120
1121
1122
1123 === 6.7.3 Dimension ===
1124
1125 [[image:1656057538793-888.png]]
1126
1127
1128 === 6.7.4 Pin Mapping ===
1129
1130 [[image:1656057548116-203.png]]
1131
1132
1133 === 6.7.5 Installation Notice ===
1134
1135 Do not power on while connect the cables. Double check the wiring before power on.
1136
1137
1138 [[image:1656057557191-895.png]]
1139
1140
1141 [[image:1656057565783-251.png]]
1142
1143
1144 = 7. FAQ =
1145
1146 == 7.1 What else do I need to purchase to build Weather Station? ==
1147
1148 Below is the installation photo and structure:
1149
1150 [[image:1656057598349-319.png]]
1151
1152
1153 [[image:1656057608049-693.png]]
1154
1155
1156
1157 == 7.2 How to upgrade firmware for WSC1-L? ==
1158
1159 (((
1160 Firmware Location & Change log:
1161 )))
1162
1163 (((
1164 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1165 )))
1166
1167
1168 (((
1169 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1170 )))
1171
1172
1173 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1174
1175 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1176
1177
1178 == 7.4 Can I add my weather sensors? ==
1179
1180 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1181
1182
1183 = 8. Trouble Shooting =
1184
1185 == 8.1 AT Command input doesn't work ==
1186
1187 (((
1188 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1189 )))
1190
1191
1192 = 9. Order Info =
1193
1194 == 9.1 Main Process Unit ==
1195
1196 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1197
1198 (% style="color:blue" %)**XX**(%%): The default frequency band
1199
1200 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1201 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1202 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1203 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1204 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1205 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1206 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1207 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1208
1209 == 9.2 Sensors ==
1210
1211 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1212 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1213 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1214 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1215 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1216 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1217 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1218 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1219 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1220 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1221
1222
1223 = 10. Support =
1224
1225 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1226 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1227
1228
1229 = 11. Appendix I: Field Installation Photo =
1230
1231
1232 [[image:1656058346362-132.png]]
1233
1234 **Storage Battery**: 12v,12AH li battery
1235
1236
1237
1238 **Wind Speed/Direction**
1239
1240 [[image:1656058373174-421.png]]
1241
1242
1243
1244 **Total Solar Radiation sensor**
1245
1246 [[image:1656058397364-282.png]]
1247
1248
1249
1250 **PAR Sensor**
1251
1252 [[image:1656058416171-615.png]]
1253
1254
1255
1256 **CO2/PM2.5/PM10 3 in 1 sensor**
1257
1258 [[image:1656058441194-827.png]]
1259
1260
1261
1262 **Rain / Snow Detect**
1263
1264 [[image:1656058451456-166.png]]
1265
1266
1267
1268 **Rain Gauge**
1269
1270 [[image:1656058463455-569.png]]