Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153 === 2.4.1 Uplink FPORT~=5, Device Status ===
154
155 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
156
157
158 (((
159 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
160 )))
161
162 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
163 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
164 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
165
166 [[image:1656043061044-343.png]]
167
168
169 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
170
171
172
173 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
174
175 For WSC1-L, this value is 0x0D.
176
177
178
179 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
180
181 0x0100, Means: v1.0.0 version.
182
183
184
185 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
186
187 *0x01: EU868
188
189 *0x02: US915
190
191 *0x03: IN865
192
193 *0x04: AU915
194
195 *0x05: KZ865
196
197 *0x06: RU864
198
199 *0x07: AS923
200
201 *0x08: AS923-1
202
203 *0x09: AS923-2
204
205 *0x0a: AS923-3
206
207
208
209 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
210
211 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
212
213
214
215 ==== (% style="color:#037691" %)**BAT:**(%%) ====
216
217 shows the battery voltage for WSC1-L MCU.
218
219 Ex1: 0x0BD6/1000 = 3.03 V
220
221
222
223 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
224
225 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
226 |Byte3|Byte2|Byte1
227
228 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
229
230 [[image:image-20220624134713-1.png]]
231
232
233 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
234
235 External sensors detected by WSC1-L include :
236
237 custom sensor A1,
238
239 PAR sensor (WSS-07),
240
241 Total Solar Radiation sensor (WSS-06),
242
243 CO2/PM2.5/PM10 (WSS-03),
244
245 Wind Speed/Direction (WSS-02)
246
247
248 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
249
250 (% style="color:#037691" %)**Downlink:0x26 01**
251
252 [[image:1656049673488-415.png]]
253
254
255
256 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
257
258 (((
259 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
260 )))
261
262 (((
263 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
264 )))
265
266
267 (((
268 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
269 )))
270
271
272 (% style="color:#4472c4" %)** Uplink Payload**:
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
275 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
276
277 (% style="color:#4472c4" %)** Sensor Segment Define**:
278
279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
280 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
281
282 (% style="color:#4472c4" %)**Sensor Type Table:**
283
284 [[image:image-20220624140352-2.png]]
285
286
287 Below is an example payload:  [[image:image-20220624140615-3.png]]
288
289
290 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
291
292 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
293
294 Uplink 1:  [[image:image-20220624140735-4.png]]
295
296 Uplink 2:  [[image:image-20220624140842-5.png]]
297
298
299 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
300
301 Uplink 1:  [[image:image-20220624141025-6.png]]
302
303 Uplink 2:  [[image:image-20220624141100-7.png]]
304
305
306
307
308 === 2.4.3 Decoder in TTN V3 ===
309
310 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
311
312
313 Download decoder for suitable platform from:
314
315 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
316
317 and put as below:
318
319 [[image:1656051152438-578.png]]
320
321
322
323 == 2.5 Show data on Application Server ==
324
325 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
326
327
328 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
329
330 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
331
332 [[image:1656051197172-131.png]]
333
334
335 **Add TagoIO:**
336
337 [[image:1656051223585-631.png]]
338
339
340 **Authorization:**
341
342 [[image:1656051248318-368.png]]
343
344
345 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
346
347 [[image:1656051277767-168.png]]
348
349
350
351 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
352
353 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
354
355 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
356 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
357
358 There are two kinds of commands to configure WSC1-L, they are:
359
360 * (% style="color:#4472c4" %)**General Commands**.
361
362 These commands are to configure:
363
364 * General system settings like: uplink interval.
365 * LoRaWAN protocol & radio related command.
366
367 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
368
369 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
370
371
372 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
373
374 These commands only valid for WSC1-L, as below:
375
376
377
378
379
380
381 == 3.1 Set Transmit Interval Time ==
382
383 Feature: Change LoRaWAN End Node Transmit Interval.
384
385 (% style="color:#037691" %)**AT Command: AT+TDC**
386
387 [[image:image-20220624142619-8.png]]
388
389
390 (% style="color:#037691" %)**Downlink Command: 0x01**
391
392 Format: Command Code (0x01) followed by 3 bytes time value.
393
394 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
395
396 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
397 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
398
399 == 3.2 Set Emergency Mode ==
400
401 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
402
403 (% style="color:#037691" %)**AT Command:**
404
405 [[image:image-20220624142956-9.png]]
406
407
408 (% style="color:#037691" %)**Downlink Command:**
409
410 * 0xE101     Same as: AT+ALARMMOD=1
411 * 0xE100     Same as: AT+ALARMMOD=0
412
413 == 3.3 Add or Delete RS485 Sensor ==
414
415 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
416
417 (% style="color:#037691" %)**AT Command: **
418
419 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
420
421 * Type_Code range:  A1 ~~ A4
422 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
423 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
424 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
425 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
426 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
427 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
428
429 **Example:**
430
431 User need to change external sensor use the type code as address code.
432
433 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
434
435 [[image:image-20220624143553-10.png]]
436
437
438 The response frame of the sensor is as follows:
439
440 [[image:image-20220624143618-11.png]]
441
442
443
444 **Then the following parameters should be:**
445
446 * Address_Code range: A1
447 * Query_Length: 8
448 * Query_Command: A103000000019CAA
449 * Read_Length: 8
450 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
451 * has_CRC: 1
452 * timeout: 1500 (Fill in the test according to the actual situation)
453
454 **So the input command is:**
455
456 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
457
458
459 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
460
461 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
462 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
463 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
464
465 **Related commands:**
466
467 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
468
469 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
470
471
472 (% style="color:#037691" %)**Downlink Command:  **
473
474 **delete custom sensor A1:**
475
476 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
477
478 **Remove all custom sensors**
479
480 * 0xE5FF  
481
482 == 3.4 RS485 Test Command ==
483
484 (% style="color:#037691" %)**AT Command:**
485
486 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
487 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
488 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
489 Send command to 485 sensor
490
491 Range : no more than 10 bytes
492 )))|(% style="width:85px" %)OK
493
494 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
495
496 AT+RSWRITE=0103000001840A
497
498
499 (% style="color:#037691" %)**Downlink Command:**
500
501 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
502
503 == 3.5 RS485 response timeout ==
504
505 Feature: Set or get extended time to receive 485 sensor data.
506
507 (% style="color:#037691" %)**AT Command:**
508
509 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
510 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
511 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
512 Set response timeout to:
513
514 Range : 0~~10000
515 )))|(% style="width:85px" %)OK
516
517 (% style="color:#037691" %)**Downlink Command:**
518
519 Format: Command Code (0xE0) followed by 3 bytes time value.
520
521 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
522
523 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
524 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
525
526 == 3.6 Set Sensor Type ==
527
528 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
529
530 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
531
532 [[image:image-20220624144904-12.png]]
533
534
535 (% style="color:#037691" %)**AT Command:**
536
537 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
538 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
539 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
540
541 Eg: The setting command **AT+STYPE=802212** means:
542
543 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
544 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
545 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
546 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
547 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
548 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
549 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
550
551 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
552
553
554 (% style="color:#037691" %)**Downlink Command:**
555
556 * 0xE400802212     Same as: AT+STYPE=80221
557
558 (% style="color:red" %)**Note:**
559
560 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
561
562
563
564
565 = 4. Power consumption and battery =
566
567 == 4.1 Total Power Consumption ==
568
569 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
570
571
572 == 4.2 Reduce power consumption ==
573
574 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
575
576
577 == 4.3 Battery ==
578
579 (((
580 All sensors are only power by external power source. If external power source is off. All sensor won't work.
581 )))
582
583 (((
584 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
585 )))
586
587
588 = 5. Main Process Unit WSC1-L =
589
590 == 5.1 Features ==
591
592 * Wall Attachable.
593 * LoRaWAN v1.0.3 Class A protocol.
594 * RS485 / Modbus protocol
595 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
596 * AT Commands to change parameters
597 * Remote configure parameters via LoRaWAN Downlink
598 * Firmware upgradable via program port
599 * Powered by external 12v battery
600 * Back up rechargeable 1000mAh battery
601 * IP Rating: IP65
602 * Support default sensors or 3rd party RS485 sensors
603
604 == 5.2 Power Consumption ==
605
606 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
607
608
609 == 5.3 Storage & Operation Temperature ==
610
611 -20°C to +60°C
612
613
614 == 5.4 Pin Mapping ==
615
616 [[image:1656054149793-239.png]]
617
618
619 == 5.5 Mechanical ==
620
621 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
622
623
624 == 5.6 Connect to RS485 Sensors ==
625
626 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
627
628
629 [[image:1656054389031-379.png]]
630
631
632 Hardware Design for the Converter Board please see:
633
634 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
635
636
637 = 6. Weather Sensors =
638
639 == 6.1 Rain Gauge ~-~- WSS-01 ==
640
641
642 (((
643 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
644 )))
645
646 (((
647 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
648 )))
649
650 (((
651 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
652 )))
653
654 (((
655 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
656 )))
657
658 (((
659 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
660 )))
661
662
663 === 6.1.1 Feature ===
664
665 * RS485 Rain Gauge
666 * Small dimension, easy to install
667 * Vents under funnel, avoid leaf or other things to avoid rain flow.
668 * ABS enclosure.
669 * Horizontal adjustable.
670
671 === 6.1.2 Specification ===
672
673 * Resolution: 0.2mm
674 * Accuracy: ±3%
675 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
676 * Input Power: DC 5~~24v
677 * Interface: RS485
678 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
679 * Working Humidity: <100% (no dewing)
680 * Power Consumption: 4mA @ 12v.
681
682 === 6.1.3 Dimension ===
683
684 [[image:1656054957406-980.png]]
685
686
687 === 6.1.4 Pin Mapping ===
688
689 [[image:1656054972828-692.png]]
690
691
692 === 6.1.5 Installation Notice ===
693
694 Do not power on while connect the cables. Double check the wiring before power on.
695
696 Installation Photo as reference:
697
698
699 (% style="color:#4472c4" %)** Install on Ground:**
700
701 WSS-01 Rain Gauge include screws so can install in ground directly .
702
703
704 (% style="color:#4472c4" %)** Install on pole:**
705
706 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
707
708 [[image:image-20220624152218-1.png||height="526" width="276"]]
709
710 WS-K2: Bracket Kit for Pole installation
711
712
713 WSSC-K2 dimension document, please see:
714
715 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
716
717
718 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
719
720 [[image:1656055444035-179.png]]
721
722 (((
723 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
724 )))
725
726 (((
727 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
728 )))
729
730 (((
731 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
732 )))
733
734
735 === 6.2.1 Feature ===
736
737 * RS485 wind speed / direction sensor
738 * PC enclosure, resist corrosion
739
740 === 6.2.2 Specification ===
741
742 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
743 * Wind direction range: 0 ~~ 360°
744 * Start wind speed: ≤0.3m/s
745 * Accuracy: ±(0.3+0.03V)m/s , ±1°
746 * Input Power: DC 5~~24v
747 * Interface: RS485
748 * Working Temperature: -30℃~70℃
749 * Working Humidity: <100% (no dewing)
750 * Power Consumption: 13mA ~~ 12v.
751 * Cable Length: 2 meters
752
753 === 6.2.3 Dimension ===
754
755 [[image:image-20220624152813-2.png]]
756
757
758 === 6.2.4 Pin Mapping ===
759
760 [[image:1656056281231-994.png]]
761
762
763 === 6.2.5  Angle Mapping ===
764
765 [[image:1656056303845-585.png]]
766
767
768 === 6.2.6  Installation Notice ===
769
770 Do not power on while connect the cables. Double check the wiring before power on.
771
772 The sensor must be installed with below direction, towards North.
773
774 [[image:image-20220624153901-3.png]]
775
776
777 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
778
779
780 (((
781 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
782 )))
783
784 (((
785 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
786 )))
787
788 (((
789 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
790 )))
791
792
793 === 6.3.1 Feature ===
794
795 * RS485 CO2, PM2.5, PM10 sensor
796 * NDIR to measure CO2 with Internal Temperature Compensation
797 * Laser Beam Scattering to PM2.5 and PM10
798
799 === 6.3.2 Specification ===
800
801 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
802 * CO2 resolution: 1ppm
803 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
804 * PM2.5/PM10 resolution: 1μg/m3
805 * Input Power: DC 7 ~~ 24v
806 * Preheat time: 3min
807 * Interface: RS485
808 * Working Temperature:
809 ** CO2: 0℃~50℃;
810 ** PM2.5/PM10: -30 ~~ 50℃
811 * Working Humidity:
812 ** PM2.5/PM10: 15~80%RH (no dewing)
813 ** CO2: 0~95%RH
814 * Power Consumption: 50mA@ 12v.
815
816 === 6.3.3 Dimension ===
817
818 [[image:1656056708366-230.png]]
819
820
821 === 6.3.4 Pin Mapping ===
822
823 [[image:1656056722648-743.png]]
824
825
826 === 6.3.5 Installation Notice ===
827
828 Do not power on while connect the cables. Double check the wiring before power on.
829
830 [[image:1656057016033-551.png]]
831
832 [[image:1656056751153-304.png]]
833
834 [[image:1656056766224-773.png]]
835
836
837 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
838
839
840 (((
841 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
842 )))
843
844 (((
845 WSS-04 has auto heating feature, this ensures measurement more reliable.
846 )))
847
848 (((
849 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
850 )))
851
852
853
854 === 6.4.1 Feature ===
855
856 * RS485 Rain/Snow detect sensor
857 * Surface heating to dry
858 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
859
860 === 6.4.2 Specification ===
861
862 * Detect if there is rain or snow
863 * Input Power: DC 12 ~~ 24v
864 * Interface: RS485
865 * Working Temperature: -30℃~70℃
866 * Working Humidity: 10~90%RH
867 * Power Consumption:
868 ** No heating: 12mA @ 12v,
869 ** heating: 94ma @ 12v.
870
871 === 6.4.3 Dimension ===
872
873 [[image:1656056844782-155.png]]
874
875
876 === 6.4.4 Pin Mapping ===
877
878 [[image:1656056855590-754.png]]
879
880
881 === 6.4.5 Installation Notice ===
882
883 Do not power on while connect the cables. Double check the wiring before power on.
884
885
886 Install with 15°degree.
887
888 [[image:1656056873783-780.png]]
889
890
891 [[image:1656056883736-804.png]]
892
893
894 === 6.4.6 Heating ===
895
896 (((
897 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
898 )))
899
900
901 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
902
903
904 (((
905 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
906 )))
907
908 (((
909 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
910 )))
911
912
913 === 6.5.1 Feature ===
914
915 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
916
917 === 6.5.2 Specification ===
918
919 * Input Power: DC 12 ~~ 24v
920 * Interface: RS485
921 * Temperature Sensor Spec:
922 ** Range: -30 ~~ 70℃
923 ** resolution 0.1℃
924 ** Accuracy: ±0.5℃
925 * Humidity Sensor Spec:
926 ** Range: 0 ~~ 100% RH
927 ** resolution 0.1 %RH
928 ** Accuracy: 3% RH
929 * Pressure Sensor Spec:
930 ** Range: 10~1100hPa
931 ** Resolution: 0.1hPa
932 ** Accuracy: ±0.1hPa
933 * Illuminate sensor:
934 ** Range: 0~2/20/200kLux
935 ** Resolution: 10 Lux
936 ** Accuracy: ±3%FS
937 * Working Temperature: -30℃~70℃
938 * Working Humidity: 10~90%RH
939 * Power Consumption: 4mA @ 12v
940
941 === 6.5.3 Dimension ===
942
943 [[image:1656057170639-522.png]]
944
945
946 === 6.5.4 Pin Mapping ===
947
948 [[image:1656057181899-910.png]]
949
950
951 === 6.5.5 Installation Notice ===
952
953 Do not power on while connect the cables. Double check the wiring before power on.
954
955 [[image:1656057199955-514.png]]
956
957
958 [[image:1656057212438-475.png]]
959
960
961 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
962
963
964 (((
965 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
966 )))
967
968 (((
969 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
970 )))
971
972 (((
973 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
974 )))
975
976
977
978 === 6.6.1 Feature ===
979
980 * RS485 Total Solar Radiation sensor
981 * Measure Total Radiation between 0.3~3μm(300~3000nm)
982 * Measure Reflected Radiation if sense area towards ground.
983
984 === 6.6.2 Specification ===
985
986 * Input Power: DC 5 ~~ 24v
987 * Interface: RS485
988 * Detect spectrum: 0.3~3μm(300~3000nm)
989 * Measure strength range: 0~2000W/m2
990 * Resolution: 0.1W/m2
991 * Accuracy: ±3%
992 * Yearly Stability: ≤±2%
993 * Cosine response: ≤7% (@ Sun angle 10°)
994 * Temperature Effect: ±2%(-10℃~40℃)
995 * Working Temperature: -40℃~70℃
996 * Working Humidity: 10~90%RH
997 * Power Consumption: 4mA @ 12v
998
999 === 6.6.3 Dimension ===
1000
1001 [[image:1656057348695-898.png]]
1002
1003
1004 === 6.6.4 Pin Mapping ===
1005
1006 [[image:1656057359343-744.png]]
1007
1008
1009 === 6.6.5 Installation Notice ===
1010
1011 Do not power on while connect the cables. Double check the wiring before power on.
1012
1013 [[image:1656057369259-804.png]]
1014
1015
1016 [[image:1656057377943-564.png]]
1017
1018
1019 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1020
1021
1022 (((
1023 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1024 )))
1025
1026 (((
1027 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1028 )))
1029
1030 (((
1031 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1032 )))
1033
1034
1035 === 6.7.1 Feature ===
1036
1037 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1038
1039 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1040
1041
1042 === 6.7.2 Specification ===
1043
1044 * Input Power: DC 5 ~~ 24v
1045 * Interface: RS485
1046 * Response Spectrum: 400~700nm
1047 * Measure range: 0~2500μmol/m2•s
1048 * Resolution: 1μmol/m2•s
1049 * Accuracy: ±2%
1050 * Yearly Stability: ≤±2%
1051 * Working Temperature: -30℃~75℃
1052 * Working Humidity: 10~90%RH
1053 * Power Consumption: 3mA @ 12v
1054
1055 === 6.7.3 Dimension ===
1056
1057 [[image:1656057538793-888.png]]
1058
1059
1060 === 6.7.4 Pin Mapping ===
1061
1062 [[image:1656057548116-203.png]]
1063
1064
1065 === 6.7.5 Installation Notice ===
1066
1067 Do not power on while connect the cables. Double check the wiring before power on.
1068
1069
1070 [[image:1656057557191-895.png]]
1071
1072
1073 [[image:1656057565783-251.png]]
1074
1075
1076 = 7. FAQ =
1077
1078 == 7.1 What else do I need to purchase to build Weather Station? ==
1079
1080 Below is the installation photo and structure:
1081
1082 [[image:1656057598349-319.png]]
1083
1084
1085 [[image:1656057608049-693.png]]
1086
1087
1088
1089 == 7.2 How to upgrade firmware for WSC1-L? ==
1090
1091 (((
1092 Firmware Location & Change log:
1093 )))
1094
1095 (((
1096 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1097 )))
1098
1099
1100 (((
1101 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1102 )))
1103
1104
1105 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1106
1107 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1108
1109
1110 == 7.4 Can I add my weather sensors? ==
1111
1112 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1113
1114
1115 = 8. Trouble Shooting =
1116
1117 == 8.1 AT Command input doesn't work ==
1118
1119 (((
1120 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1121 )))
1122
1123
1124 = 9. Order Info =
1125
1126 == 9.1 Main Process Unit ==
1127
1128 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1129
1130 (% style="color:blue" %)**XX**(%%): The default frequency band
1131
1132 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1133 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1134 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1135 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1136 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1137 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1138 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1139 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1140
1141
1142
1143 == 9.2 Sensors ==
1144
1145 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1146 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1147 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1148 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1149 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1150 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1151 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1152 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1153 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1154 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1155
1156
1157
1158
1159 = 10. Support =
1160
1161 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1162 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1163
1164
1165
1166
1167 = 11. Appendix I: Field Installation Photo =
1168
1169
1170 [[image:1656058346362-132.png]]
1171
1172 **Storage Battery**: 12v,12AH li battery
1173
1174
1175
1176 **Wind Speed/Direction**
1177
1178 [[image:1656058373174-421.png]]
1179
1180
1181
1182 **Total Solar Radiation sensor**
1183
1184 [[image:1656058397364-282.png]]
1185
1186
1187
1188 **PAR Sensor**
1189
1190 [[image:1656058416171-615.png]]
1191
1192
1193
1194 **CO2/PM2.5/PM10 3 in 1 sensor**
1195
1196 [[image:1656058441194-827.png]]
1197
1198
1199
1200 **Rain / Snow Detect**
1201
1202 [[image:1656058451456-166.png]]
1203
1204
1205
1206 **Rain Gauge**
1207
1208 [[image:1656058463455-569.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0