Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)**Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151
152 [[image:1656042745346-283.png]]
153
154
155
156 == 2.4 Uplink Payload ==
157
158 Uplink payloads include two types: Valid Sensor Value and other status / control command.
159
160 * Valid Sensor Value: Use FPORT=2
161 * Other control command: Use FPORT other than 2.
162
163
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
175 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190
191 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
192
193 0x0100, Means: v1.0.0 version.
194
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 *0x01: EU868
200
201 *0x02: US915
202
203 *0x03: IN865
204
205 *0x04: AU915
206
207 *0x05: KZ865
208
209 *0x06: RU864
210
211 *0x07: AS923
212
213 *0x08: AS923-1
214
215 *0x09: AS923-2
216
217 *0x0a: AS923-3
218
219
220
221 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
222
223 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
224
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229 (((
230 shows the battery voltage for WSC1-L MCU.
231 )))
232
233 (((
234 Ex1: 0x0BD6/1000 = 3.03 V
235 )))
236
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
242 |Byte3|Byte2|Byte1
243
244 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
245
246 [[image:image-20220624134713-1.png]]
247
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 [[image:image-20220624140352-2.png]]
301
302
303 (((
304 Below is an example payload:  [[image:image-20220624140615-3.png]]
305 )))
306
307 (((
308
309 )))
310
311 (((
312 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
313 )))
314
315 * (((
316 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
317 )))
318
319 (((
320 Uplink 1:  [[image:image-20220624140735-4.png]]
321 )))
322
323 (((
324
325 )))
326
327 (((
328 Uplink 2:  [[image:image-20220624140842-5.png]]
329 )))
330
331 (((
332
333 )))
334
335 * (((
336 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
337 )))
338
339 (((
340 Uplink 1:  [[image:image-20220624141025-6.png]]
341 )))
342
343 (((
344
345 )))
346
347 Uplink 2:  [[image:image-20220624141100-7.png]]
348
349
350
351
352 === 2.4.3 Decoder in TTN V3 ===
353
354 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
355
356
357 Download decoder for suitable platform from:
358
359 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
360
361 and put as below:
362
363 [[image:1656051152438-578.png]]
364
365
366
367 == 2.5 Show data on Application Server ==
368
369 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
370
371
372 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
373
374 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
375
376 [[image:1656051197172-131.png]]
377
378
379 **Add TagoIO:**
380
381 [[image:1656051223585-631.png]]
382
383
384 **Authorization:**
385
386 [[image:1656051248318-368.png]]
387
388
389 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
390
391 [[image:1656051277767-168.png]]
392
393
394
395 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
396
397 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
398
399 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
400 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
401
402 There are two kinds of commands to configure WSC1-L, they are:
403
404 * (% style="color:#4472c4" %)**General Commands**.
405
406 These commands are to configure:
407
408 * General system settings like: uplink interval.
409 * LoRaWAN protocol & radio related command.
410
411 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
412
413 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
414
415
416 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
417
418 These commands only valid for WSC1-L, as below:
419
420
421
422
423
424
425 == 3.1 Set Transmit Interval Time ==
426
427 Feature: Change LoRaWAN End Node Transmit Interval.
428
429 (% style="color:#037691" %)**AT Command: AT+TDC**
430
431 [[image:image-20220624142619-8.png]]
432
433
434 (% style="color:#037691" %)**Downlink Command: 0x01**
435
436 Format: Command Code (0x01) followed by 3 bytes time value.
437
438 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
439
440 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
441 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
442
443
444
445 == 3.2 Set Emergency Mode ==
446
447 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
448
449 (% style="color:#037691" %)**AT Command:**
450
451 [[image:image-20220624142956-9.png]]
452
453
454 (% style="color:#037691" %)**Downlink Command:**
455
456 * 0xE101     Same as: AT+ALARMMOD=1
457 * 0xE100     Same as: AT+ALARMMOD=0
458
459
460
461 == 3.3 Add or Delete RS485 Sensor ==
462
463 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
464
465 (% style="color:#037691" %)**AT Command: **
466
467 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
468
469 * Type_Code range:  A1 ~~ A4
470 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
471 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
472 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
473 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
474 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
475 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
476
477 **Example:**
478
479 User need to change external sensor use the type code as address code.
480
481 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
482
483 [[image:image-20220624143553-10.png]]
484
485
486 The response frame of the sensor is as follows:
487
488 [[image:image-20220624143618-11.png]]
489
490
491
492 **Then the following parameters should be:**
493
494 * Address_Code range: A1
495 * Query_Length: 8
496 * Query_Command: A103000000019CAA
497 * Read_Length: 8
498 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
499 * has_CRC: 1
500 * timeout: 1500 (Fill in the test according to the actual situation)
501
502 **So the input command is:**
503
504 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
505
506
507 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
508
509 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
510 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
511 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
512
513 **Related commands:**
514
515 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
516
517 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
518
519
520 (% style="color:#037691" %)**Downlink Command:  **
521
522 **delete custom sensor A1:**
523
524 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
525
526 **Remove all custom sensors**
527
528 * 0xE5FF  
529
530
531
532 == 3.4 RS485 Test Command ==
533
534 (% style="color:#037691" %)**AT Command:**
535
536 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
537 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
538 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
539 Send command to 485 sensor
540
541 Range : no more than 10 bytes
542 )))|(% style="width:85px" %)OK
543
544 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
545
546 AT+RSWRITE=0103000001840A
547
548
549 (% style="color:#037691" %)**Downlink Command:**
550
551 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
552
553
554
555 == 3.5 RS485 response timeout ==
556
557 Feature: Set or get extended time to receive 485 sensor data.
558
559 (% style="color:#037691" %)**AT Command:**
560
561 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
562 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
563 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
564 Set response timeout to:
565
566 Range : 0~~10000
567 )))|(% style="width:85px" %)OK
568
569 (% style="color:#037691" %)**Downlink Command:**
570
571 Format: Command Code (0xE0) followed by 3 bytes time value.
572
573 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
574
575 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
576 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
577
578
579
580 == 3.6 Set Sensor Type ==
581
582 (((
583 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
584 )))
585
586 (((
587 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
588 )))
589
590 [[image:image-20220624144904-12.png]]
591
592
593 (% style="color:#037691" %)**AT Command:**
594
595 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
596 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
597 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
598
599 Eg: The setting command **AT+STYPE=802212** means:
600
601 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
602 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
603 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
604 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
605 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
606 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
607 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
608
609 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
610
611
612 (% style="color:#037691" %)**Downlink Command:**
613
614 * 0xE400802212     Same as: AT+STYPE=80221
615
616 (% style="color:red" %)**Note:**
617
618 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
619
620
621
622
623 = 4. Power consumption and battery =
624
625 == 4.1 Total Power Consumption ==
626
627 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
628
629
630 == 4.2 Reduce power consumption ==
631
632 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
633
634
635 == 4.3 Battery ==
636
637 (((
638 All sensors are only power by external power source. If external power source is off. All sensor won't work.
639 )))
640
641 (((
642 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
643 )))
644
645
646 = 5. Main Process Unit WSC1-L =
647
648 == 5.1 Features ==
649
650 * Wall Attachable.
651 * LoRaWAN v1.0.3 Class A protocol.
652 * RS485 / Modbus protocol
653 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
654 * AT Commands to change parameters
655 * Remote configure parameters via LoRaWAN Downlink
656 * Firmware upgradable via program port
657 * Powered by external 12v battery
658 * Back up rechargeable 1000mAh battery
659 * IP Rating: IP65
660 * Support default sensors or 3rd party RS485 sensors
661
662
663
664 == 5.2 Power Consumption ==
665
666 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
667
668
669 == 5.3 Storage & Operation Temperature ==
670
671 -20°C to +60°C
672
673
674 == 5.4 Pin Mapping ==
675
676 [[image:1656054149793-239.png]]
677
678
679 == 5.5 Mechanical ==
680
681 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
682
683
684 == 5.6 Connect to RS485 Sensors ==
685
686 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
687
688
689 [[image:1656054389031-379.png]]
690
691
692 Hardware Design for the Converter Board please see:
693
694 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
695
696
697 = 6. Weather Sensors =
698
699 == 6.1 Rain Gauge ~-~- WSS-01 ==
700
701
702 (((
703 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
704 )))
705
706 (((
707 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
708 )))
709
710 (((
711 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
712 )))
713
714 (((
715 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
716 )))
717
718 (((
719 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
720 )))
721
722
723 === 6.1.1 Feature ===
724
725 * RS485 Rain Gauge
726 * Small dimension, easy to install
727 * Vents under funnel, avoid leaf or other things to avoid rain flow.
728 * ABS enclosure.
729 * Horizontal adjustable.
730
731
732
733 === 6.1.2 Specification ===
734
735 * Resolution: 0.2mm
736 * Accuracy: ±3%
737 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
738 * Input Power: DC 5~~24v
739 * Interface: RS485
740 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
741 * Working Humidity: <100% (no dewing)
742 * Power Consumption: 4mA @ 12v.
743
744
745
746 === 6.1.3 Dimension ===
747
748 [[image:1656054957406-980.png]]
749
750
751 === 6.1.4 Pin Mapping ===
752
753 [[image:1656054972828-692.png]]
754
755
756 === 6.1.5 Installation Notice ===
757
758 (((
759 Do not power on while connect the cables. Double check the wiring before power on.
760 )))
761
762 (((
763 Installation Photo as reference:
764 )))
765
766
767 (((
768 (% style="color:#4472c4" %)** Install on Ground:**
769 )))
770
771 (((
772 WSS-01 Rain Gauge include screws so can install in ground directly .
773 )))
774
775
776 (((
777 (% style="color:#4472c4" %)** Install on pole:**
778 )))
779
780 (((
781 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
782 )))
783
784 [[image:image-20220624152218-1.png||height="526" width="276"]]
785
786 WS-K2: Bracket Kit for Pole installation
787
788
789 WSSC-K2 dimension document, please see:
790
791 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
792
793
794 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
795
796 [[image:1656055444035-179.png]]
797
798 (((
799 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
800 )))
801
802 (((
803 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
804 )))
805
806 (((
807 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
808 )))
809
810
811 === 6.2.1 Feature ===
812
813 * RS485 wind speed / direction sensor
814 * PC enclosure, resist corrosion
815
816
817
818 === 6.2.2 Specification ===
819
820 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
821 * Wind direction range: 0 ~~ 360°
822 * Start wind speed: ≤0.3m/s
823 * Accuracy: ±(0.3+0.03V)m/s , ±1°
824 * Input Power: DC 5~~24v
825 * Interface: RS485
826 * Working Temperature: -30℃~70℃
827 * Working Humidity: <100% (no dewing)
828 * Power Consumption: 13mA ~~ 12v.
829 * Cable Length: 2 meters
830
831
832
833 === 6.2.3 Dimension ===
834
835 [[image:image-20220624152813-2.png]]
836
837
838 === 6.2.4 Pin Mapping ===
839
840 [[image:1656056281231-994.png]]
841
842
843 === 6.2.5  Angle Mapping ===
844
845 [[image:1656056303845-585.png]]
846
847
848 === 6.2.6  Installation Notice ===
849
850 (((
851 Do not power on while connect the cables. Double check the wiring before power on.
852 )))
853
854 (((
855 The sensor must be installed with below direction, towards North.
856 )))
857
858 [[image:image-20220624153901-3.png]]
859
860
861 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
862
863
864 (((
865 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
866 )))
867
868 (((
869 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
870 )))
871
872 (((
873 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
874 )))
875
876
877 === 6.3.1 Feature ===
878
879 * RS485 CO2, PM2.5, PM10 sensor
880 * NDIR to measure CO2 with Internal Temperature Compensation
881 * Laser Beam Scattering to PM2.5 and PM10
882
883
884
885 === 6.3.2 Specification ===
886
887 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
888 * CO2 resolution: 1ppm
889 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
890 * PM2.5/PM10 resolution: 1μg/m3
891 * Input Power: DC 7 ~~ 24v
892 * Preheat time: 3min
893 * Interface: RS485
894 * Working Temperature:
895 ** CO2: 0℃~50℃;
896 ** PM2.5/PM10: -30 ~~ 50℃
897 * Working Humidity:
898 ** PM2.5/PM10: 15~80%RH (no dewing)
899 ** CO2: 0~95%RH
900 * Power Consumption: 50mA@ 12v.
901
902
903
904 === 6.3.3 Dimension ===
905
906 [[image:1656056708366-230.png]]
907
908
909 === 6.3.4 Pin Mapping ===
910
911 [[image:1656056722648-743.png]]
912
913
914 === 6.3.5 Installation Notice ===
915
916 Do not power on while connect the cables. Double check the wiring before power on.
917
918 [[image:1656056751153-304.png]]
919
920 [[image:1656056766224-773.png]]
921
922
923 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
924
925
926 (((
927 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
928 )))
929
930 (((
931 WSS-04 has auto heating feature, this ensures measurement more reliable.
932 )))
933
934 (((
935 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
936 )))
937
938
939
940 === 6.4.1 Feature ===
941
942 * RS485 Rain/Snow detect sensor
943 * Surface heating to dry
944 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
945
946
947
948 === 6.4.2 Specification ===
949
950 * Detect if there is rain or snow
951 * Input Power: DC 12 ~~ 24v
952 * Interface: RS485
953 * Working Temperature: -30℃~70℃
954 * Working Humidity: 10~90%RH
955 * Power Consumption:
956 ** No heating: 12mA @ 12v,
957 ** heating: 94ma @ 12v.
958
959
960
961 === 6.4.3 Dimension ===
962
963 [[image:1656056844782-155.png]]
964
965
966 === 6.4.4 Pin Mapping ===
967
968 [[image:1656056855590-754.png]]
969
970
971 === 6.4.5 Installation Notice ===
972
973 Do not power on while connect the cables. Double check the wiring before power on.
974
975
976 (((
977 Install with 15°degree.
978 )))
979
980 [[image:1656056873783-780.png]]
981
982
983 [[image:1656056883736-804.png]]
984
985
986 === 6.4.6 Heating ===
987
988 (((
989 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
990 )))
991
992
993 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
994
995
996 (((
997 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
998 )))
999
1000 (((
1001 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1002 )))
1003
1004
1005 === 6.5.1 Feature ===
1006
1007 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1008
1009
1010
1011 === 6.5.2 Specification ===
1012
1013 * Input Power: DC 12 ~~ 24v
1014 * Interface: RS485
1015 * Temperature Sensor Spec:
1016 ** Range: -30 ~~ 70℃
1017 ** resolution 0.1℃
1018 ** Accuracy: ±0.5℃
1019 * Humidity Sensor Spec:
1020 ** Range: 0 ~~ 100% RH
1021 ** resolution 0.1 %RH
1022 ** Accuracy: 3% RH
1023 * Pressure Sensor Spec:
1024 ** Range: 10~1100hPa
1025 ** Resolution: 0.1hPa
1026 ** Accuracy: ±0.1hPa
1027 * Illuminate sensor:
1028 ** Range: 0~2/20/200kLux
1029 ** Resolution: 10 Lux
1030 ** Accuracy: ±3%FS
1031 * Working Temperature: -30℃~70℃
1032 * Working Humidity: 10~90%RH
1033 * Power Consumption: 4mA @ 12v
1034
1035
1036
1037 === 6.5.3 Dimension ===
1038
1039 [[image:1656057170639-522.png]]
1040
1041
1042 === 6.5.4 Pin Mapping ===
1043
1044 [[image:1656057181899-910.png]]
1045
1046
1047 === 6.5.5 Installation Notice ===
1048
1049 Do not power on while connect the cables. Double check the wiring before power on.
1050
1051 [[image:1656057199955-514.png]]
1052
1053
1054 [[image:1656057212438-475.png]]
1055
1056
1057 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1058
1059
1060 (((
1061 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1062 )))
1063
1064 (((
1065 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1066 )))
1067
1068 (((
1069 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1070 )))
1071
1072
1073
1074 === 6.6.1 Feature ===
1075
1076 * RS485 Total Solar Radiation sensor
1077 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1078 * Measure Reflected Radiation if sense area towards ground.
1079
1080
1081
1082 === 6.6.2 Specification ===
1083
1084 * Input Power: DC 5 ~~ 24v
1085 * Interface: RS485
1086 * Detect spectrum: 0.3~3μm(300~3000nm)
1087 * Measure strength range: 0~2000W/m2
1088 * Resolution: 0.1W/m2
1089 * Accuracy: ±3%
1090 * Yearly Stability: ≤±2%
1091 * Cosine response: ≤7% (@ Sun angle 10°)
1092 * Temperature Effect: ±2%(-10℃~40℃)
1093 * Working Temperature: -40℃~70℃
1094 * Working Humidity: 10~90%RH
1095 * Power Consumption: 4mA @ 12v
1096
1097
1098
1099 === 6.6.3 Dimension ===
1100
1101 [[image:1656057348695-898.png]]
1102
1103
1104 === 6.6.4 Pin Mapping ===
1105
1106 [[image:1656057359343-744.png]]
1107
1108
1109 === 6.6.5 Installation Notice ===
1110
1111 Do not power on while connect the cables. Double check the wiring before power on.
1112
1113 [[image:1656057369259-804.png]]
1114
1115
1116 [[image:1656057377943-564.png]]
1117
1118
1119 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1120
1121
1122 (((
1123 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1124 )))
1125
1126 (((
1127 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1128 )))
1129
1130 (((
1131 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1132 )))
1133
1134
1135 === 6.7.1 Feature ===
1136
1137 (((
1138 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1139 )))
1140
1141 (((
1142 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1143 )))
1144
1145
1146 === 6.7.2 Specification ===
1147
1148 * Input Power: DC 5 ~~ 24v
1149 * Interface: RS485
1150 * Response Spectrum: 400~700nm
1151 * Measure range: 0~2500μmol/m2•s
1152 * Resolution: 1μmol/m2•s
1153 * Accuracy: ±2%
1154 * Yearly Stability: ≤±2%
1155 * Working Temperature: -30℃~75℃
1156 * Working Humidity: 10~90%RH
1157 * Power Consumption: 3mA @ 12v
1158
1159
1160
1161 === 6.7.3 Dimension ===
1162
1163 [[image:1656057538793-888.png]]
1164
1165
1166 === 6.7.4 Pin Mapping ===
1167
1168 [[image:1656057548116-203.png]]
1169
1170
1171 === 6.7.5 Installation Notice ===
1172
1173 Do not power on while connect the cables. Double check the wiring before power on.
1174
1175
1176 [[image:1656057557191-895.png]]
1177
1178
1179 [[image:1656057565783-251.png]]
1180
1181
1182 = 7. FAQ =
1183
1184 == 7.1 What else do I need to purchase to build Weather Station? ==
1185
1186 Below is the installation photo and structure:
1187
1188 [[image:1656057598349-319.png]]
1189
1190
1191 [[image:1656057608049-693.png]]
1192
1193
1194
1195 == 7.2 How to upgrade firmware for WSC1-L? ==
1196
1197 (((
1198 Firmware Location & Change log:
1199 )))
1200
1201 (((
1202 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1203 )))
1204
1205
1206 (((
1207 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1208 )))
1209
1210
1211 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1212
1213 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1214
1215
1216 == 7.4 Can I add my weather sensors? ==
1217
1218 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1219
1220
1221 = 8. Trouble Shooting =
1222
1223 == 8.1 AT Command input doesn't work ==
1224
1225 (((
1226 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1227 )))
1228
1229
1230 = 9. Order Info =
1231
1232 == 9.1 Main Process Unit ==
1233
1234 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1235
1236 (% style="color:blue" %)**XX**(%%): The default frequency band
1237
1238 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1239 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1240 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1241 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1242 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1243 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1244 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1245 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1246
1247
1248
1249
1250
1251
1252 == 9.2 Sensors ==
1253
1254 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:350px" %)
1255 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 50px;" %)**Part Number**
1256 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1257 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1258 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1259 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1260 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1261 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1262 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1263 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1264
1265
1266
1267
1268
1269
1270 = 10. Support =
1271
1272 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1273 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1274
1275
1276
1277
1278
1279
1280 = 11. Appendix I: Field Installation Photo =
1281
1282
1283 [[image:1656058346362-132.png]]
1284
1285 **Storage Battery**: 12v,12AH li battery
1286
1287
1288
1289 **Wind Speed/Direction**
1290
1291 [[image:1656058373174-421.png]]
1292
1293
1294
1295 **Total Solar Radiation sensor**
1296
1297 [[image:1656058397364-282.png]]
1298
1299
1300
1301 **PAR Sensor**
1302
1303 [[image:1656058416171-615.png]]
1304
1305
1306
1307 **CO2/PM2.5/PM10 3 in 1 sensor**
1308
1309 [[image:1656058441194-827.png]]
1310
1311
1312
1313 **Rain / Snow Detect**
1314
1315 [[image:1656058451456-166.png]]
1316
1317
1318
1319 **Rain Gauge**
1320
1321 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0