Version 79.10 by Xiaoling on 2022/06/24 17:15

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158
159 == 2.4 Uplink Payload ==
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354
355
356 === 2.4.3 Decoder in TTN V3 ===
357
358 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
359
360
361 Download decoder for suitable platform from:
362
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364
365 and put as below:
366
367 [[image:1656051152438-578.png]]
368
369
370
371 == 2.5 Show data on Application Server ==
372
373 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
374
375
376 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
377
378 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
379
380 [[image:1656051197172-131.png]]
381
382
383 **Add TagoIO:**
384
385 [[image:1656051223585-631.png]]
386
387
388 **Authorization:**
389
390 [[image:1656051248318-368.png]]
391
392
393 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
394
395 [[image:1656051277767-168.png]]
396
397
398
399 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
400
401 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
402
403 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
404 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
405
406 There are two kinds of commands to configure WSC1-L, they are:
407
408 * (% style="color:#4472c4" %)**General Commands**.
409
410 These commands are to configure:
411
412 * General system settings like: uplink interval.
413 * LoRaWAN protocol & radio related command.
414
415 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
416
417 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
418
419
420 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
421
422 These commands only valid for WSC1-L, as below:
423
424
425
426
427
428
429 == 3.1 Set Transmit Interval Time ==
430
431 Feature: Change LoRaWAN End Node Transmit Interval.
432
433 (% style="color:#037691" %)**AT Command: AT+TDC**
434
435 [[image:image-20220624142619-8.png]]
436
437
438 (% style="color:#037691" %)**Downlink Command: 0x01**
439
440 Format: Command Code (0x01) followed by 3 bytes time value.
441
442 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
443
444 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
445 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
446
447
448
449
450 == 3.2 Set Emergency Mode ==
451
452 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
453
454 (% style="color:#037691" %)**AT Command:**
455
456 [[image:image-20220624142956-9.png]]
457
458
459 (% style="color:#037691" %)**Downlink Command:**
460
461 * 0xE101     Same as: AT+ALARMMOD=1
462 * 0xE100     Same as: AT+ALARMMOD=0
463
464
465
466
467 == 3.3 Add or Delete RS485 Sensor ==
468
469 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
470
471 (% style="color:#037691" %)**AT Command: **
472
473 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
474
475 * Type_Code range:  A1 ~~ A4
476 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
477 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
478 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
479 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
480 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
481 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
482
483 **Example:**
484
485 User need to change external sensor use the type code as address code.
486
487 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
488
489 [[image:image-20220624143553-10.png]]
490
491
492 The response frame of the sensor is as follows:
493
494 [[image:image-20220624143618-11.png]]
495
496
497
498 **Then the following parameters should be:**
499
500 * Address_Code range: A1
501 * Query_Length: 8
502 * Query_Command: A103000000019CAA
503 * Read_Length: 8
504 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
505 * has_CRC: 1
506 * timeout: 1500 (Fill in the test according to the actual situation)
507
508 **So the input command is:**
509
510 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
511
512
513 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
514
515 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
516 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
517 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
518
519 **Related commands:**
520
521 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
522
523 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
524
525
526 (% style="color:#037691" %)**Downlink Command:  **
527
528 **delete custom sensor A1:**
529
530 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
531
532 **Remove all custom sensors**
533
534 * 0xE5FF  
535
536
537
538
539 == 3.4 RS485 Test Command ==
540
541 (% style="color:#037691" %)**AT Command:**
542
543 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
544 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
545 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
546 Send command to 485 sensor
547
548 Range : no more than 10 bytes
549 )))|(% style="width:85px" %)OK
550
551 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
552
553 AT+RSWRITE=0103000001840A
554
555
556 (% style="color:#037691" %)**Downlink Command:**
557
558 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
559
560
561
562
563 == 3.5 RS485 response timeout ==
564
565 Feature: Set or get extended time to receive 485 sensor data.
566
567 (% style="color:#037691" %)**AT Command:**
568
569 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
570 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
571 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
572 Set response timeout to:
573
574 Range : 0~~10000
575 )))|(% style="width:85px" %)OK
576
577 (% style="color:#037691" %)**Downlink Command:**
578
579 Format: Command Code (0xE0) followed by 3 bytes time value.
580
581 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
582
583 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
584 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
585
586
587
588
589 == 3.6 Set Sensor Type ==
590
591 (((
592 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
593 )))
594
595 (((
596 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
597 )))
598
599 [[image:image-20220624144904-12.png]]
600
601
602 (% style="color:#037691" %)**AT Command:**
603
604 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
605 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
606 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
607
608 Eg: The setting command **AT+STYPE=802212** means:
609
610 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
611 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
612 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
613 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
614 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
615 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
616 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
617
618 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
619
620
621 (% style="color:#037691" %)**Downlink Command:**
622
623 * 0xE400802212     Same as: AT+STYPE=80221
624
625 (% style="color:red" %)**Note:**
626
627 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
628
629
630
631
632 = 4. Power consumption and battery =
633
634 == 4.1 Total Power Consumption ==
635
636 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
637
638
639 == 4.2 Reduce power consumption ==
640
641 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
642
643
644 == 4.3 Battery ==
645
646 (((
647 All sensors are only power by external power source. If external power source is off. All sensor won't work.
648 )))
649
650 (((
651 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
652 )))
653
654
655 = 5. Main Process Unit WSC1-L =
656
657 == 5.1 Features ==
658
659 * Wall Attachable.
660 * LoRaWAN v1.0.3 Class A protocol.
661 * RS485 / Modbus protocol
662 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
663 * AT Commands to change parameters
664 * Remote configure parameters via LoRaWAN Downlink
665 * Firmware upgradable via program port
666 * Powered by external 12v battery
667 * Back up rechargeable 1000mAh battery
668 * IP Rating: IP65
669 * Support default sensors or 3rd party RS485 sensors
670
671
672
673
674 == 5.2 Power Consumption ==
675
676 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
677
678
679 == 5.3 Storage & Operation Temperature ==
680
681 -20°C to +60°C
682
683
684 == 5.4 Pin Mapping ==
685
686 [[image:1656054149793-239.png]]
687
688
689 == 5.5 Mechanical ==
690
691 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
692
693
694 == 5.6 Connect to RS485 Sensors ==
695
696 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
697
698
699 [[image:1656054389031-379.png]]
700
701
702 Hardware Design for the Converter Board please see:
703
704 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
705
706
707 = 6. Weather Sensors =
708
709 == 6.1 Rain Gauge ~-~- WSS-01 ==
710
711
712 (((
713 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
714 )))
715
716 (((
717 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
718 )))
719
720 (((
721 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
722 )))
723
724 (((
725 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
726 )))
727
728 (((
729 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
730 )))
731
732
733 === 6.1.1 Feature ===
734
735 * RS485 Rain Gauge
736 * Small dimension, easy to install
737 * Vents under funnel, avoid leaf or other things to avoid rain flow.
738 * ABS enclosure.
739 * Horizontal adjustable.
740
741
742
743
744 === 6.1.2 Specification ===
745
746 * Resolution: 0.2mm
747 * Accuracy: ±3%
748 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
749 * Input Power: DC 5~~24v
750 * Interface: RS485
751 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
752 * Working Humidity: <100% (no dewing)
753 * Power Consumption: 4mA @ 12v.
754
755
756
757
758 === 6.1.3 Dimension ===
759
760 [[image:1656054957406-980.png]]
761
762
763 === 6.1.4 Pin Mapping ===
764
765 [[image:1656054972828-692.png]]
766
767
768 === 6.1.5 Installation Notice ===
769
770 Do not power on while connect the cables. Double check the wiring before power on.
771
772 Installation Photo as reference:
773
774
775 (% style="color:#4472c4" %)** Install on Ground:**
776
777 WSS-01 Rain Gauge include screws so can install in ground directly .
778
779
780 (% style="color:#4472c4" %)** Install on pole:**
781
782 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
783
784 [[image:image-20220624152218-1.png||height="526" width="276"]]
785
786 WS-K2: Bracket Kit for Pole installation
787
788
789 WSSC-K2 dimension document, please see:
790
791 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
792
793
794 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
795
796 [[image:1656055444035-179.png]]
797
798 (((
799 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
800 )))
801
802 (((
803 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
804 )))
805
806 (((
807 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
808 )))
809
810
811 === 6.2.1 Feature ===
812
813 * RS485 wind speed / direction sensor
814 * PC enclosure, resist corrosion
815
816
817
818
819 === 6.2.2 Specification ===
820
821 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
822 * Wind direction range: 0 ~~ 360°
823 * Start wind speed: ≤0.3m/s
824 * Accuracy: ±(0.3+0.03V)m/s , ±1°
825 * Input Power: DC 5~~24v
826 * Interface: RS485
827 * Working Temperature: -30℃~70℃
828 * Working Humidity: <100% (no dewing)
829 * Power Consumption: 13mA ~~ 12v.
830 * Cable Length: 2 meters
831
832
833
834
835 === 6.2.3 Dimension ===
836
837 [[image:image-20220624152813-2.png]]
838
839
840 === 6.2.4 Pin Mapping ===
841
842 [[image:1656056281231-994.png]]
843
844
845 === 6.2.5  Angle Mapping ===
846
847 [[image:1656056303845-585.png]]
848
849
850 === 6.2.6  Installation Notice ===
851
852 Do not power on while connect the cables. Double check the wiring before power on.
853
854 The sensor must be installed with below direction, towards North.
855
856 [[image:image-20220624153901-3.png]]
857
858
859 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
860
861
862 (((
863 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
864 )))
865
866 (((
867 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
868 )))
869
870 (((
871 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
872 )))
873
874
875 === 6.3.1 Feature ===
876
877 * RS485 CO2, PM2.5, PM10 sensor
878 * NDIR to measure CO2 with Internal Temperature Compensation
879 * Laser Beam Scattering to PM2.5 and PM10
880
881
882
883
884 === 6.3.2 Specification ===
885
886 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
887 * CO2 resolution: 1ppm
888 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
889 * PM2.5/PM10 resolution: 1μg/m3
890 * Input Power: DC 7 ~~ 24v
891 * Preheat time: 3min
892 * Interface: RS485
893 * Working Temperature:
894 ** CO2: 0℃~50℃;
895 ** PM2.5/PM10: -30 ~~ 50℃
896 * Working Humidity:
897 ** PM2.5/PM10: 15~80%RH (no dewing)
898 ** CO2: 0~95%RH
899 * Power Consumption: 50mA@ 12v.
900
901
902
903
904 === 6.3.3 Dimension ===
905
906 [[image:1656056708366-230.png]]
907
908
909 === 6.3.4 Pin Mapping ===
910
911 [[image:1656056722648-743.png]]
912
913
914 === 6.3.5 Installation Notice ===
915
916 Do not power on while connect the cables. Double check the wiring before power on.
917
918 [[image:1656057016033-551.png]]
919
920 [[image:1656056751153-304.png]]
921
922 [[image:1656056766224-773.png]]
923
924
925 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
926
927
928 (((
929 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
930 )))
931
932 (((
933 WSS-04 has auto heating feature, this ensures measurement more reliable.
934 )))
935
936 (((
937 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
938 )))
939
940
941
942 === 6.4.1 Feature ===
943
944 * RS485 Rain/Snow detect sensor
945 * Surface heating to dry
946 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
947
948
949
950
951 === 6.4.2 Specification ===
952
953 * Detect if there is rain or snow
954 * Input Power: DC 12 ~~ 24v
955 * Interface: RS485
956 * Working Temperature: -30℃~70℃
957 * Working Humidity: 10~90%RH
958 * Power Consumption:
959 ** No heating: 12mA @ 12v,
960 ** heating: 94ma @ 12v.
961
962
963
964
965 === 6.4.3 Dimension ===
966
967 [[image:1656056844782-155.png]]
968
969
970 === 6.4.4 Pin Mapping ===
971
972 [[image:1656056855590-754.png]]
973
974
975 === 6.4.5 Installation Notice ===
976
977 Do not power on while connect the cables. Double check the wiring before power on.
978
979
980 Install with 15°degree.
981
982 [[image:1656056873783-780.png]]
983
984
985 [[image:1656056883736-804.png]]
986
987
988 === 6.4.6 Heating ===
989
990 (((
991 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
992 )))
993
994
995 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
996
997
998 (((
999 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1000 )))
1001
1002 (((
1003 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1004 )))
1005
1006
1007 === 6.5.1 Feature ===
1008
1009 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1010
1011
1012
1013
1014 === 6.5.2 Specification ===
1015
1016 * Input Power: DC 12 ~~ 24v
1017 * Interface: RS485
1018 * Temperature Sensor Spec:
1019 ** Range: -30 ~~ 70℃
1020 ** resolution 0.1℃
1021 ** Accuracy: ±0.5℃
1022 * Humidity Sensor Spec:
1023 ** Range: 0 ~~ 100% RH
1024 ** resolution 0.1 %RH
1025 ** Accuracy: 3% RH
1026 * Pressure Sensor Spec:
1027 ** Range: 10~1100hPa
1028 ** Resolution: 0.1hPa
1029 ** Accuracy: ±0.1hPa
1030 * Illuminate sensor:
1031 ** Range: 0~2/20/200kLux
1032 ** Resolution: 10 Lux
1033 ** Accuracy: ±3%FS
1034 * Working Temperature: -30℃~70℃
1035 * Working Humidity: 10~90%RH
1036 * Power Consumption: 4mA @ 12v
1037
1038
1039
1040
1041 === 6.5.3 Dimension ===
1042
1043 [[image:1656057170639-522.png]]
1044
1045
1046 === 6.5.4 Pin Mapping ===
1047
1048 [[image:1656057181899-910.png]]
1049
1050
1051 === 6.5.5 Installation Notice ===
1052
1053 Do not power on while connect the cables. Double check the wiring before power on.
1054
1055 [[image:1656057199955-514.png]]
1056
1057
1058 [[image:1656057212438-475.png]]
1059
1060
1061 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1062
1063
1064 (((
1065 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1066 )))
1067
1068 (((
1069 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1070 )))
1071
1072 (((
1073 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1074 )))
1075
1076
1077
1078 === 6.6.1 Feature ===
1079
1080 * RS485 Total Solar Radiation sensor
1081 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1082 * Measure Reflected Radiation if sense area towards ground.
1083
1084
1085
1086
1087 === 6.6.2 Specification ===
1088
1089 * Input Power: DC 5 ~~ 24v
1090 * Interface: RS485
1091 * Detect spectrum: 0.3~3μm(300~3000nm)
1092 * Measure strength range: 0~2000W/m2
1093 * Resolution: 0.1W/m2
1094 * Accuracy: ±3%
1095 * Yearly Stability: ≤±2%
1096 * Cosine response: ≤7% (@ Sun angle 10°)
1097 * Temperature Effect: ±2%(-10℃~40℃)
1098 * Working Temperature: -40℃~70℃
1099 * Working Humidity: 10~90%RH
1100 * Power Consumption: 4mA @ 12v
1101
1102
1103
1104
1105 === 6.6.3 Dimension ===
1106
1107 [[image:1656057348695-898.png]]
1108
1109
1110 === 6.6.4 Pin Mapping ===
1111
1112 [[image:1656057359343-744.png]]
1113
1114
1115 === 6.6.5 Installation Notice ===
1116
1117 Do not power on while connect the cables. Double check the wiring before power on.
1118
1119 [[image:1656057369259-804.png]]
1120
1121
1122 [[image:1656057377943-564.png]]
1123
1124
1125 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1126
1127
1128 (((
1129 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1130 )))
1131
1132 (((
1133 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1134 )))
1135
1136 (((
1137 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1138 )))
1139
1140
1141 === 6.7.1 Feature ===
1142
1143 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1144
1145 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1146
1147
1148 === 6.7.2 Specification ===
1149
1150 * Input Power: DC 5 ~~ 24v
1151 * Interface: RS485
1152 * Response Spectrum: 400~700nm
1153 * Measure range: 0~2500μmol/m2•s
1154 * Resolution: 1μmol/m2•s
1155 * Accuracy: ±2%
1156 * Yearly Stability: ≤±2%
1157 * Working Temperature: -30℃~75℃
1158 * Working Humidity: 10~90%RH
1159 * Power Consumption: 3mA @ 12v
1160
1161
1162
1163
1164 === 6.7.3 Dimension ===
1165
1166 [[image:1656057538793-888.png]]
1167
1168
1169 === 6.7.4 Pin Mapping ===
1170
1171 [[image:1656057548116-203.png]]
1172
1173
1174 === 6.7.5 Installation Notice ===
1175
1176 Do not power on while connect the cables. Double check the wiring before power on.
1177
1178
1179 [[image:1656057557191-895.png]]
1180
1181
1182 [[image:1656057565783-251.png]]
1183
1184
1185 = 7. FAQ =
1186
1187 == 7.1 What else do I need to purchase to build Weather Station? ==
1188
1189 Below is the installation photo and structure:
1190
1191 [[image:1656057598349-319.png]]
1192
1193
1194 [[image:1656057608049-693.png]]
1195
1196
1197
1198 == 7.2 How to upgrade firmware for WSC1-L? ==
1199
1200 (((
1201 Firmware Location & Change log:
1202 )))
1203
1204 (((
1205 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1206 )))
1207
1208
1209 (((
1210 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1211 )))
1212
1213
1214 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1215
1216 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1217
1218
1219 == 7.4 Can I add my weather sensors? ==
1220
1221 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1222
1223
1224 = 8. Trouble Shooting =
1225
1226 == 8.1 AT Command input doesn't work ==
1227
1228 (((
1229 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1230 )))
1231
1232
1233 = 9. Order Info =
1234
1235 == 9.1 Main Process Unit ==
1236
1237 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1238
1239 (% style="color:blue" %)**XX**(%%): The default frequency band
1240
1241 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1242 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1243 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1244 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1245 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1246 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1247 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1248 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1249
1250 == 9.2 Sensors ==
1251
1252 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1253 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1254 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1255 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1256 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1257 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1258 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1259 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1260 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1261 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1262
1263
1264 = 10. Support =
1265
1266 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1267 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1268
1269
1270 = 11. Appendix I: Field Installation Photo =
1271
1272
1273 [[image:1656058346362-132.png]]
1274
1275 **Storage Battery**: 12v,12AH li battery
1276
1277
1278
1279 **Wind Speed/Direction**
1280
1281 [[image:1656058373174-421.png]]
1282
1283
1284
1285 **Total Solar Radiation sensor**
1286
1287 [[image:1656058397364-282.png]]
1288
1289
1290
1291 **PAR Sensor**
1292
1293 [[image:1656058416171-615.png]]
1294
1295
1296
1297 **CO2/PM2.5/PM10 3 in 1 sensor**
1298
1299 [[image:1656058441194-827.png]]
1300
1301
1302
1303 **Rain / Snow Detect**
1304
1305 [[image:1656058451456-166.png]]
1306
1307
1308
1309 **Rain Gauge**
1310
1311 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0