Version 6.3 by Xiaoling on 2022/06/24 11:44

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36
37 )))
38
39 (((
40 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
41 )))
42
43 (((
44
45 )))
46
47 (((
48 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
49 )))
50
51
52
53 = 2. How to use =
54
55 == 2.1 Installation ==
56
57 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
58
59 [[image:1656041948552-849.png]]
60
61
62 (% style="color:blue" %)** Wiring:**
63
64 ~1. WSC1-L and sensors all powered by solar power via MPPT
65
66 2. WSC1-L and sensors connect to each other via RS485/Modbus.
67
68 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
69
70
71 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
72
73 [[image:1656042136605-251.png]]
74
75
76 (% style="color:red" %) ** Notice 1:**
77
78 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
79 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
80 * Weather sensors won’t work if solar panel and storage battery fails.
81
82
83
84
85
86 (% style="color:red" %)** Notice 2:**
87
88 Due to shipment and importation limitation, user is better to purchase below parts locally:
89
90 * Solar Panel
91 * Storage Battery
92 * MPPT Solar Recharger
93 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
94 * Cabinet.
95
96 == 2.2 How it works? ==
97
98 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
99
100
101 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
102
103 [[image:1656042192857-709.png]]
104
105
106 **(% style="color:red" %)Notice:**
107
108 1. WSC1-L will auto scan available weather sensors when power on or reboot.
109 1. User can send a downlink command( 增加下发命令的连接) to WSC1-L to do a re-scan on the available sensors.
110
111
112
113
114
115 == 2.3 Example to use for LoRaWAN network ==
116
117 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
118
119
120 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
121
122
123
124 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
125
126
127 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
128
129 Each WSC1-L is shipped with a sticker with the default device EUI as below:
130
131 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
132
133
134 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
135
136 Add APP EUI in the application.
137
138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
139
140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
141
142
143
144
145
146
147
148
149
150 Choose Manually to add WSC1-L
151
152
153 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
154
155 Add APP KEY and DEV EUI
156
157 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
158
159
160
161
162 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
163
164
165 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
166
167
168
169
170 == 2.4 Uplink Payload ==
171
172 Uplink payloads include two types: Valid Sensor Value and other status / control command.
173
174 * Valid Sensor Value: Use FPORT=2
175 * Other control command: Use FPORT other than 2.
176
177
178
179
180
181 === 2.4.1 Uplink FPORT ===
182
183 5, Device Status ===
184
185 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
186
187
188 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
189
190 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
191 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
192
193 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
194
195
196 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
197
198
199
200 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
201
202 For WSC1-L, this value is 0x0D.
203
204
205 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
206
207 0x0100, Means: v1.0.0 version.
208
209
210 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
211
212 *0x01: EU868
213
214 *0x02: US915
215
216 *0x03: IN865
217
218 *0x04: AU915
219
220 *0x05: KZ865
221
222 *0x06: RU864
223
224 *0x07: AS923
225
226 *0x08: AS923-1
227
228 *0x09: AS923-2
229
230 *0x0a: AS923-3
231
232
233 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
234
235 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
236
237
238 ==== (% style="color:#037691" %)**BAT:**(%%) ====
239
240 shows the battery voltage for WSC1-L MCU.
241
242 Ex1: 0x0BD6/1000 = 3.03 V
243
244
245 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
246
247 |Byte3|Byte2|Byte1
248
249 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
250
251
252 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
253 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
254 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
255 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
256 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
257 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
258
259 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
260
261 External sensors detected by WSC1-L include :
262
263 custom sensor A1,
264
265 PAR sensor (WSS-07),
266
267 Total Solar Radiation sensor (WSS-06),
268
269 CO2/PM2.5/PM10 (WSS-03),
270
271 Wind Speed/Direction (WSS-02)
272
273
274
275
276 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
277
278 (% style="color:#037691" %)**Downlink:0x26 01**
279
280 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
281
282
283
284
285 === 2.4.2 Uplink FPORT ===
286
287 2, Real time sensor value ===
288
289 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
290
291 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
292
293
294 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
295
296 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
297
298 (% style="color:#4472c4" %)** Uplink Payload**:
299
300 |Type Code|Length (Bytes)|Measured Value
301
302 (% style="color:#4472c4" %)** Sensor Segment Define**:
303
304
305
306 Sensor Type Table:
307
308 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
309 |**Wind Speed**|0x01|(((
310 Speed: 0~60m/s
311
312 Level: 0~17
313 )))|0x03 |(((
314 0x0024/10=3.6m/s
315
316 (0x02FE: No Sensor, 0x02FF: Value Error)
317
318 0x02=2
319
320 (0x14: No Sensor, 0x15: Value Error)
321 )))
322 |**Wind Direction**|0x02|(((
323 Angel: 0~360°
324
325 Direction: 16 positions
326 )))|0x03|(((
327 0x029A/10=66.6°
328
329 (0x0EFE: No Sensor,0x0EFF: Value Error)
330
331 0X03=3(ENE)
332
333 (0x14: No Sensor,0x15: Value Error)
334 )))
335 |**Illumination**|0x03|0~200000Lux|0x02|(((
336 0x04D2 *10=12340Lux
337
338 (0x4EFE: No Sensor,0x4EFF: Value Error)
339 )))
340 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
341 0x00 (00) No Rain or snow detected
342
343 (0x02: No Sensor,0x03: Value Error)
344 )))
345 |**CO2**|0x05|0~5000ppm|0x02|(((
346 0x0378=888ppm
347
348 (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |**Temperature**|0x06|-30℃~70℃|0x02|(((
351 0xFFDD/10=-3.5℃
352
353 (0x02FE: No Sensor,0x02FF: Value Error)
354 )))
355 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
356 |**Pressure**|0x08|10~1100hPa|0x02|(((
357 0x2748/10=1005.6hPa
358
359 (0x00: No Sensor,0x01: Value Error)
360 )))
361 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
362 0x0000/10=0mm /min
363
364 (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
367 0x0023=35μg/m^^3 ^^
368
369 (0x03FE: No Sensor,0x03FF: Value Error)
370 )))
371 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
372 0x002D=45μg/m^^3 ^^
373
374 (0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
377 0x00B3=179μmol/m^^2^^•s
378
379 (0x09FE: No Sensor,0x9FF: Value Error)
380 )))
381 |(((
382 **Total Solar**
383
384 **Radiation**
385 )))|0x0D|0~2000W/m^^2^^|0x02|(((
386 0x0073/10=11.5W/m^^2^^
387
388 (0x4EFE: No Sensor,0x4EFF: Value Error)
389 )))
390
391 Below is an example payload:
392
393 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
394
395
396 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
397
398 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
399
400 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
401
402
403 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
404
405 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
406
407 Uplink 2: 0D 02 00 73
408
409
410
411
412 === 2.4.3 Decoder in TTN V3 ===
413
414 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
415
416
417 Download decoder for suitable platform from:
418
419 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
420
421 and put as below:
422
423 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
424
425
426
427 == 2.5 Show data on Application Server ==
428
429 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
430
431
432 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
433
434 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
435
436 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
437
438
439 Add TagoIO:
440
441 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
442
443 Authorization:
444
445 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
446
447
448 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
449
450 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
451
452
453
454 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
455
456 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
457
458 * AT Command Connection: See [[FAQ>>||anchor="H"]].
459 * LoRaWAN Downlink instruction for different platforms:
460
461 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
462
463
464 There are two kinds of commands to configure WSC1-L, they are:
465
466 * (% style="color:#4472c4" %)**General Commands**.
467
468 These commands are to configure:
469
470 * General system settings like: uplink interval.
471 * LoRaWAN protocol & radio related command.
472
473 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
474
475 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
476
477 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
478
479
480 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
481
482 These commands only valid for WSC1-L, as below:
483
484
485 == 3.1 Set Transmit Interval Time ==
486
487 Feature: Change LoRaWAN End Node Transmit Interval.
488
489 (% style="color:#037691" %)**AT Command: AT+TDC**
490
491 |**Command Example**|**Function**|**Response**
492 |AT+TDC?|Show current transmit Interval|(((
493 30000
494
495 OK
496
497 the interval is 30000ms = 30s
498 )))
499 |AT+TDC=60000|Set Transmit Interval|(((
500 OK
501
502 Set transmit interval to 60000ms = 60 seconds
503 )))
504
505 (% style="color:#037691" %)**Downlink Command: 0x01**
506
507 Format: Command Code (0x01) followed by 3 bytes time value.
508
509 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
510
511 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
512 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
513
514 == 3.2 Set Emergency Mode ==
515
516 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
517
518
519 (% style="color:#037691" %)**AT Command:**
520
521 |**Command Example**|**Function**|**Response**
522 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
523 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
524
525 (% style="color:#037691" %)**Downlink Command:**
526
527 * 0xE101     Same as: AT+ALARMMOD=1
528 * 0xE100     Same as: AT+ALARMMOD=0
529
530 == 3.3 Add or Delete RS485 Sensor ==
531
532 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
533
534 (% style="color:#037691" %)**AT Command: **
535
536 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
537
538 * Type_Code range: A1 ~~ A4
539 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
540 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
541 * Read_Length: RS485 response frame length supposed to receive. Max can receive
542 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
543 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
544 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
545
546 Example:
547
548 User need to change external sensor use the type code as address code.
549
550 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
551
552 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
553 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
554 | | | | | | | |
555
556 The response frame of the sensor is as follows:
557
558 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
559 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
560 | | | | | | | |
561
562 Then the following parameters should be:
563
564 * Address_Code range: A1
565 * Query_Length: 8
566 * Query_Command: A103000000019CAA
567 * Read_Length: 8
568 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
569 * has_CRC: 1
570 * timeout: 1500 (Fill in the test according to the actual situation)
571
572 So the input command is:
573
574 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
575
576
577 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
578
579 |Type Code|Length (Bytes)|Measured Value
580 |A1|2|0x000A
581
582 Related commands:
583
584 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
585
586 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
587
588
589 (% style="color:#037691" %)**Downlink Command:  **
590
591 **delete custom sensor A1:**
592
593 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
594
595 **Remove all custom sensors**
596
597 * 0xE5FF  
598
599 == 3.4 RS485 Test Command ==
600
601 (% style="color:#037691" %)**AT Command:**
602
603 |**Command Example**|**Function**|**Response**
604 |AT+RSWRITE=xxxxxx|(((
605 Send command to 485 sensor
606
607 Range : no more than 10 bytes
608 )))|OK
609
610 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
611
612 AT+RSWRITE=0103000001840A
613
614
615 (% style="color:#037691" %)**Downlink Command:**
616
617 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
618
619 == 3.5 RS485 response timeout ==
620
621 Feature: Set or get extended time to receive 485 sensor data.
622
623 (% style="color:#037691" %)**AT Command:**
624
625 |**Command Example**|**Function**|**Response**
626 |AT+DTR=1000|(((
627 Set response timeout to:
628
629 Range : 0~~10000
630 )))|OK
631
632 (% style="color:#037691" %)**Downlink Command:**
633
634 Format: Command Code (0xE0) followed by 3 bytes time value.
635
636 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
637
638 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
639 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
640
641 == 3.6 Set Sensor Type ==
642
643 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
644
645 See [[definition>>||anchor="H"]] for the sensor type.
646
647
648 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
649 | |A4|A3|A2|A1| | |
650 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
651 | | |Solar Radiation|PAR|PM10|PM2.5|(((
652 Rain
653
654 Gauge
655 )))|(((
656 Air
657
658 Pressure
659 )))
660 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
661 |Humidity|Temperature|CO2|(((
662 Rain/Snow
663
664 Detect
665 )))|illuminance|(((
666 Wind
667
668 Direction
669 )))|Wind Speed|BAT
670
671 (% style="color:#037691" %)**AT Command:**
672
673 |**Command Example**|**Function**|**Response**
674 |AT+STYPE=80221|Set sensor types|OK
675
676 Eg: The setting command **AT+STYPE=802212** means:
677
678 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
679 |0|0|0|0|1|0|0|0
680 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
681 |0|0|0|0|0|0|1|0
682 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
683 |0|0|1|0|0|0|0|1
684
685 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
686
687
688 (% style="color:#037691" %)**Downlink Command:**
689
690 * 0xE400802212     Same as: AT+STYPE=80221
691
692 (% style="color:red" %)**Note:**
693
694 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
695
696
697
698
699
700 = 4. Power consumption and battery =
701
702 == 4.1 Total Power Consumption ==
703
704 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
705
706
707 == 4.2 Reduce power consumption ==
708
709 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
710
711
712
713 == 4.3 Battery ==
714
715 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
716
717
718 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
719
720
721
722 = 5. Main Process Unit WSC1-L =
723
724 == 5.1 Features ==
725
726 * Wall Attachable.
727 * LoRaWAN v1.0.3 Class A protocol.
728 * RS485 / Modbus protocol
729 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
730 * AT Commands to change parameters
731 * Remote configure parameters via LoRaWAN Downlink
732 * Firmware upgradable via program port
733 * Powered by external 12v battery
734 * Back up rechargeable 1000mAh battery
735 * IP Rating: IP65
736 * Support default sensors or 3rd party RS485 sensors
737
738 == 5.2 Power Consumption ==
739
740 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
741
742
743
744 == 5.3 Storage & Operation Temperature ==
745
746 -20°C to +60°C
747
748
749 == 5.4 Pin Mapping ==
750
751 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
752
753
754 == 5.5 Mechanical ==
755
756 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
757
758
759
760
761 == 5.6 Connect to RS485 Sensors ==
762
763 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
764
765
766 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
767
768
769 Hardware Design for the Converter Board please see:
770
771 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
772
773
774
775
776
777 = 6. Weather Sensors =
778
779 == 6.1 Rain Gauge ~-~- WSS-01 ==
780
781 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
782
783
784 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
785
786 shape to make sure it works smoothly and is easy to clean.
787
788
789 WSS-01 is designed to support the Dragino Weather station solution.
790
791 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
792
793 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
794
795
796 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
797
798 to screw up and adjust the bottom horizontally.
799
800
801 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
802
803
804
805 === 6.1.1 Feature ===
806
807 * RS485 Rain Gauge
808 * Small dimension, easy to install
809 * Vents under funnel, avoid leaf or other things to avoid rain flow.
810 * ABS enclosure.
811 * Horizontal adjustable.
812
813 === 6.1.2 Specification ===
814
815 * Resolution: 0.2mm
816 * Accuracy: ±3%
817 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
818 * Input Power: DC 5~~24v
819 * Interface: RS485
820 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
821 * Working Humidity: <100% (no dewing)
822 * Power Consumption: 4mA @ 12v.
823
824 === 6.1.3 Dimension ===
825
826 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
827
828
829 === 6.1.4 Pin Mapping ===
830
831 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
832
833
834
835
836 === 6.1.5 Installation Notice ===
837
838 Do not power on while connect the cables. Double check the wiring before power on.
839
840 Installation Photo as reference:
841
842
843 (% style="color:#4472c4" %)** Install on Ground:**
844
845 WSS-01 Rain Gauge include screws so can install in ground directly .
846
847
848 (% style="color:#4472c4" %)** Install on pole:**
849
850 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
851
852 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
853
854
855 WS-K2: Bracket Kit for Pole installation:
856
857 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
858
859 WSSC-K2 dimension document, please see:
860
861 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
862
863
864
865 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
866
867 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
868
869 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
870
871
872 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
873
874
875 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
876
877 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
878
879
880 === 6.2.1 Feature ===
881
882 * RS485 wind speed / direction sensor
883 * PC enclosure, resist corrosion
884
885 === 6.2.2 Specification ===
886
887 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
888 * Wind direction range: 0 ~~ 360°
889 * Start wind speed: ≤0.3m/s
890 * Accuracy: ±(0.3+0.03V)m/s , ±1°
891 * Input Power: DC 5~~24v
892 * Interface: RS485
893 * Working Temperature: -30℃~70℃
894 * Working Humidity: <100% (no dewing)
895 * Power Consumption: 13mA ~~ 12v.
896 * Cable Length: 2 meters
897
898 === 6.2.3 Dimension ===
899
900 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
901
902
903 === 6.2.4 Pin Mapping ===
904
905 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
906
907
908 === 6.2.4 Angle Mapping ===
909
910 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
911
912
913 === 6.2.5 Installation Notice ===
914
915 Do not power on while connect the cables. Double check the wiring before power on.
916
917
918 The sensor must be installed with below direction, towards North.
919
920
921 |(((
922 North
923 )))
924
925 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
926
927
928
929
930
931
932
933
934 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
935
936 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
937
938
939 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
940
941
942 WSS-03 is designed to support the Dragino Weather station solution.
943
944 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
945
946 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
947
948
949 === 6.3.1 Feature ===
950
951 * RS485 CO2, PM2.5, PM10 sensor
952 * NDIR to measure CO2 with Internal Temperature Compensation
953 * Laser Beam Scattering to PM2.5 and PM10
954
955 === 6.3.2 Specification ===
956
957 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
958 * CO2 resolution: 1ppm
959 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
960 * PM2.5/PM10 resolution: 1μg/m3
961 * Input Power: DC 7 ~~ 24v
962 * Preheat time: 3min
963 * Interface: RS485
964 * Working Temperature:
965 ** CO2: 0℃~50℃;
966 ** PM2.5/PM10: -30 ~~ 50℃
967 * Working Humidity:
968 ** PM2.5/PM10: 15~80%RH (no dewing)
969 ** CO2: 0~95%RH
970 * Power Consumption: 50mA@ 12v.
971
972 === 6.3.3 Dimension ===
973
974 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
975
976
977 === 6.3.4 Pin Mapping ===
978
979 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
980
981
982 === 6.3.5 Installation Notice ===
983
984 Do not power on while connect the cables. Double check the wiring before power on.
985
986 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
987
988 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
989
990
991
992
993
994
995 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
996
997 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
998
999
1000 WSS-04 has auto heating feature, this ensures measurement more reliable.
1001
1002
1003 WSS-04 is designed to support the Dragino Weather station solution.
1004
1005 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
1006
1007 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1008
1009
1010
1011 === 6.4.1 Feature ===
1012
1013 * RS485 Rain/Snow detect sensor
1014 * Surface heating to dry
1015 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1016
1017 === 6.4.2 Specification ===
1018
1019 * Detect if there is rain or snow
1020 * Input Power: DC 12 ~~ 24v
1021 * Interface: RS485
1022 * Working Temperature: -30℃~70℃
1023 * Working Humidity: 10~90%RH
1024 * Power Consumption:
1025 ** No heating: 12mA @ 12v,
1026 ** heating: 94ma @ 12v.
1027
1028 === 6.4.3 Dimension ===
1029
1030 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1031
1032
1033 === 6.4.4 Pin Mapping ===
1034
1035 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1036
1037
1038 === 6.4.5 Installation Notice ===
1039
1040 Do not power on while connect the cables. Double check the wiring before power on.
1041
1042
1043 Install with 15°degree.
1044
1045 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1046
1047 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1048
1049
1050
1051
1052 === 6.4.6 Heating ===
1053
1054
1055 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1056
1057
1058
1059
1060
1061 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1062
1063 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1064
1065
1066 WSS-05 is designed to support the Dragino Weather station solution.
1067
1068 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1069
1070 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1071
1072
1073 === 6.5.1 Feature ===
1074
1075 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1076
1077 === 6.5.2 Specification ===
1078
1079 * Input Power: DC 12 ~~ 24v
1080 * Interface: RS485
1081 * Temperature Sensor Spec:
1082 ** Range: -30 ~~ 70℃
1083 ** resolution 0.1℃
1084 ** Accuracy: ±0.5℃
1085 * Humidity Sensor Spec:
1086 ** Range: 0 ~~ 100% RH
1087 ** resolution 0.1 %RH
1088 ** Accuracy: 3% RH
1089 * Pressure Sensor Spec:
1090 ** Range: 10~1100hPa
1091 ** Resolution: 0.1hPa
1092 ** Accuracy: ±0.1hPa
1093 * Illuminate sensor:
1094 ** Range: 0~2/20/200kLux
1095 ** Resolution: 10 Lux
1096 ** Accuracy: ±3%FS
1097 * Working Temperature: -30℃~70℃
1098 * Working Humidity: 10~90%RH
1099 * Power Consumption: 4mA @ 12v
1100
1101 === 6.5.3 Dimension ===
1102
1103 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1104
1105
1106 === 6.5.4 Pin Mapping ===
1107
1108 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1109
1110
1111 === 6.5.5 Installation Notice ===
1112
1113 Do not power on while connect the cables. Double check the wiring before power on.
1114
1115
1116
1117 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1118
1119
1120 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1121
1122
1123 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1124
1125 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1126
1127
1128 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1129
1130
1131 WSS-06 is designed to support the Dragino Weather station solution.
1132
1133
1134 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1135
1136 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1137
1138
1139
1140 === 6.6.1 Feature ===
1141
1142 * RS485 Total Solar Radiation sensor
1143 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1144 * Measure Reflected Radiation if sense area towards ground.
1145
1146 === 6.6.2 Specification ===
1147
1148 * Input Power: DC 5 ~~ 24v
1149 * Interface: RS485
1150 * Detect spectrum: 0.3~3μm(300~3000nm)
1151 * Measure strength range: 0~2000W/m2
1152 * Resolution: 0.1W/m2
1153 * Accuracy: ±3%
1154 * Yearly Stability: ≤±2%
1155 * Cosine response: ≤7% (@ Sun angle 10°)
1156 * Temperature Effect: ±2%(-10℃~40℃)
1157 * Working Temperature: -40℃~70℃
1158 * Working Humidity: 10~90%RH
1159 * Power Consumption: 4mA @ 12v
1160
1161 === 6.6.3 Dimension ===
1162
1163 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1164
1165
1166 === 6.6.4 Pin Mapping ===
1167
1168 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1169
1170
1171 === 6.6.5 Installation Notice ===
1172
1173 Do not power on while connect the cables. Double check the wiring before power on.
1174
1175 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1176
1177 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1178
1179
1180 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1181
1182 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1183
1184
1185 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1186
1187
1188
1189 WSS-07 is designed to support the Dragino Weather station solution.
1190
1191
1192 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1193
1194 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1195
1196
1197 === 6.7.1 Feature ===
1198
1199 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1200
1201
1202 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1203
1204
1205 === 6.7.2 Specification ===
1206
1207 * Input Power: DC 5 ~~ 24v
1208 * Interface: RS485
1209 * Response Spectrum: 400~700nm
1210 * Measure range: 0~2500μmol/m2•s
1211 * Resolution: 1μmol/m2•s
1212 * Accuracy: ±2%
1213 * Yearly Stability: ≤±2%
1214 * Working Temperature: -30℃~75℃
1215 * Working Humidity: 10~90%RH
1216 * Power Consumption: 3mA @ 12v
1217
1218 === 6.7.3 Dimension ===
1219
1220 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1221
1222
1223 === 6.7.4 Pin Mapping ===
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1226
1227
1228 === 6.7.5 Installation Notice ===
1229
1230 Do not power on while connect the cables. Double check the wiring before power on.
1231
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1236
1237
1238 = 7. FAQ =
1239
1240 == 7.1 What else do I need to purchase to build Weather Station? ==
1241
1242 Below is the installation photo and structure:
1243
1244 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1245
1246
1247 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1248
1249
1250
1251
1252 == 7.2 How to upgrade firmware for WSC1-L? ==
1253
1254 Firmware Location & Change log:
1255
1256 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1257
1258
1259 Firmware Upgrade instruction:
1260
1261 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1262
1263
1264 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1265
1266 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1267
1268
1269
1270 == 7.4 Can I add my weather sensors? ==
1271
1272 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1273
1274
1275 = 8. Trouble Shooting =
1276
1277
1278
1279
1280
1281
1282 = 9. Order Info =
1283
1284
1285 == 9.1 Main Process Unit ==
1286
1287 Part Number: **WSC1-L-XX**
1288
1289 **XX**: The default frequency band
1290
1291 * **AS923**: LoRaWAN AS923 band
1292 * **AU915**: LoRaWAN AU915 band
1293 * **EU433**: LoRaWAN EU433 band
1294 * **EU868**: LoRaWAN EU868 band
1295 * **KR920**: LoRaWAN KR920 band
1296 * **US915**: LoRaWAN US915 band
1297 * **IN865**: LoRaWAN IN865 band
1298 * **CN470**: LoRaWAN CN470 band
1299
1300 == 9.2 Sensors ==
1301
1302 |**Sensor Model**|**Part Number**
1303 |**Rain Gauge**|WSS-01
1304 |**Rain Gauge installation Bracket for Pole**|WS-K2
1305 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1306 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1307 |**Rain/Snow Detect Sensor**|WSS-04
1308 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1309 |**Total Solar Radiation Sensor**|WSS-06
1310 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1311
1312 = 10. Support =
1313
1314 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1315 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1316
1317 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1318
1319
1320
1321
1322
1323 = 11. Appendix I: Field Installation Photo =
1324
1325
1326 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1327
1328
1329 **Storage Battery**: 12v,12AH li battery
1330
1331
1332 Wind Speed/Direction.
1333
1334 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1335
1336
1337 Total Solar Radiation sensor
1338
1339 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1340
1341
1342
1343 PAR Sensor
1344
1345 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1346
1347
1348 CO2/PM2.5/PM10 3 in 1 sensor
1349
1350 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1351
1352
1353 Rain / Snow Detect:
1354
1355 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1356
1357
1358 Rain Gauge.
1359
1360 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]