Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
144
145
146 [[image:1656042745346-283.png]]
147
148
149
150 == 2.4 Uplink Payload ==
151
152 Uplink payloads include two types: Valid Sensor Value and other status / control command.
153
154 * Valid Sensor Value: Use FPORT=2
155 * Other control command: Use FPORT other than 2.
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226
227 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
228
229 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
230 |Byte3|Byte2|Byte1
231
232 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
233
234 [[image:image-20220624134713-1.png]]
235
236
237 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
238
239 External sensors detected by WSC1-L include :
240
241 custom sensor A1,
242
243 PAR sensor (WSS-07),
244
245 Total Solar Radiation sensor (WSS-06),
246
247 CO2/PM2.5/PM10 (WSS-03),
248
249 Wind Speed/Direction (WSS-02)
250
251
252 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
253
254 (% style="color:#037691" %)**Downlink:0x26 01**
255
256 [[image:1656049673488-415.png]]
257
258
259
260 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
261
262 (((
263 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
264 )))
265
266 (((
267 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
268 )))
269
270
271 (((
272 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
273 )))
274
275
276 (% style="color:#4472c4" %)** Uplink Payload**:
277
278 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
279 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
280
281 (% style="color:#4472c4" %)** Sensor Segment Define**:
282
283 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
284 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
285
286 (% style="color:#4472c4" %)**Sensor Type Table:**
287
288 [[image:image-20220624140352-2.png]]
289
290
291 Below is an example payload:  [[image:image-20220624140615-3.png]]
292
293
294 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
295
296 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
297
298 Uplink 1:  [[image:image-20220624140735-4.png]]
299
300 Uplink 2:  [[image:image-20220624140842-5.png]]
301
302
303 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
304
305 Uplink 1:  [[image:image-20220624141025-6.png]]
306
307 Uplink 2:  [[image:image-20220624141100-7.png]]
308
309
310
311
312 === 2.4.3 Decoder in TTN V3 ===
313
314 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
315
316
317 Download decoder for suitable platform from:
318
319 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
320
321 and put as below:
322
323 [[image:1656051152438-578.png]]
324
325
326
327 == 2.5 Show data on Application Server ==
328
329 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
330
331
332 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
333
334 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
335
336 [[image:1656051197172-131.png]]
337
338
339 **Add TagoIO:**
340
341 [[image:1656051223585-631.png]]
342
343
344 **Authorization:**
345
346 [[image:1656051248318-368.png]]
347
348
349 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
350
351 [[image:1656051277767-168.png]]
352
353
354
355 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
356
357 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
358
359 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
360 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
361
362 There are two kinds of commands to configure WSC1-L, they are:
363
364 * (% style="color:#4472c4" %)**General Commands**.
365
366 These commands are to configure:
367
368 * General system settings like: uplink interval.
369 * LoRaWAN protocol & radio related command.
370
371 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
372
373 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
374
375
376 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
377
378 These commands only valid for WSC1-L, as below:
379
380
381
382
383
384
385 == 3.1 Set Transmit Interval Time ==
386
387 Feature: Change LoRaWAN End Node Transmit Interval.
388
389 (% style="color:#037691" %)**AT Command: AT+TDC**
390
391 [[image:image-20220624142619-8.png]]
392
393
394 (% style="color:#037691" %)**Downlink Command: 0x01**
395
396 Format: Command Code (0x01) followed by 3 bytes time value.
397
398 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
399
400 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
401 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
402
403
404
405 == 3.2 Set Emergency Mode ==
406
407 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
408
409 (% style="color:#037691" %)**AT Command:**
410
411 [[image:image-20220624142956-9.png]]
412
413
414 (% style="color:#037691" %)**Downlink Command:**
415
416 * 0xE101     Same as: AT+ALARMMOD=1
417 * 0xE100     Same as: AT+ALARMMOD=0
418
419
420
421 == 3.3 Add or Delete RS485 Sensor ==
422
423 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
424
425 (% style="color:#037691" %)**AT Command: **
426
427 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
428
429 * Type_Code range:  A1 ~~ A4
430 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
431 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
432 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
433 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
434 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
435 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
436
437 **Example:**
438
439 User need to change external sensor use the type code as address code.
440
441 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
442
443 [[image:image-20220624143553-10.png]]
444
445
446 The response frame of the sensor is as follows:
447
448 [[image:image-20220624143618-11.png]]
449
450
451
452 **Then the following parameters should be:**
453
454 * Address_Code range: A1
455 * Query_Length: 8
456 * Query_Command: A103000000019CAA
457 * Read_Length: 8
458 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
459 * has_CRC: 1
460 * timeout: 1500 (Fill in the test according to the actual situation)
461
462 **So the input command is:**
463
464 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
465
466
467 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
468
469 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
470 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
471 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
472
473 **Related commands:**
474
475 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
476
477 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
478
479
480 (% style="color:#037691" %)**Downlink Command:  **
481
482 **delete custom sensor A1:**
483
484 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
485
486 **Remove all custom sensors**
487
488 * 0xE5FF  
489
490
491
492 == 3.4 RS485 Test Command ==
493
494 (% style="color:#037691" %)**AT Command:**
495
496 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
497 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
498 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
499 Send command to 485 sensor
500
501 Range : no more than 10 bytes
502 )))|(% style="width:85px" %)OK
503
504 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
505
506 AT+RSWRITE=0103000001840A
507
508
509 (% style="color:#037691" %)**Downlink Command:**
510
511 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
512
513
514
515 == 3.5 RS485 response timeout ==
516
517 Feature: Set or get extended time to receive 485 sensor data.
518
519 (% style="color:#037691" %)**AT Command:**
520
521 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
522 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
523 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
524 Set response timeout to:
525
526 Range : 0~~10000
527 )))|(% style="width:85px" %)OK
528
529 (% style="color:#037691" %)**Downlink Command:**
530
531 Format: Command Code (0xE0) followed by 3 bytes time value.
532
533 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
534
535 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
536 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
537
538
539
540 == 3.6 Set Sensor Type ==
541
542 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
543
544 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
545
546 [[image:image-20220624144904-12.png]]
547
548
549 (% style="color:#037691" %)**AT Command:**
550
551 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
552 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
553 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
554
555 Eg: The setting command **AT+STYPE=802212** means:
556
557 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
558 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
559 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
560 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
561 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
562 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
563 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
564
565 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
566
567
568 (% style="color:#037691" %)**Downlink Command:**
569
570 * 0xE400802212     Same as: AT+STYPE=80221
571
572 (% style="color:red" %)**Note:**
573
574 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
575
576
577
578
579 = 4. Power consumption and battery =
580
581 == 4.1 Total Power Consumption ==
582
583 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
584
585
586 == 4.2 Reduce power consumption ==
587
588 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
589
590
591 == 4.3 Battery ==
592
593 (((
594 All sensors are only power by external power source. If external power source is off. All sensor won't work.
595 )))
596
597 (((
598 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
599 )))
600
601
602 = 5. Main Process Unit WSC1-L =
603
604 == 5.1 Features ==
605
606 * Wall Attachable.
607 * LoRaWAN v1.0.3 Class A protocol.
608 * RS485 / Modbus protocol
609 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
610 * AT Commands to change parameters
611 * Remote configure parameters via LoRaWAN Downlink
612 * Firmware upgradable via program port
613 * Powered by external 12v battery
614 * Back up rechargeable 1000mAh battery
615 * IP Rating: IP65
616 * Support default sensors or 3rd party RS485 sensors
617
618 == 5.2 Power Consumption ==
619
620 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
621
622
623 == 5.3 Storage & Operation Temperature ==
624
625 -20°C to +60°C
626
627
628 == 5.4 Pin Mapping ==
629
630 [[image:1656054149793-239.png]]
631
632
633 == 5.5 Mechanical ==
634
635 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
636
637
638 == 5.6 Connect to RS485 Sensors ==
639
640 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
641
642
643 [[image:1656054389031-379.png]]
644
645
646 Hardware Design for the Converter Board please see:
647
648 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
649
650
651 = 6. Weather Sensors =
652
653 == 6.1 Rain Gauge ~-~- WSS-01 ==
654
655
656 (((
657 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
658 )))
659
660 (((
661 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
662 )))
663
664 (((
665 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
666 )))
667
668 (((
669 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
670 )))
671
672 (((
673 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
674 )))
675
676
677 === 6.1.1 Feature ===
678
679 * RS485 Rain Gauge
680 * Small dimension, easy to install
681 * Vents under funnel, avoid leaf or other things to avoid rain flow.
682 * ABS enclosure.
683 * Horizontal adjustable.
684
685 === 6.1.2 Specification ===
686
687 * Resolution: 0.2mm
688 * Accuracy: ±3%
689 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
690 * Input Power: DC 5~~24v
691 * Interface: RS485
692 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
693 * Working Humidity: <100% (no dewing)
694 * Power Consumption: 4mA @ 12v.
695
696 === 6.1.3 Dimension ===
697
698 [[image:1656054957406-980.png]]
699
700
701 === 6.1.4 Pin Mapping ===
702
703 [[image:1656054972828-692.png]]
704
705
706 === 6.1.5 Installation Notice ===
707
708 Do not power on while connect the cables. Double check the wiring before power on.
709
710 Installation Photo as reference:
711
712
713 (% style="color:#4472c4" %)** Install on Ground:**
714
715 WSS-01 Rain Gauge include screws so can install in ground directly .
716
717
718 (% style="color:#4472c4" %)** Install on pole:**
719
720 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
721
722 [[image:image-20220624152218-1.png||height="526" width="276"]]
723
724 WS-K2: Bracket Kit for Pole installation
725
726
727 WSSC-K2 dimension document, please see:
728
729 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
730
731
732 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
733
734 [[image:1656055444035-179.png]]
735
736 (((
737 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
738 )))
739
740 (((
741 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
742 )))
743
744 (((
745 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
746 )))
747
748
749 === 6.2.1 Feature ===
750
751 * RS485 wind speed / direction sensor
752 * PC enclosure, resist corrosion
753
754 === 6.2.2 Specification ===
755
756 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
757 * Wind direction range: 0 ~~ 360°
758 * Start wind speed: ≤0.3m/s
759 * Accuracy: ±(0.3+0.03V)m/s , ±1°
760 * Input Power: DC 5~~24v
761 * Interface: RS485
762 * Working Temperature: -30℃~70℃
763 * Working Humidity: <100% (no dewing)
764 * Power Consumption: 13mA ~~ 12v.
765 * Cable Length: 2 meters
766
767 === 6.2.3 Dimension ===
768
769 [[image:image-20220624152813-2.png]]
770
771
772 === 6.2.4 Pin Mapping ===
773
774 [[image:1656056281231-994.png]]
775
776
777 === 6.2.5  Angle Mapping ===
778
779 [[image:1656056303845-585.png]]
780
781
782 === 6.2.6  Installation Notice ===
783
784 Do not power on while connect the cables. Double check the wiring before power on.
785
786 The sensor must be installed with below direction, towards North.
787
788 [[image:image-20220624153901-3.png]]
789
790
791 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
792
793
794 (((
795 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
796 )))
797
798 (((
799 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
800 )))
801
802 (((
803 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
804 )))
805
806
807 === 6.3.1 Feature ===
808
809 * RS485 CO2, PM2.5, PM10 sensor
810 * NDIR to measure CO2 with Internal Temperature Compensation
811 * Laser Beam Scattering to PM2.5 and PM10
812
813 === 6.3.2 Specification ===
814
815 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
816 * CO2 resolution: 1ppm
817 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
818 * PM2.5/PM10 resolution: 1μg/m3
819 * Input Power: DC 7 ~~ 24v
820 * Preheat time: 3min
821 * Interface: RS485
822 * Working Temperature:
823 ** CO2: 0℃~50℃;
824 ** PM2.5/PM10: -30 ~~ 50℃
825 * Working Humidity:
826 ** PM2.5/PM10: 15~80%RH (no dewing)
827 ** CO2: 0~95%RH
828 * Power Consumption: 50mA@ 12v.
829
830 === 6.3.3 Dimension ===
831
832 [[image:1656056708366-230.png]]
833
834
835 === 6.3.4 Pin Mapping ===
836
837 [[image:1656056722648-743.png]]
838
839
840 === 6.3.5 Installation Notice ===
841
842 Do not power on while connect the cables. Double check the wiring before power on.
843
844 [[image:1656057016033-551.png]]
845
846 [[image:1656056751153-304.png]]
847
848 [[image:1656056766224-773.png]]
849
850
851 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
852
853
854 (((
855 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
856 )))
857
858 (((
859 WSS-04 has auto heating feature, this ensures measurement more reliable.
860 )))
861
862 (((
863 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
864 )))
865
866
867
868 === 6.4.1 Feature ===
869
870 * RS485 Rain/Snow detect sensor
871 * Surface heating to dry
872 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
873
874 === 6.4.2 Specification ===
875
876 * Detect if there is rain or snow
877 * Input Power: DC 12 ~~ 24v
878 * Interface: RS485
879 * Working Temperature: -30℃~70℃
880 * Working Humidity: 10~90%RH
881 * Power Consumption:
882 ** No heating: 12mA @ 12v,
883 ** heating: 94ma @ 12v.
884
885 === 6.4.3 Dimension ===
886
887 [[image:1656056844782-155.png]]
888
889
890 === 6.4.4 Pin Mapping ===
891
892 [[image:1656056855590-754.png]]
893
894
895 === 6.4.5 Installation Notice ===
896
897 Do not power on while connect the cables. Double check the wiring before power on.
898
899
900 Install with 15°degree.
901
902 [[image:1656056873783-780.png]]
903
904
905 [[image:1656056883736-804.png]]
906
907
908 === 6.4.6 Heating ===
909
910 (((
911 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
912 )))
913
914
915 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
916
917
918 (((
919 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
920 )))
921
922 (((
923 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
924 )))
925
926
927 === 6.5.1 Feature ===
928
929 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
930
931 === 6.5.2 Specification ===
932
933 * Input Power: DC 12 ~~ 24v
934 * Interface: RS485
935 * Temperature Sensor Spec:
936 ** Range: -30 ~~ 70℃
937 ** resolution 0.1℃
938 ** Accuracy: ±0.5℃
939 * Humidity Sensor Spec:
940 ** Range: 0 ~~ 100% RH
941 ** resolution 0.1 %RH
942 ** Accuracy: 3% RH
943 * Pressure Sensor Spec:
944 ** Range: 10~1100hPa
945 ** Resolution: 0.1hPa
946 ** Accuracy: ±0.1hPa
947 * Illuminate sensor:
948 ** Range: 0~2/20/200kLux
949 ** Resolution: 10 Lux
950 ** Accuracy: ±3%FS
951 * Working Temperature: -30℃~70℃
952 * Working Humidity: 10~90%RH
953 * Power Consumption: 4mA @ 12v
954
955 === 6.5.3 Dimension ===
956
957 [[image:1656057170639-522.png]]
958
959
960 === 6.5.4 Pin Mapping ===
961
962 [[image:1656057181899-910.png]]
963
964
965 === 6.5.5 Installation Notice ===
966
967 Do not power on while connect the cables. Double check the wiring before power on.
968
969 [[image:1656057199955-514.png]]
970
971
972 [[image:1656057212438-475.png]]
973
974
975 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
976
977
978 (((
979 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
980 )))
981
982 (((
983 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
984 )))
985
986 (((
987 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
988 )))
989
990
991
992 === 6.6.1 Feature ===
993
994 * RS485 Total Solar Radiation sensor
995 * Measure Total Radiation between 0.3~3μm(300~3000nm)
996 * Measure Reflected Radiation if sense area towards ground.
997
998
999 === 6.6.2 Specification ===
1000
1001 * Input Power: DC 5 ~~ 24v
1002 * Interface: RS485
1003 * Detect spectrum: 0.3~3μm(300~3000nm)
1004 * Measure strength range: 0~2000W/m2
1005 * Resolution: 0.1W/m2
1006 * Accuracy: ±3%
1007 * Yearly Stability: ≤±2%
1008 * Cosine response: ≤7% (@ Sun angle 10°)
1009 * Temperature Effect: ±2%(-10℃~40℃)
1010 * Working Temperature: -40℃~70℃
1011 * Working Humidity: 10~90%RH
1012 * Power Consumption: 4mA @ 12v
1013
1014
1015 === 6.6.3 Dimension ===
1016
1017 [[image:1656057348695-898.png]]
1018
1019
1020 === 6.6.4 Pin Mapping ===
1021
1022 [[image:1656057359343-744.png]]
1023
1024
1025 === 6.6.5 Installation Notice ===
1026
1027 Do not power on while connect the cables. Double check the wiring before power on.
1028
1029 [[image:1656057369259-804.png]]
1030
1031
1032 [[image:1656057377943-564.png]]
1033
1034
1035 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1036
1037
1038 (((
1039 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1040 )))
1041
1042 (((
1043 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1044 )))
1045
1046 (((
1047 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1048 )))
1049
1050
1051 === 6.7.1 Feature ===
1052
1053 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1054
1055 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1056
1057
1058 === 6.7.2 Specification ===
1059
1060 * Input Power: DC 5 ~~ 24v
1061 * Interface: RS485
1062 * Response Spectrum: 400~700nm
1063 * Measure range: 0~2500μmol/m2•s
1064 * Resolution: 1μmol/m2•s
1065 * Accuracy: ±2%
1066 * Yearly Stability: ≤±2%
1067 * Working Temperature: -30℃~75℃
1068 * Working Humidity: 10~90%RH
1069 * Power Consumption: 3mA @ 12v
1070
1071
1072 === 6.7.3 Dimension ===
1073
1074 [[image:1656057538793-888.png]]
1075
1076
1077 === 6.7.4 Pin Mapping ===
1078
1079 [[image:1656057548116-203.png]]
1080
1081
1082 === 6.7.5 Installation Notice ===
1083
1084 Do not power on while connect the cables. Double check the wiring before power on.
1085
1086
1087 [[image:1656057557191-895.png]]
1088
1089
1090 [[image:1656057565783-251.png]]
1091
1092
1093 = 7. FAQ =
1094
1095 == 7.1 What else do I need to purchase to build Weather Station? ==
1096
1097 Below is the installation photo and structure:
1098
1099 [[image:1656057598349-319.png]]
1100
1101
1102 [[image:1656057608049-693.png]]
1103
1104
1105
1106 == 7.2 How to upgrade firmware for WSC1-L? ==
1107
1108 (((
1109 Firmware Location & Change log:
1110 )))
1111
1112 (((
1113 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1114 )))
1115
1116
1117 (((
1118 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1119 )))
1120
1121
1122 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1123
1124 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1125
1126
1127 == 7.4 Can I add my weather sensors? ==
1128
1129 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1130
1131
1132 = 8. Trouble Shooting =
1133
1134
1135
1136
1137
1138
1139 = 9. Order Info =
1140
1141
1142 == 9.1 Main Process Unit ==
1143
1144 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1145
1146 (% style="color:blue" %)**XX**(%%): The default frequency band
1147
1148 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1149 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1150 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1151 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1152 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1153 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1154 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1155 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1156
1157
1158
1159
1160
1161 == 9.2 Sensors ==
1162
1163 |**Sensor Model**|**Part Number**
1164 |**Rain Gauge**|WSS-01
1165 |**Rain Gauge installation Bracket for Pole**|WS-K2
1166 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1167 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1168 |**Rain/Snow Detect Sensor**|WSS-04
1169 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1170 |**Total Solar Radiation Sensor**|WSS-06
1171 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1172
1173
1174
1175 = 10. Support =
1176
1177 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1178 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1179
1180 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1181
1182
1183
1184
1185
1186 = 11. Appendix I: Field Installation Photo =
1187
1188
1189 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1190
1191
1192 **Storage Battery**: 12v,12AH li battery
1193
1194
1195 Wind Speed/Direction.
1196
1197 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1198
1199
1200 Total Solar Radiation sensor
1201
1202 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1203
1204
1205
1206 PAR Sensor
1207
1208 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1209
1210
1211 CO2/PM2.5/PM10 3 in 1 sensor
1212
1213 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1214
1215
1216 Rain / Snow Detect:
1217
1218 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1219
1220
1221 Rain Gauge.
1222
1223 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0