Version 79.13 by Xiaoling on 2022/06/24 17:17

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158
159 == 2.4 Uplink Payload ==
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354
355
356 === 2.4.3 Decoder in TTN V3 ===
357
358 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
359
360
361 Download decoder for suitable platform from:
362
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364
365 and put as below:
366
367 [[image:1656051152438-578.png]]
368
369
370
371 == 2.5 Show data on Application Server ==
372
373 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
374
375
376 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
377
378 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
379
380 [[image:1656051197172-131.png]]
381
382
383 **Add TagoIO:**
384
385 [[image:1656051223585-631.png]]
386
387
388 **Authorization:**
389
390 [[image:1656051248318-368.png]]
391
392
393 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
394
395 [[image:1656051277767-168.png]]
396
397
398
399 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
400
401 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
402
403 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
404 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
405
406 There are two kinds of commands to configure WSC1-L, they are:
407
408 * (% style="color:#4472c4" %)**General Commands**.
409
410 These commands are to configure:
411
412 * General system settings like: uplink interval.
413 * LoRaWAN protocol & radio related command.
414
415 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
416
417 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
418
419
420 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
421
422 These commands only valid for WSC1-L, as below:
423
424
425
426
427
428
429 == 3.1 Set Transmit Interval Time ==
430
431 Feature: Change LoRaWAN End Node Transmit Interval.
432
433 (% style="color:#037691" %)**AT Command: AT+TDC**
434
435 [[image:image-20220624142619-8.png]]
436
437
438 (% style="color:#037691" %)**Downlink Command: 0x01**
439
440 Format: Command Code (0x01) followed by 3 bytes time value.
441
442 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
443
444 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
445 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
446
447
448
449
450 == 3.2 Set Emergency Mode ==
451
452 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
453
454 (% style="color:#037691" %)**AT Command:**
455
456 [[image:image-20220624142956-9.png]]
457
458
459 (% style="color:#037691" %)**Downlink Command:**
460
461 * 0xE101     Same as: AT+ALARMMOD=1
462 * 0xE100     Same as: AT+ALARMMOD=0
463
464
465
466
467 == 3.3 Add or Delete RS485 Sensor ==
468
469 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
470
471 (% style="color:#037691" %)**AT Command: **
472
473 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
474
475 * Type_Code range:  A1 ~~ A4
476 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
477 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
478 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
479 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
480 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
481 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
482
483 **Example:**
484
485 User need to change external sensor use the type code as address code.
486
487 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
488
489 [[image:image-20220624143553-10.png]]
490
491
492 The response frame of the sensor is as follows:
493
494 [[image:image-20220624143618-11.png]]
495
496
497
498 **Then the following parameters should be:**
499
500 * Address_Code range: A1
501 * Query_Length: 8
502 * Query_Command: A103000000019CAA
503 * Read_Length: 8
504 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
505 * has_CRC: 1
506 * timeout: 1500 (Fill in the test according to the actual situation)
507
508 **So the input command is:**
509
510 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
511
512
513 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
514
515 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
516 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
517 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
518
519 **Related commands:**
520
521 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
522
523 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
524
525
526 (% style="color:#037691" %)**Downlink Command:  **
527
528 **delete custom sensor A1:**
529
530 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
531
532 **Remove all custom sensors**
533
534 * 0xE5FF  
535
536
537
538
539 == 3.4 RS485 Test Command ==
540
541 (% style="color:#037691" %)**AT Command:**
542
543 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
544 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
545 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
546 Send command to 485 sensor
547
548 Range : no more than 10 bytes
549 )))|(% style="width:85px" %)OK
550
551 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
552
553 AT+RSWRITE=0103000001840A
554
555
556 (% style="color:#037691" %)**Downlink Command:**
557
558 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
559
560
561
562
563 == 3.5 RS485 response timeout ==
564
565 Feature: Set or get extended time to receive 485 sensor data.
566
567 (% style="color:#037691" %)**AT Command:**
568
569 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
570 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
571 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
572 Set response timeout to:
573
574 Range : 0~~10000
575 )))|(% style="width:85px" %)OK
576
577 (% style="color:#037691" %)**Downlink Command:**
578
579 Format: Command Code (0xE0) followed by 3 bytes time value.
580
581 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
582
583 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
584 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
585
586
587
588
589 == 3.6 Set Sensor Type ==
590
591 (((
592 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
593 )))
594
595 (((
596 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
597 )))
598
599 [[image:image-20220624144904-12.png]]
600
601
602 (% style="color:#037691" %)**AT Command:**
603
604 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
605 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
606 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
607
608 Eg: The setting command **AT+STYPE=802212** means:
609
610 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
611 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
612 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
613 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
614 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
615 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
616 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
617
618 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
619
620
621 (% style="color:#037691" %)**Downlink Command:**
622
623 * 0xE400802212     Same as: AT+STYPE=80221
624
625 (% style="color:red" %)**Note:**
626
627 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
628
629
630
631
632 = 4. Power consumption and battery =
633
634 == 4.1 Total Power Consumption ==
635
636 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
637
638
639 == 4.2 Reduce power consumption ==
640
641 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
642
643
644 == 4.3 Battery ==
645
646 (((
647 All sensors are only power by external power source. If external power source is off. All sensor won't work.
648 )))
649
650 (((
651 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
652 )))
653
654
655 = 5. Main Process Unit WSC1-L =
656
657 == 5.1 Features ==
658
659 * Wall Attachable.
660 * LoRaWAN v1.0.3 Class A protocol.
661 * RS485 / Modbus protocol
662 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
663 * AT Commands to change parameters
664 * Remote configure parameters via LoRaWAN Downlink
665 * Firmware upgradable via program port
666 * Powered by external 12v battery
667 * Back up rechargeable 1000mAh battery
668 * IP Rating: IP65
669 * Support default sensors or 3rd party RS485 sensors
670
671
672
673
674 == 5.2 Power Consumption ==
675
676 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
677
678
679 == 5.3 Storage & Operation Temperature ==
680
681 -20°C to +60°C
682
683
684 == 5.4 Pin Mapping ==
685
686 [[image:1656054149793-239.png]]
687
688
689 == 5.5 Mechanical ==
690
691 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
692
693
694 == 5.6 Connect to RS485 Sensors ==
695
696 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
697
698
699 [[image:1656054389031-379.png]]
700
701
702 Hardware Design for the Converter Board please see:
703
704 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
705
706
707 = 6. Weather Sensors =
708
709 == 6.1 Rain Gauge ~-~- WSS-01 ==
710
711
712 (((
713 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
714 )))
715
716 (((
717 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
718 )))
719
720 (((
721 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
722 )))
723
724 (((
725 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
726 )))
727
728 (((
729 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
730 )))
731
732
733 === 6.1.1 Feature ===
734
735 * RS485 Rain Gauge
736 * Small dimension, easy to install
737 * Vents under funnel, avoid leaf or other things to avoid rain flow.
738 * ABS enclosure.
739 * Horizontal adjustable.
740
741
742
743
744 === 6.1.2 Specification ===
745
746 * Resolution: 0.2mm
747 * Accuracy: ±3%
748 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
749 * Input Power: DC 5~~24v
750 * Interface: RS485
751 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
752 * Working Humidity: <100% (no dewing)
753 * Power Consumption: 4mA @ 12v.
754
755
756
757
758 === 6.1.3 Dimension ===
759
760 [[image:1656054957406-980.png]]
761
762
763 === 6.1.4 Pin Mapping ===
764
765 [[image:1656054972828-692.png]]
766
767
768 === 6.1.5 Installation Notice ===
769
770 (((
771 Do not power on while connect the cables. Double check the wiring before power on.
772 )))
773
774 (((
775 Installation Photo as reference:
776 )))
777
778
779 (((
780 (% style="color:#4472c4" %)** Install on Ground:**
781 )))
782
783 (((
784 WSS-01 Rain Gauge include screws so can install in ground directly .
785 )))
786
787
788 (((
789 (% style="color:#4472c4" %)** Install on pole:**
790 )))
791
792 (((
793 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
794 )))
795
796 [[image:image-20220624152218-1.png||height="526" width="276"]]
797
798 WS-K2: Bracket Kit for Pole installation
799
800
801 WSSC-K2 dimension document, please see:
802
803 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
804
805
806 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
807
808 [[image:1656055444035-179.png]]
809
810 (((
811 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
812 )))
813
814 (((
815 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
816 )))
817
818 (((
819 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
820 )))
821
822
823 === 6.2.1 Feature ===
824
825 * RS485 wind speed / direction sensor
826 * PC enclosure, resist corrosion
827
828
829
830
831 === 6.2.2 Specification ===
832
833 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
834 * Wind direction range: 0 ~~ 360°
835 * Start wind speed: ≤0.3m/s
836 * Accuracy: ±(0.3+0.03V)m/s , ±1°
837 * Input Power: DC 5~~24v
838 * Interface: RS485
839 * Working Temperature: -30℃~70℃
840 * Working Humidity: <100% (no dewing)
841 * Power Consumption: 13mA ~~ 12v.
842 * Cable Length: 2 meters
843
844
845
846
847 === 6.2.3 Dimension ===
848
849 [[image:image-20220624152813-2.png]]
850
851
852 === 6.2.4 Pin Mapping ===
853
854 [[image:1656056281231-994.png]]
855
856
857 === 6.2.5  Angle Mapping ===
858
859 [[image:1656056303845-585.png]]
860
861
862 === 6.2.6  Installation Notice ===
863
864 (((
865 Do not power on while connect the cables. Double check the wiring before power on.
866 )))
867
868 (((
869 The sensor must be installed with below direction, towards North.
870 )))
871
872 [[image:image-20220624153901-3.png]]
873
874
875 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
876
877
878 (((
879 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
880 )))
881
882 (((
883 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
884 )))
885
886 (((
887 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
888 )))
889
890
891 === 6.3.1 Feature ===
892
893 * RS485 CO2, PM2.5, PM10 sensor
894 * NDIR to measure CO2 with Internal Temperature Compensation
895 * Laser Beam Scattering to PM2.5 and PM10
896
897
898
899
900 === 6.3.2 Specification ===
901
902 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
903 * CO2 resolution: 1ppm
904 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
905 * PM2.5/PM10 resolution: 1μg/m3
906 * Input Power: DC 7 ~~ 24v
907 * Preheat time: 3min
908 * Interface: RS485
909 * Working Temperature:
910 ** CO2: 0℃~50℃;
911 ** PM2.5/PM10: -30 ~~ 50℃
912 * Working Humidity:
913 ** PM2.5/PM10: 15~80%RH (no dewing)
914 ** CO2: 0~95%RH
915 * Power Consumption: 50mA@ 12v.
916
917
918
919
920 === 6.3.3 Dimension ===
921
922 [[image:1656056708366-230.png]]
923
924
925 === 6.3.4 Pin Mapping ===
926
927 [[image:1656056722648-743.png]]
928
929
930 === 6.3.5 Installation Notice ===
931
932 Do not power on while connect the cables. Double check the wiring before power on.
933
934 [[image:1656056751153-304.png]]
935
936 [[image:1656056766224-773.png]]
937
938
939 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
940
941
942 (((
943 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
944 )))
945
946 (((
947 WSS-04 has auto heating feature, this ensures measurement more reliable.
948 )))
949
950 (((
951 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
952 )))
953
954
955
956 === 6.4.1 Feature ===
957
958 * RS485 Rain/Snow detect sensor
959 * Surface heating to dry
960 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
961
962
963
964
965 === 6.4.2 Specification ===
966
967 * Detect if there is rain or snow
968 * Input Power: DC 12 ~~ 24v
969 * Interface: RS485
970 * Working Temperature: -30℃~70℃
971 * Working Humidity: 10~90%RH
972 * Power Consumption:
973 ** No heating: 12mA @ 12v,
974 ** heating: 94ma @ 12v.
975
976
977
978
979 === 6.4.3 Dimension ===
980
981 [[image:1656056844782-155.png]]
982
983
984 === 6.4.4 Pin Mapping ===
985
986 [[image:1656056855590-754.png]]
987
988
989 === 6.4.5 Installation Notice ===
990
991 Do not power on while connect the cables. Double check the wiring before power on.
992
993
994 (((
995 Install with 15°degree.
996 )))
997
998 [[image:1656056873783-780.png]]
999
1000
1001 [[image:1656056883736-804.png]]
1002
1003
1004 === 6.4.6 Heating ===
1005
1006 (((
1007 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1008 )))
1009
1010
1011 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1012
1013
1014 (((
1015 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1016 )))
1017
1018 (((
1019 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1020 )))
1021
1022
1023 === 6.5.1 Feature ===
1024
1025 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1026
1027
1028
1029
1030 === 6.5.2 Specification ===
1031
1032 * Input Power: DC 12 ~~ 24v
1033 * Interface: RS485
1034 * Temperature Sensor Spec:
1035 ** Range: -30 ~~ 70℃
1036 ** resolution 0.1℃
1037 ** Accuracy: ±0.5℃
1038 * Humidity Sensor Spec:
1039 ** Range: 0 ~~ 100% RH
1040 ** resolution 0.1 %RH
1041 ** Accuracy: 3% RH
1042 * Pressure Sensor Spec:
1043 ** Range: 10~1100hPa
1044 ** Resolution: 0.1hPa
1045 ** Accuracy: ±0.1hPa
1046 * Illuminate sensor:
1047 ** Range: 0~2/20/200kLux
1048 ** Resolution: 10 Lux
1049 ** Accuracy: ±3%FS
1050 * Working Temperature: -30℃~70℃
1051 * Working Humidity: 10~90%RH
1052 * Power Consumption: 4mA @ 12v
1053
1054
1055
1056
1057 === 6.5.3 Dimension ===
1058
1059 [[image:1656057170639-522.png]]
1060
1061
1062 === 6.5.4 Pin Mapping ===
1063
1064 [[image:1656057181899-910.png]]
1065
1066
1067 === 6.5.5 Installation Notice ===
1068
1069 Do not power on while connect the cables. Double check the wiring before power on.
1070
1071 [[image:1656057199955-514.png]]
1072
1073
1074 [[image:1656057212438-475.png]]
1075
1076
1077 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1078
1079
1080 (((
1081 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1082 )))
1083
1084 (((
1085 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1086 )))
1087
1088 (((
1089 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1090 )))
1091
1092
1093
1094 === 6.6.1 Feature ===
1095
1096 * RS485 Total Solar Radiation sensor
1097 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1098 * Measure Reflected Radiation if sense area towards ground.
1099
1100
1101
1102
1103 === 6.6.2 Specification ===
1104
1105 * Input Power: DC 5 ~~ 24v
1106 * Interface: RS485
1107 * Detect spectrum: 0.3~3μm(300~3000nm)
1108 * Measure strength range: 0~2000W/m2
1109 * Resolution: 0.1W/m2
1110 * Accuracy: ±3%
1111 * Yearly Stability: ≤±2%
1112 * Cosine response: ≤7% (@ Sun angle 10°)
1113 * Temperature Effect: ±2%(-10℃~40℃)
1114 * Working Temperature: -40℃~70℃
1115 * Working Humidity: 10~90%RH
1116 * Power Consumption: 4mA @ 12v
1117
1118
1119
1120
1121 === 6.6.3 Dimension ===
1122
1123 [[image:1656057348695-898.png]]
1124
1125
1126 === 6.6.4 Pin Mapping ===
1127
1128 [[image:1656057359343-744.png]]
1129
1130
1131 === 6.6.5 Installation Notice ===
1132
1133 Do not power on while connect the cables. Double check the wiring before power on.
1134
1135 [[image:1656057369259-804.png]]
1136
1137
1138 [[image:1656057377943-564.png]]
1139
1140
1141 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1142
1143
1144 (((
1145 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1146 )))
1147
1148 (((
1149 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1150 )))
1151
1152 (((
1153 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1154 )))
1155
1156
1157 === 6.7.1 Feature ===
1158
1159 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1160
1161 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1162
1163
1164 === 6.7.2 Specification ===
1165
1166 * Input Power: DC 5 ~~ 24v
1167 * Interface: RS485
1168 * Response Spectrum: 400~700nm
1169 * Measure range: 0~2500μmol/m2•s
1170 * Resolution: 1μmol/m2•s
1171 * Accuracy: ±2%
1172 * Yearly Stability: ≤±2%
1173 * Working Temperature: -30℃~75℃
1174 * Working Humidity: 10~90%RH
1175 * Power Consumption: 3mA @ 12v
1176
1177
1178
1179
1180 === 6.7.3 Dimension ===
1181
1182 [[image:1656057538793-888.png]]
1183
1184
1185 === 6.7.4 Pin Mapping ===
1186
1187 [[image:1656057548116-203.png]]
1188
1189
1190 === 6.7.5 Installation Notice ===
1191
1192 Do not power on while connect the cables. Double check the wiring before power on.
1193
1194
1195 [[image:1656057557191-895.png]]
1196
1197
1198 [[image:1656057565783-251.png]]
1199
1200
1201 = 7. FAQ =
1202
1203 == 7.1 What else do I need to purchase to build Weather Station? ==
1204
1205 Below is the installation photo and structure:
1206
1207 [[image:1656057598349-319.png]]
1208
1209
1210 [[image:1656057608049-693.png]]
1211
1212
1213
1214 == 7.2 How to upgrade firmware for WSC1-L? ==
1215
1216 (((
1217 Firmware Location & Change log:
1218 )))
1219
1220 (((
1221 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1222 )))
1223
1224
1225 (((
1226 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1227 )))
1228
1229
1230 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1231
1232 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1233
1234
1235 == 7.4 Can I add my weather sensors? ==
1236
1237 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1238
1239
1240 = 8. Trouble Shooting =
1241
1242 == 8.1 AT Command input doesn't work ==
1243
1244 (((
1245 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1246 )))
1247
1248
1249 = 9. Order Info =
1250
1251 == 9.1 Main Process Unit ==
1252
1253 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1254
1255 (% style="color:blue" %)**XX**(%%): The default frequency band
1256
1257 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1258 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1259 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1260 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1261 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1262 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1263 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1264 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1265
1266 == 9.2 Sensors ==
1267
1268 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1269 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1270 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1271 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1272 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1273 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1274 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1275 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1276 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1277 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1278
1279
1280 = 10. Support =
1281
1282 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1283 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1284
1285
1286 = 11. Appendix I: Field Installation Photo =
1287
1288
1289 [[image:1656058346362-132.png]]
1290
1291 **Storage Battery**: 12v,12AH li battery
1292
1293
1294
1295 **Wind Speed/Direction**
1296
1297 [[image:1656058373174-421.png]]
1298
1299
1300
1301 **Total Solar Radiation sensor**
1302
1303 [[image:1656058397364-282.png]]
1304
1305
1306
1307 **PAR Sensor**
1308
1309 [[image:1656058416171-615.png]]
1310
1311
1312
1313 **CO2/PM2.5/PM10 3 in 1 sensor**
1314
1315 [[image:1656058441194-827.png]]
1316
1317
1318
1319 **Rain / Snow Detect**
1320
1321 [[image:1656058451456-166.png]]
1322
1323
1324
1325 **Rain Gauge**
1326
1327 [[image:1656058463455-569.png]]