Version 70.2 by Xiaoling on 2022/06/24 16:05

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159 === 2.4.1 Uplink FPORT~=5, Device Status ===
160
161 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
162
163
164 (((
165 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
166 )))
167
168 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
169 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
170 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
171
172 [[image:1656043061044-343.png]]
173
174
175 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
176
177
178
179 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
180
181 For WSC1-L, this value is 0x0D.
182
183
184
185 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
186
187 0x0100, Means: v1.0.0 version.
188
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 shows the battery voltage for WSC1-L MCU.
224
225 Ex1: 0x0BD6/1000 = 3.03 V
226
227
228
229 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
230
231 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
232 |Byte3|Byte2|Byte1
233
234 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
235
236 [[image:image-20220624134713-1.png]]
237
238
239 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
240
241 External sensors detected by WSC1-L include :
242
243 custom sensor A1,
244
245 PAR sensor (WSS-07),
246
247 Total Solar Radiation sensor (WSS-06),
248
249 CO2/PM2.5/PM10 (WSS-03),
250
251 Wind Speed/Direction (WSS-02)
252
253
254 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
255
256 (% style="color:#037691" %)**Downlink:0x26 01**
257
258 [[image:1656049673488-415.png]]
259
260
261
262 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
263
264 (((
265 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
266 )))
267
268 (((
269 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
270 )))
271
272
273 (((
274 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
275 )))
276
277
278 (% style="color:#4472c4" %)** Uplink Payload**:
279
280 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
281 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
282
283 (% style="color:#4472c4" %)** Sensor Segment Define**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
286 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
287
288 (% style="color:#4472c4" %)**Sensor Type Table:**
289
290 [[image:image-20220624140352-2.png]]
291
292
293 Below is an example payload:  [[image:image-20220624140615-3.png]]
294
295
296 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
297
298 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
299
300 Uplink 1:  [[image:image-20220624140735-4.png]]
301
302 Uplink 2:  [[image:image-20220624140842-5.png]]
303
304
305 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
306
307 Uplink 1:  [[image:image-20220624141025-6.png]]
308
309 Uplink 2:  [[image:image-20220624141100-7.png]]
310
311
312
313
314 === 2.4.3 Decoder in TTN V3 ===
315
316 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
317
318
319 Download decoder for suitable platform from:
320
321 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
322
323 and put as below:
324
325 [[image:1656051152438-578.png]]
326
327
328
329 == 2.5 Show data on Application Server ==
330
331 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
332
333
334 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
335
336 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
337
338 [[image:1656051197172-131.png]]
339
340
341 **Add TagoIO:**
342
343 [[image:1656051223585-631.png]]
344
345
346 **Authorization:**
347
348 [[image:1656051248318-368.png]]
349
350
351 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
352
353 [[image:1656051277767-168.png]]
354
355
356
357 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
358
359 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
360
361 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
362 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
363
364 There are two kinds of commands to configure WSC1-L, they are:
365
366 * (% style="color:#4472c4" %)**General Commands**.
367
368 These commands are to configure:
369
370 * General system settings like: uplink interval.
371 * LoRaWAN protocol & radio related command.
372
373 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
374
375 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
376
377
378 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
379
380 These commands only valid for WSC1-L, as below:
381
382
383
384
385
386
387 == 3.1 Set Transmit Interval Time ==
388
389 Feature: Change LoRaWAN End Node Transmit Interval.
390
391 (% style="color:#037691" %)**AT Command: AT+TDC**
392
393 [[image:image-20220624142619-8.png]]
394
395
396 (% style="color:#037691" %)**Downlink Command: 0x01**
397
398 Format: Command Code (0x01) followed by 3 bytes time value.
399
400 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
401
402 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
403 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
404
405
406
407
408 == 3.2 Set Emergency Mode ==
409
410 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
411
412 (% style="color:#037691" %)**AT Command:**
413
414 [[image:image-20220624142956-9.png]]
415
416
417 (% style="color:#037691" %)**Downlink Command:**
418
419 * 0xE101     Same as: AT+ALARMMOD=1
420 * 0xE100     Same as: AT+ALARMMOD=0
421
422
423
424
425 == 3.3 Add or Delete RS485 Sensor ==
426
427 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
428
429 (% style="color:#037691" %)**AT Command: **
430
431 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
432
433 * Type_Code range:  A1 ~~ A4
434 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
435 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
436 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
437 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
438 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
439 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
440
441 **Example:**
442
443 User need to change external sensor use the type code as address code.
444
445 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
446
447 [[image:image-20220624143553-10.png]]
448
449
450 The response frame of the sensor is as follows:
451
452 [[image:image-20220624143618-11.png]]
453
454
455
456 **Then the following parameters should be:**
457
458 * Address_Code range: A1
459 * Query_Length: 8
460 * Query_Command: A103000000019CAA
461 * Read_Length: 8
462 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
463 * has_CRC: 1
464 * timeout: 1500 (Fill in the test according to the actual situation)
465
466 **So the input command is:**
467
468 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
469
470
471 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
472
473 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
474 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
475 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
476
477 **Related commands:**
478
479 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
480
481 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
482
483
484 (% style="color:#037691" %)**Downlink Command:  **
485
486 **delete custom sensor A1:**
487
488 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
489
490 **Remove all custom sensors**
491
492 * 0xE5FF  
493
494
495
496
497 == 3.4 RS485 Test Command ==
498
499 (% style="color:#037691" %)**AT Command:**
500
501 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
502 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
503 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
504 Send command to 485 sensor
505
506 Range : no more than 10 bytes
507 )))|(% style="width:85px" %)OK
508
509 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
510
511 AT+RSWRITE=0103000001840A
512
513
514 (% style="color:#037691" %)**Downlink Command:**
515
516 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
517
518
519
520
521 == 3.5 RS485 response timeout ==
522
523 Feature: Set or get extended time to receive 485 sensor data.
524
525 (% style="color:#037691" %)**AT Command:**
526
527 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
528 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
529 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
530 Set response timeout to:
531
532 Range : 0~~10000
533 )))|(% style="width:85px" %)OK
534
535 (% style="color:#037691" %)**Downlink Command:**
536
537 Format: Command Code (0xE0) followed by 3 bytes time value.
538
539 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
540
541 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
542 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
543
544
545
546
547 == 3.6 Set Sensor Type ==
548
549 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
550
551 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
552
553 [[image:image-20220624144904-12.png]]
554
555
556 (% style="color:#037691" %)**AT Command:**
557
558 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
559 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
560 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
561
562 Eg: The setting command **AT+STYPE=802212** means:
563
564 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
565 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
566 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
567 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
568 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
569 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
570 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
571
572 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
573
574
575 (% style="color:#037691" %)**Downlink Command:**
576
577 * 0xE400802212     Same as: AT+STYPE=80221
578
579 (% style="color:red" %)**Note:**
580
581 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
582
583
584
585
586 = 4. Power consumption and battery =
587
588 == 4.1 Total Power Consumption ==
589
590 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
591
592
593 == 4.2 Reduce power consumption ==
594
595 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
596
597
598 == 4.3 Battery ==
599
600 (((
601 All sensors are only power by external power source. If external power source is off. All sensor won't work.
602 )))
603
604 (((
605 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
606 )))
607
608
609 = 5. Main Process Unit WSC1-L =
610
611 == 5.1 Features ==
612
613 * Wall Attachable.
614 * LoRaWAN v1.0.3 Class A protocol.
615 * RS485 / Modbus protocol
616 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
617 * AT Commands to change parameters
618 * Remote configure parameters via LoRaWAN Downlink
619 * Firmware upgradable via program port
620 * Powered by external 12v battery
621 * Back up rechargeable 1000mAh battery
622 * IP Rating: IP65
623 * Support default sensors or 3rd party RS485 sensors
624
625 == 5.2 Power Consumption ==
626
627 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
628
629
630 == 5.3 Storage & Operation Temperature ==
631
632 -20°C to +60°C
633
634
635 == 5.4 Pin Mapping ==
636
637 [[image:1656054149793-239.png]]
638
639
640 == 5.5 Mechanical ==
641
642 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
643
644
645 == 5.6 Connect to RS485 Sensors ==
646
647 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
648
649
650 [[image:1656054389031-379.png]]
651
652
653 Hardware Design for the Converter Board please see:
654
655 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
656
657
658 = 6. Weather Sensors =
659
660 == 6.1 Rain Gauge ~-~- WSS-01 ==
661
662
663 (((
664 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
665 )))
666
667 (((
668 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
669 )))
670
671 (((
672 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
673 )))
674
675 (((
676 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
677 )))
678
679 (((
680 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
681 )))
682
683
684 === 6.1.1 Feature ===
685
686 * RS485 Rain Gauge
687 * Small dimension, easy to install
688 * Vents under funnel, avoid leaf or other things to avoid rain flow.
689 * ABS enclosure.
690 * Horizontal adjustable.
691
692
693 === 6.1.2 Specification ===
694
695 * Resolution: 0.2mm
696 * Accuracy: ±3%
697 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
698 * Input Power: DC 5~~24v
699 * Interface: RS485
700 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
701 * Working Humidity: <100% (no dewing)
702 * Power Consumption: 4mA @ 12v.
703
704
705 === 6.1.3 Dimension ===
706
707 [[image:1656054957406-980.png]]
708
709
710 === 6.1.4 Pin Mapping ===
711
712 [[image:1656054972828-692.png]]
713
714
715 === 6.1.5 Installation Notice ===
716
717 Do not power on while connect the cables. Double check the wiring before power on.
718
719 Installation Photo as reference:
720
721
722 (% style="color:#4472c4" %)** Install on Ground:**
723
724 WSS-01 Rain Gauge include screws so can install in ground directly .
725
726
727 (% style="color:#4472c4" %)** Install on pole:**
728
729 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
730
731 [[image:image-20220624152218-1.png||height="526" width="276"]]
732
733 WS-K2: Bracket Kit for Pole installation
734
735
736 WSSC-K2 dimension document, please see:
737
738 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
739
740
741 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
742
743 [[image:1656055444035-179.png]]
744
745 (((
746 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
747 )))
748
749 (((
750 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
751 )))
752
753 (((
754 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
755 )))
756
757
758 === 6.2.1 Feature ===
759
760 * RS485 wind speed / direction sensor
761 * PC enclosure, resist corrosion
762
763
764 === 6.2.2 Specification ===
765
766 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
767 * Wind direction range: 0 ~~ 360°
768 * Start wind speed: ≤0.3m/s
769 * Accuracy: ±(0.3+0.03V)m/s , ±1°
770 * Input Power: DC 5~~24v
771 * Interface: RS485
772 * Working Temperature: -30℃~70℃
773 * Working Humidity: <100% (no dewing)
774 * Power Consumption: 13mA ~~ 12v.
775 * Cable Length: 2 meters
776
777
778 === 6.2.3 Dimension ===
779
780 [[image:image-20220624152813-2.png]]
781
782
783 === 6.2.4 Pin Mapping ===
784
785 [[image:1656056281231-994.png]]
786
787
788 === 6.2.5  Angle Mapping ===
789
790 [[image:1656056303845-585.png]]
791
792
793 === 6.2.6  Installation Notice ===
794
795 Do not power on while connect the cables. Double check the wiring before power on.
796
797 The sensor must be installed with below direction, towards North.
798
799 [[image:image-20220624153901-3.png]]
800
801
802 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
803
804
805 (((
806 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
807 )))
808
809 (((
810 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
811 )))
812
813 (((
814 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
815 )))
816
817
818 === 6.3.1 Feature ===
819
820 * RS485 CO2, PM2.5, PM10 sensor
821 * NDIR to measure CO2 with Internal Temperature Compensation
822 * Laser Beam Scattering to PM2.5 and PM10
823
824
825 === 6.3.2 Specification ===
826
827 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
828 * CO2 resolution: 1ppm
829 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
830 * PM2.5/PM10 resolution: 1μg/m3
831 * Input Power: DC 7 ~~ 24v
832 * Preheat time: 3min
833 * Interface: RS485
834 * Working Temperature:
835 ** CO2: 0℃~50℃;
836 ** PM2.5/PM10: -30 ~~ 50℃
837 * Working Humidity:
838 ** PM2.5/PM10: 15~80%RH (no dewing)
839 ** CO2: 0~95%RH
840 * Power Consumption: 50mA@ 12v.
841
842
843 === 6.3.3 Dimension ===
844
845 [[image:1656056708366-230.png]]
846
847
848 === 6.3.4 Pin Mapping ===
849
850 [[image:1656056722648-743.png]]
851
852
853 === 6.3.5 Installation Notice ===
854
855 Do not power on while connect the cables. Double check the wiring before power on.
856
857 [[image:1656057016033-551.png]]
858
859 [[image:1656056751153-304.png]]
860
861 [[image:1656056766224-773.png]]
862
863
864 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
865
866
867 (((
868 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
869 )))
870
871 (((
872 WSS-04 has auto heating feature, this ensures measurement more reliable.
873 )))
874
875 (((
876 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
877 )))
878
879
880
881 === 6.4.1 Feature ===
882
883 * RS485 Rain/Snow detect sensor
884 * Surface heating to dry
885 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
886
887
888 === 6.4.2 Specification ===
889
890 * Detect if there is rain or snow
891 * Input Power: DC 12 ~~ 24v
892 * Interface: RS485
893 * Working Temperature: -30℃~70℃
894 * Working Humidity: 10~90%RH
895 * Power Consumption:
896 ** No heating: 12mA @ 12v,
897 ** heating: 94ma @ 12v.
898
899
900 === 6.4.3 Dimension ===
901
902 [[image:1656056844782-155.png]]
903
904
905 === 6.4.4 Pin Mapping ===
906
907 [[image:1656056855590-754.png]]
908
909
910 === 6.4.5 Installation Notice ===
911
912 Do not power on while connect the cables. Double check the wiring before power on.
913
914
915 Install with 15°degree.
916
917 [[image:1656056873783-780.png]]
918
919
920 [[image:1656056883736-804.png]]
921
922
923 === 6.4.6 Heating ===
924
925 (((
926 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
927 )))
928
929
930 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
931
932
933 (((
934 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
935 )))
936
937 (((
938 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
939 )))
940
941
942 === 6.5.1 Feature ===
943
944 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
945
946
947 === 6.5.2 Specification ===
948
949 * Input Power: DC 12 ~~ 24v
950 * Interface: RS485
951 * Temperature Sensor Spec:
952 ** Range: -30 ~~ 70℃
953 ** resolution 0.1℃
954 ** Accuracy: ±0.5℃
955 * Humidity Sensor Spec:
956 ** Range: 0 ~~ 100% RH
957 ** resolution 0.1 %RH
958 ** Accuracy: 3% RH
959 * Pressure Sensor Spec:
960 ** Range: 10~1100hPa
961 ** Resolution: 0.1hPa
962 ** Accuracy: ±0.1hPa
963 * Illuminate sensor:
964 ** Range: 0~2/20/200kLux
965 ** Resolution: 10 Lux
966 ** Accuracy: ±3%FS
967 * Working Temperature: -30℃~70℃
968 * Working Humidity: 10~90%RH
969 * Power Consumption: 4mA @ 12v
970
971
972 === 6.5.3 Dimension ===
973
974 [[image:1656057170639-522.png]]
975
976
977 === 6.5.4 Pin Mapping ===
978
979 [[image:1656057181899-910.png]]
980
981
982 === 6.5.5 Installation Notice ===
983
984 Do not power on while connect the cables. Double check the wiring before power on.
985
986 [[image:1656057199955-514.png]]
987
988
989 [[image:1656057212438-475.png]]
990
991
992 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
993
994
995 (((
996 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
997 )))
998
999 (((
1000 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1001 )))
1002
1003 (((
1004 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1005 )))
1006
1007
1008
1009 === 6.6.1 Feature ===
1010
1011 * RS485 Total Solar Radiation sensor
1012 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1013 * Measure Reflected Radiation if sense area towards ground.
1014
1015
1016
1017 === 6.6.2 Specification ===
1018
1019 * Input Power: DC 5 ~~ 24v
1020 * Interface: RS485
1021 * Detect spectrum: 0.3~3μm(300~3000nm)
1022 * Measure strength range: 0~2000W/m2
1023 * Resolution: 0.1W/m2
1024 * Accuracy: ±3%
1025 * Yearly Stability: ≤±2%
1026 * Cosine response: ≤7% (@ Sun angle 10°)
1027 * Temperature Effect: ±2%(-10℃~40℃)
1028 * Working Temperature: -40℃~70℃
1029 * Working Humidity: 10~90%RH
1030 * Power Consumption: 4mA @ 12v
1031
1032
1033
1034 === 6.6.3 Dimension ===
1035
1036 [[image:1656057348695-898.png]]
1037
1038
1039 === 6.6.4 Pin Mapping ===
1040
1041 [[image:1656057359343-744.png]]
1042
1043
1044 === 6.6.5 Installation Notice ===
1045
1046 Do not power on while connect the cables. Double check the wiring before power on.
1047
1048 [[image:1656057369259-804.png]]
1049
1050
1051 [[image:1656057377943-564.png]]
1052
1053
1054 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1055
1056
1057 (((
1058 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1059 )))
1060
1061 (((
1062 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1063 )))
1064
1065 (((
1066 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1067 )))
1068
1069
1070 === 6.7.1 Feature ===
1071
1072 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1073
1074 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1075
1076
1077 === 6.7.2 Specification ===
1078
1079 * Input Power: DC 5 ~~ 24v
1080 * Interface: RS485
1081 * Response Spectrum: 400~700nm
1082 * Measure range: 0~2500μmol/m2•s
1083 * Resolution: 1μmol/m2•s
1084 * Accuracy: ±2%
1085 * Yearly Stability: ≤±2%
1086 * Working Temperature: -30℃~75℃
1087 * Working Humidity: 10~90%RH
1088 * Power Consumption: 3mA @ 12v
1089
1090
1091
1092 === 6.7.3 Dimension ===
1093
1094 [[image:1656057538793-888.png]]
1095
1096
1097 === 6.7.4 Pin Mapping ===
1098
1099 [[image:1656057548116-203.png]]
1100
1101
1102 === 6.7.5 Installation Notice ===
1103
1104 Do not power on while connect the cables. Double check the wiring before power on.
1105
1106
1107 [[image:1656057557191-895.png]]
1108
1109
1110 [[image:1656057565783-251.png]]
1111
1112
1113 = 7. FAQ =
1114
1115 == 7.1 What else do I need to purchase to build Weather Station? ==
1116
1117 Below is the installation photo and structure:
1118
1119 [[image:1656057598349-319.png]]
1120
1121
1122 [[image:1656057608049-693.png]]
1123
1124
1125
1126 == 7.2 How to upgrade firmware for WSC1-L? ==
1127
1128 (((
1129 Firmware Location & Change log:
1130 )))
1131
1132 (((
1133 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1134 )))
1135
1136
1137 (((
1138 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1139 )))
1140
1141
1142 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1143
1144 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1145
1146
1147 == 7.4 Can I add my weather sensors? ==
1148
1149 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1150
1151
1152 = 8. Trouble Shooting =
1153
1154
1155
1156
1157
1158
1159 = 9. Order Info =
1160
1161
1162 == 9.1 Main Process Unit ==
1163
1164 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1165
1166 (% style="color:blue" %)**XX**(%%): The default frequency band
1167
1168 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1169 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1170 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1171 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1172 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1173 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1174 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1175 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1176
1177 == 9.2 Sensors ==
1178
1179 |**Sensor Model**|**Part Number**
1180 |**Rain Gauge**|WSS-01
1181 |**Rain Gauge installation Bracket for Pole**|WS-K2
1182 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1183 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1184 |**Rain/Snow Detect Sensor**|WSS-04
1185 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1186 |**Total Solar Radiation Sensor**|WSS-06
1187 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1188
1189 = 10. Support =
1190
1191 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1192 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1193
1194 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1195
1196
1197
1198
1199
1200 = 11. Appendix I: Field Installation Photo =
1201
1202
1203 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1204
1205
1206 **Storage Battery**: 12v,12AH li battery
1207
1208
1209 Wind Speed/Direction.
1210
1211 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1212
1213
1214 Total Solar Radiation sensor
1215
1216 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1217
1218
1219
1220 PAR Sensor
1221
1222 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1223
1224
1225 CO2/PM2.5/PM10 3 in 1 sensor
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1228
1229
1230 Rain / Snow Detect:
1231
1232 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1233
1234
1235 Rain Gauge.
1236
1237 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]