Version 79.1 by Xiaoling on 2022/06/24 16:20

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84
85 == 2.2 How it works? ==
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
101
102
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110
111 [[image:1656042612899-422.png]]
112
113
114
115 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
116
117
118 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
119
120 Each WSC1-L is shipped with a sticker with the default device EUI as below:
121
122 [[image:image-20220624115043-1.jpeg]]
123
124
125 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
126
127 **Add APP EUI in the application.**
128
129 [[image:1656042662694-311.png]]
130
131 [[image:1656042673910-429.png]]
132
133
134
135
136 **Choose Manually to add WSC1-L**
137
138 [[image:1656042695755-103.png]]
139
140
141
142 **Add APP KEY and DEV EUI**
143
144 [[image:1656042723199-746.png]]
145
146
147
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149
150
151 [[image:1656042745346-283.png]]
152
153
154
155 == 2.4 Uplink Payload ==
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162
163
164
165
166 === 2.4.1 Uplink FPORT~=5, Device Status ===
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185
186 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
187
188 For WSC1-L, this value is 0x0D.
189
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 shows the battery voltage for WSC1-L MCU.
231
232 Ex1: 0x0BD6/1000 = 3.03 V
233
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220624140352-2.png]]
298
299
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301
302
303 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
304
305 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
306
307 Uplink 1:  [[image:image-20220624140735-4.png]]
308
309 Uplink 2:  [[image:image-20220624140842-5.png]]
310
311
312 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
313
314 Uplink 1:  [[image:image-20220624141025-6.png]]
315
316 Uplink 2:  [[image:image-20220624141100-7.png]]
317
318
319
320
321 === 2.4.3 Decoder in TTN V3 ===
322
323 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
324
325
326 Download decoder for suitable platform from:
327
328 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
329
330 and put as below:
331
332 [[image:1656051152438-578.png]]
333
334
335
336 == 2.5 Show data on Application Server ==
337
338 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
339
340
341 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
342
343 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
344
345 [[image:1656051197172-131.png]]
346
347
348 **Add TagoIO:**
349
350 [[image:1656051223585-631.png]]
351
352
353 **Authorization:**
354
355 [[image:1656051248318-368.png]]
356
357
358 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
359
360 [[image:1656051277767-168.png]]
361
362
363
364 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
365
366 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
367
368 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
369 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
370
371 There are two kinds of commands to configure WSC1-L, they are:
372
373 * (% style="color:#4472c4" %)**General Commands**.
374
375 These commands are to configure:
376
377 * General system settings like: uplink interval.
378 * LoRaWAN protocol & radio related command.
379
380 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
381
382 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
383
384
385 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
386
387 These commands only valid for WSC1-L, as below:
388
389
390
391
392
393
394 == 3.1 Set Transmit Interval Time ==
395
396 Feature: Change LoRaWAN End Node Transmit Interval.
397
398 (% style="color:#037691" %)**AT Command: AT+TDC**
399
400 [[image:image-20220624142619-8.png]]
401
402
403 (% style="color:#037691" %)**Downlink Command: 0x01**
404
405 Format: Command Code (0x01) followed by 3 bytes time value.
406
407 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
408
409 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
410 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
411
412
413
414
415
416 == 3.2 Set Emergency Mode ==
417
418 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
419
420 (% style="color:#037691" %)**AT Command:**
421
422 [[image:image-20220624142956-9.png]]
423
424
425 (% style="color:#037691" %)**Downlink Command:**
426
427 * 0xE101     Same as: AT+ALARMMOD=1
428 * 0xE100     Same as: AT+ALARMMOD=0
429
430
431
432
433
434 == 3.3 Add or Delete RS485 Sensor ==
435
436 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
437
438 (% style="color:#037691" %)**AT Command: **
439
440 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
441
442 * Type_Code range:  A1 ~~ A4
443 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
444 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
445 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
446 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
447 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
448 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
449
450 **Example:**
451
452 User need to change external sensor use the type code as address code.
453
454 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
455
456 [[image:image-20220624143553-10.png]]
457
458
459 The response frame of the sensor is as follows:
460
461 [[image:image-20220624143618-11.png]]
462
463
464
465 **Then the following parameters should be:**
466
467 * Address_Code range: A1
468 * Query_Length: 8
469 * Query_Command: A103000000019CAA
470 * Read_Length: 8
471 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
472 * has_CRC: 1
473 * timeout: 1500 (Fill in the test according to the actual situation)
474
475 **So the input command is:**
476
477 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
478
479
480 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
481
482 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
483 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
484 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
485
486 **Related commands:**
487
488 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
489
490 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
491
492
493 (% style="color:#037691" %)**Downlink Command:  **
494
495 **delete custom sensor A1:**
496
497 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
498
499 **Remove all custom sensors**
500
501 * 0xE5FF  
502
503
504
505
506
507 == 3.4 RS485 Test Command ==
508
509 (% style="color:#037691" %)**AT Command:**
510
511 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
512 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
513 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
514 Send command to 485 sensor
515
516 Range : no more than 10 bytes
517 )))|(% style="width:85px" %)OK
518
519 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
520
521 AT+RSWRITE=0103000001840A
522
523
524 (% style="color:#037691" %)**Downlink Command:**
525
526 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
527
528
529
530
531
532 == 3.5 RS485 response timeout ==
533
534 Feature: Set or get extended time to receive 485 sensor data.
535
536 (% style="color:#037691" %)**AT Command:**
537
538 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
539 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
540 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
541 Set response timeout to:
542
543 Range : 0~~10000
544 )))|(% style="width:85px" %)OK
545
546 (% style="color:#037691" %)**Downlink Command:**
547
548 Format: Command Code (0xE0) followed by 3 bytes time value.
549
550 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
551
552 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
553 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
554
555
556
557
558
559 == 3.6 Set Sensor Type ==
560
561 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
562
563 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
564
565 [[image:image-20220624144904-12.png]]
566
567
568 (% style="color:#037691" %)**AT Command:**
569
570 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
571 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
572 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
573
574 Eg: The setting command **AT+STYPE=802212** means:
575
576 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
577 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
578 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
579 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
580 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
581 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
582 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
583
584 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
585
586
587 (% style="color:#037691" %)**Downlink Command:**
588
589 * 0xE400802212     Same as: AT+STYPE=80221
590
591 (% style="color:red" %)**Note:**
592
593 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
594
595
596
597
598 = 4. Power consumption and battery =
599
600 == 4.1 Total Power Consumption ==
601
602 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
603
604
605 == 4.2 Reduce power consumption ==
606
607 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
608
609
610 == 4.3 Battery ==
611
612 (((
613 All sensors are only power by external power source. If external power source is off. All sensor won't work.
614 )))
615
616 (((
617 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
618 )))
619
620
621 = 5. Main Process Unit WSC1-L =
622
623 == 5.1 Features ==
624
625 * Wall Attachable.
626 * LoRaWAN v1.0.3 Class A protocol.
627 * RS485 / Modbus protocol
628 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
629 * AT Commands to change parameters
630 * Remote configure parameters via LoRaWAN Downlink
631 * Firmware upgradable via program port
632 * Powered by external 12v battery
633 * Back up rechargeable 1000mAh battery
634 * IP Rating: IP65
635 * Support default sensors or 3rd party RS485 sensors
636
637
638
639
640
641 == 5.2 Power Consumption ==
642
643 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
644
645
646 == 5.3 Storage & Operation Temperature ==
647
648 -20°C to +60°C
649
650
651 == 5.4 Pin Mapping ==
652
653 [[image:1656054149793-239.png]]
654
655
656 == 5.5 Mechanical ==
657
658 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
659
660
661 == 5.6 Connect to RS485 Sensors ==
662
663 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
664
665
666 [[image:1656054389031-379.png]]
667
668
669 Hardware Design for the Converter Board please see:
670
671 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
672
673
674 = 6. Weather Sensors =
675
676 == 6.1 Rain Gauge ~-~- WSS-01 ==
677
678
679 (((
680 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
681 )))
682
683 (((
684 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
685 )))
686
687 (((
688 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
689 )))
690
691 (((
692 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
693 )))
694
695 (((
696 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
697 )))
698
699
700 === 6.1.1 Feature ===
701
702 * RS485 Rain Gauge
703 * Small dimension, easy to install
704 * Vents under funnel, avoid leaf or other things to avoid rain flow.
705 * ABS enclosure.
706 * Horizontal adjustable.
707
708
709
710
711
712 === 6.1.2 Specification ===
713
714 * Resolution: 0.2mm
715 * Accuracy: ±3%
716 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
717 * Input Power: DC 5~~24v
718 * Interface: RS485
719 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
720 * Working Humidity: <100% (no dewing)
721 * Power Consumption: 4mA @ 12v.
722
723
724
725
726
727 === 6.1.3 Dimension ===
728
729 [[image:1656054957406-980.png]]
730
731
732 === 6.1.4 Pin Mapping ===
733
734 [[image:1656054972828-692.png]]
735
736
737 === 6.1.5 Installation Notice ===
738
739 Do not power on while connect the cables. Double check the wiring before power on.
740
741 Installation Photo as reference:
742
743
744 (% style="color:#4472c4" %)** Install on Ground:**
745
746 WSS-01 Rain Gauge include screws so can install in ground directly .
747
748
749 (% style="color:#4472c4" %)** Install on pole:**
750
751 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
752
753 [[image:image-20220624152218-1.png||height="526" width="276"]]
754
755 WS-K2: Bracket Kit for Pole installation
756
757
758 WSSC-K2 dimension document, please see:
759
760 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
761
762
763 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
764
765 [[image:1656055444035-179.png]]
766
767 (((
768 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
769 )))
770
771 (((
772 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
773 )))
774
775 (((
776 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
777 )))
778
779
780 === 6.2.1 Feature ===
781
782 * RS485 wind speed / direction sensor
783 * PC enclosure, resist corrosion
784
785
786
787
788
789 === 6.2.2 Specification ===
790
791 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
792 * Wind direction range: 0 ~~ 360°
793 * Start wind speed: ≤0.3m/s
794 * Accuracy: ±(0.3+0.03V)m/s , ±1°
795 * Input Power: DC 5~~24v
796 * Interface: RS485
797 * Working Temperature: -30℃~70℃
798 * Working Humidity: <100% (no dewing)
799 * Power Consumption: 13mA ~~ 12v.
800 * Cable Length: 2 meters
801
802
803
804
805
806 === 6.2.3 Dimension ===
807
808 [[image:image-20220624152813-2.png]]
809
810
811 === 6.2.4 Pin Mapping ===
812
813 [[image:1656056281231-994.png]]
814
815
816 === 6.2.5  Angle Mapping ===
817
818 [[image:1656056303845-585.png]]
819
820
821 === 6.2.6  Installation Notice ===
822
823 Do not power on while connect the cables. Double check the wiring before power on.
824
825 The sensor must be installed with below direction, towards North.
826
827 [[image:image-20220624153901-3.png]]
828
829
830 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
831
832
833 (((
834 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
835 )))
836
837 (((
838 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
839 )))
840
841 (((
842 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
843 )))
844
845
846 === 6.3.1 Feature ===
847
848 * RS485 CO2, PM2.5, PM10 sensor
849 * NDIR to measure CO2 with Internal Temperature Compensation
850 * Laser Beam Scattering to PM2.5 and PM10
851
852
853
854
855
856 === 6.3.2 Specification ===
857
858 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
859 * CO2 resolution: 1ppm
860 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
861 * PM2.5/PM10 resolution: 1μg/m3
862 * Input Power: DC 7 ~~ 24v
863 * Preheat time: 3min
864 * Interface: RS485
865 * Working Temperature:
866 ** CO2: 0℃~50℃;
867 ** PM2.5/PM10: -30 ~~ 50℃
868 * Working Humidity:
869 ** PM2.5/PM10: 15~80%RH (no dewing)
870 ** CO2: 0~95%RH
871 * Power Consumption: 50mA@ 12v.
872
873
874
875
876
877 === 6.3.3 Dimension ===
878
879 [[image:1656056708366-230.png]]
880
881
882 === 6.3.4 Pin Mapping ===
883
884 [[image:1656056722648-743.png]]
885
886
887 === 6.3.5 Installation Notice ===
888
889 Do not power on while connect the cables. Double check the wiring before power on.
890
891 [[image:1656057016033-551.png]]
892
893 [[image:1656056751153-304.png]]
894
895 [[image:1656056766224-773.png]]
896
897
898 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
899
900
901 (((
902 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
903 )))
904
905 (((
906 WSS-04 has auto heating feature, this ensures measurement more reliable.
907 )))
908
909 (((
910 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
911 )))
912
913
914
915 === 6.4.1 Feature ===
916
917 * RS485 Rain/Snow detect sensor
918 * Surface heating to dry
919 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
920
921
922
923
924
925 === 6.4.2 Specification ===
926
927 * Detect if there is rain or snow
928 * Input Power: DC 12 ~~ 24v
929 * Interface: RS485
930 * Working Temperature: -30℃~70℃
931 * Working Humidity: 10~90%RH
932 * Power Consumption:
933 ** No heating: 12mA @ 12v,
934 ** heating: 94ma @ 12v.
935
936
937
938
939
940 === 6.4.3 Dimension ===
941
942 [[image:1656056844782-155.png]]
943
944
945 === 6.4.4 Pin Mapping ===
946
947 [[image:1656056855590-754.png]]
948
949
950 === 6.4.5 Installation Notice ===
951
952 Do not power on while connect the cables. Double check the wiring before power on.
953
954
955 Install with 15°degree.
956
957 [[image:1656056873783-780.png]]
958
959
960 [[image:1656056883736-804.png]]
961
962
963 === 6.4.6 Heating ===
964
965 (((
966 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
967 )))
968
969
970 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
971
972
973 (((
974 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
975 )))
976
977 (((
978 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
979 )))
980
981
982 === 6.5.1 Feature ===
983
984 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
985
986
987
988
989
990 === 6.5.2 Specification ===
991
992 * Input Power: DC 12 ~~ 24v
993 * Interface: RS485
994 * Temperature Sensor Spec:
995 ** Range: -30 ~~ 70℃
996 ** resolution 0.1℃
997 ** Accuracy: ±0.5℃
998 * Humidity Sensor Spec:
999 ** Range: 0 ~~ 100% RH
1000 ** resolution 0.1 %RH
1001 ** Accuracy: 3% RH
1002 * Pressure Sensor Spec:
1003 ** Range: 10~1100hPa
1004 ** Resolution: 0.1hPa
1005 ** Accuracy: ±0.1hPa
1006 * Illuminate sensor:
1007 ** Range: 0~2/20/200kLux
1008 ** Resolution: 10 Lux
1009 ** Accuracy: ±3%FS
1010 * Working Temperature: -30℃~70℃
1011 * Working Humidity: 10~90%RH
1012 * Power Consumption: 4mA @ 12v
1013
1014
1015
1016
1017
1018 === 6.5.3 Dimension ===
1019
1020 [[image:1656057170639-522.png]]
1021
1022
1023 === 6.5.4 Pin Mapping ===
1024
1025 [[image:1656057181899-910.png]]
1026
1027
1028 === 6.5.5 Installation Notice ===
1029
1030 Do not power on while connect the cables. Double check the wiring before power on.
1031
1032 [[image:1656057199955-514.png]]
1033
1034
1035 [[image:1656057212438-475.png]]
1036
1037
1038 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1039
1040
1041 (((
1042 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1043 )))
1044
1045 (((
1046 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1047 )))
1048
1049 (((
1050 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1051 )))
1052
1053
1054
1055 === 6.6.1 Feature ===
1056
1057 * RS485 Total Solar Radiation sensor
1058 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1059 * Measure Reflected Radiation if sense area towards ground.
1060
1061
1062
1063
1064
1065 === 6.6.2 Specification ===
1066
1067 * Input Power: DC 5 ~~ 24v
1068 * Interface: RS485
1069 * Detect spectrum: 0.3~3μm(300~3000nm)
1070 * Measure strength range: 0~2000W/m2
1071 * Resolution: 0.1W/m2
1072 * Accuracy: ±3%
1073 * Yearly Stability: ≤±2%
1074 * Cosine response: ≤7% (@ Sun angle 10°)
1075 * Temperature Effect: ±2%(-10℃~40℃)
1076 * Working Temperature: -40℃~70℃
1077 * Working Humidity: 10~90%RH
1078 * Power Consumption: 4mA @ 12v
1079
1080
1081
1082
1083
1084 === 6.6.3 Dimension ===
1085
1086 [[image:1656057348695-898.png]]
1087
1088
1089 === 6.6.4 Pin Mapping ===
1090
1091 [[image:1656057359343-744.png]]
1092
1093
1094 === 6.6.5 Installation Notice ===
1095
1096 Do not power on while connect the cables. Double check the wiring before power on.
1097
1098 [[image:1656057369259-804.png]]
1099
1100
1101 [[image:1656057377943-564.png]]
1102
1103
1104 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1105
1106
1107 (((
1108 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1109 )))
1110
1111 (((
1112 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1113 )))
1114
1115 (((
1116 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1117 )))
1118
1119
1120 === 6.7.1 Feature ===
1121
1122 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1123
1124 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1125
1126
1127 === 6.7.2 Specification ===
1128
1129 * Input Power: DC 5 ~~ 24v
1130 * Interface: RS485
1131 * Response Spectrum: 400~700nm
1132 * Measure range: 0~2500μmol/m2•s
1133 * Resolution: 1μmol/m2•s
1134 * Accuracy: ±2%
1135 * Yearly Stability: ≤±2%
1136 * Working Temperature: -30℃~75℃
1137 * Working Humidity: 10~90%RH
1138 * Power Consumption: 3mA @ 12v
1139
1140
1141
1142
1143
1144 === 6.7.3 Dimension ===
1145
1146 [[image:1656057538793-888.png]]
1147
1148
1149 === 6.7.4 Pin Mapping ===
1150
1151 [[image:1656057548116-203.png]]
1152
1153
1154 === 6.7.5 Installation Notice ===
1155
1156 Do not power on while connect the cables. Double check the wiring before power on.
1157
1158
1159 [[image:1656057557191-895.png]]
1160
1161
1162 [[image:1656057565783-251.png]]
1163
1164
1165 = 7. FAQ =
1166
1167 == 7.1 What else do I need to purchase to build Weather Station? ==
1168
1169 Below is the installation photo and structure:
1170
1171 [[image:1656057598349-319.png]]
1172
1173
1174 [[image:1656057608049-693.png]]
1175
1176
1177
1178 == 7.2 How to upgrade firmware for WSC1-L? ==
1179
1180 (((
1181 Firmware Location & Change log:
1182 )))
1183
1184 (((
1185 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1186 )))
1187
1188
1189 (((
1190 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1191 )))
1192
1193
1194 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1195
1196 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1197
1198
1199 == 7.4 Can I add my weather sensors? ==
1200
1201 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1202
1203
1204 = 8. Trouble Shooting =
1205
1206 == 8.1 AT Command input doesn't work ==
1207
1208 (((
1209 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1210 )))
1211
1212
1213 = 9. Order Info =
1214
1215 == 9.1 Main Process Unit ==
1216
1217 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1218
1219 (% style="color:blue" %)**XX**(%%): The default frequency band
1220
1221 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1222 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1223 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1224 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1225 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1226 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1227 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1228 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1229
1230
1231 == 9.2 Sensors ==
1232
1233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1234 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1235 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1236 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1237 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1238 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1239 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1240 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1241 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1242 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1243
1244
1245
1246 = 10. Support =
1247
1248 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1249 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1250
1251
1252
1253 = 11. Appendix I: Field Installation Photo =
1254
1255
1256 [[image:1656058346362-132.png]]
1257
1258 **Storage Battery**: 12v,12AH li battery
1259
1260
1261
1262 **Wind Speed/Direction**
1263
1264 [[image:1656058373174-421.png]]
1265
1266
1267
1268 **Total Solar Radiation sensor**
1269
1270 [[image:1656058397364-282.png]]
1271
1272
1273
1274 **PAR Sensor**
1275
1276 [[image:1656058416171-615.png]]
1277
1278
1279
1280 **CO2/PM2.5/PM10 3 in 1 sensor**
1281
1282 [[image:1656058441194-827.png]]
1283
1284
1285
1286 **Rain / Snow Detect**
1287
1288 [[image:1656058451456-166.png]]
1289
1290
1291
1292 **Rain Gauge**
1293
1294 [[image:1656058463455-569.png]]