Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)** Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86
87 == 2.2 How it works? ==
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
103
104
105
106
107
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166 === 2.4.1 Uplink FPORT~=5, Device Status ===
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185
186 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
187
188 For WSC1-L, this value is 0x0D.
189
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 shows the battery voltage for WSC1-L MCU.
231
232 Ex1: 0x0BD6/1000 = 3.03 V
233
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220624140352-2.png]]
298
299
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301
302
303 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
304
305 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
306
307 Uplink 1:  [[image:image-20220624140735-4.png]]
308
309 Uplink 2:  [[image:image-20220624140842-5.png]]
310
311
312 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
313
314 Uplink 1:  [[image:image-20220624141025-6.png]]
315
316 Uplink 2:  [[image:image-20220624141100-7.png]]
317
318
319
320
321 === 2.4.3 Decoder in TTN V3 ===
322
323 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
324
325
326 Download decoder for suitable platform from:
327
328 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
329
330 and put as below:
331
332 [[image:1656051152438-578.png]]
333
334
335
336 == 2.5 Show data on Application Server ==
337
338 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
339
340
341 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
342
343 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
344
345 [[image:1656051197172-131.png]]
346
347
348 **Add TagoIO:**
349
350 [[image:1656051223585-631.png]]
351
352
353 **Authorization:**
354
355 [[image:1656051248318-368.png]]
356
357
358 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
359
360 [[image:1656051277767-168.png]]
361
362
363
364 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
365
366 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
367
368 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
369 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
370
371 There are two kinds of commands to configure WSC1-L, they are:
372
373 * (% style="color:#4472c4" %)**General Commands**.
374
375 These commands are to configure:
376
377 * General system settings like: uplink interval.
378 * LoRaWAN protocol & radio related command.
379
380 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
381
382 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
383
384
385 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
386
387 These commands only valid for WSC1-L, as below:
388
389
390
391
392
393
394 == 3.1 Set Transmit Interval Time ==
395
396 Feature: Change LoRaWAN End Node Transmit Interval.
397
398 (% style="color:#037691" %)**AT Command: AT+TDC**
399
400 [[image:image-20220624142619-8.png]]
401
402
403 (% style="color:#037691" %)**Downlink Command: 0x01**
404
405 Format: Command Code (0x01) followed by 3 bytes time value.
406
407 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
408
409 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
410 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
411
412
413
414
415
416
417 == 3.2 Set Emergency Mode ==
418
419 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
420
421 (% style="color:#037691" %)**AT Command:**
422
423 [[image:image-20220624142956-9.png]]
424
425
426 (% style="color:#037691" %)**Downlink Command:**
427
428 * 0xE101     Same as: AT+ALARMMOD=1
429 * 0xE100     Same as: AT+ALARMMOD=0
430
431
432
433
434
435
436 == 3.3 Add or Delete RS485 Sensor ==
437
438 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
439
440 (% style="color:#037691" %)**AT Command: **
441
442 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
443
444 * Type_Code range:  A1 ~~ A4
445 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
446 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
447 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
448 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
449 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
450 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
451
452 **Example:**
453
454 User need to change external sensor use the type code as address code.
455
456 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
457
458 [[image:image-20220624143553-10.png]]
459
460
461 The response frame of the sensor is as follows:
462
463 [[image:image-20220624143618-11.png]]
464
465
466
467 **Then the following parameters should be:**
468
469 * Address_Code range: A1
470 * Query_Length: 8
471 * Query_Command: A103000000019CAA
472 * Read_Length: 8
473 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
474 * has_CRC: 1
475 * timeout: 1500 (Fill in the test according to the actual situation)
476
477
478
479 **So the input command is:**
480
481 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
482
483
484 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
485
486 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
487 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
488 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
489
490
491 **Related commands:**
492
493 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
494
495 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
496
497
498 (% style="color:#037691" %)**Downlink Command:  **
499
500 **delete custom sensor A1:**
501
502 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
503
504 **Remove all custom sensors**
505
506 * 0xE5FF  
507
508
509
510
511
512
513 == 3.4 RS485 Test Command ==
514
515 (% style="color:#037691" %)**AT Command:**
516
517 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
518 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
519 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
520 Send command to 485 sensor
521
522 Range : no more than 10 bytes
523 )))|(% style="width:85px" %)OK
524
525 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
526
527 AT+RSWRITE=0103000001840A
528
529
530 (% style="color:#037691" %)**Downlink Command:**
531
532 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
533
534
535
536
537
538
539 == 3.5 RS485 response timeout ==
540
541 Feature: Set or get extended time to receive 485 sensor data.
542
543 (% style="color:#037691" %)**AT Command:**
544
545 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
546 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
547 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
548 Set response timeout to:
549
550 Range : 0~~10000
551 )))|(% style="width:85px" %)OK
552
553 (% style="color:#037691" %)**Downlink Command:**
554
555 Format: Command Code (0xE0) followed by 3 bytes time value.
556
557 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
558
559 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
560 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
561
562
563
564
565
566
567 == 3.6 Set Sensor Type ==
568
569 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
570
571 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
572
573 [[image:image-20220624144904-12.png]]
574
575
576 (% style="color:#037691" %)**AT Command:**
577
578 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
579 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
580 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
581
582 Eg: The setting command **AT+STYPE=802212** means:
583
584 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
585 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
586 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
587 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
588 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
589 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
590 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
591
592 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
593
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 * 0xE400802212     Same as: AT+STYPE=80221
598
599 (% style="color:red" %)**Note:**
600
601 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
602
603
604
605
606 = 4. Power consumption and battery =
607
608 == 4.1 Total Power Consumption ==
609
610 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
611
612
613 == 4.2 Reduce power consumption ==
614
615 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
616
617
618 == 4.3 Battery ==
619
620 (((
621 All sensors are only power by external power source. If external power source is off. All sensor won't work.
622 )))
623
624 (((
625 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
626 )))
627
628
629 = 5. Main Process Unit WSC1-L =
630
631 == 5.1 Features ==
632
633 * Wall Attachable.
634 * LoRaWAN v1.0.3 Class A protocol.
635 * RS485 / Modbus protocol
636 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
637 * AT Commands to change parameters
638 * Remote configure parameters via LoRaWAN Downlink
639 * Firmware upgradable via program port
640 * Powered by external 12v battery
641 * Back up rechargeable 1000mAh battery
642 * IP Rating: IP65
643 * Support default sensors or 3rd party RS485 sensors
644
645 == 5.2 Power Consumption ==
646
647 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
648
649
650 == 5.3 Storage & Operation Temperature ==
651
652 -20°C to +60°C
653
654
655 == 5.4 Pin Mapping ==
656
657 [[image:1656054149793-239.png]]
658
659
660 == 5.5 Mechanical ==
661
662 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
663
664
665 == 5.6 Connect to RS485 Sensors ==
666
667 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
668
669
670 [[image:1656054389031-379.png]]
671
672
673 Hardware Design for the Converter Board please see:
674
675 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
676
677
678 = 6. Weather Sensors =
679
680 == 6.1 Rain Gauge ~-~- WSS-01 ==
681
682
683 (((
684 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
685 )))
686
687 (((
688 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
689 )))
690
691 (((
692 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
693 )))
694
695 (((
696 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
697 )))
698
699 (((
700 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
701 )))
702
703
704 === 6.1.1 Feature ===
705
706 * RS485 Rain Gauge
707 * Small dimension, easy to install
708 * Vents under funnel, avoid leaf or other things to avoid rain flow.
709 * ABS enclosure.
710 * Horizontal adjustable.
711
712
713
714 === 6.1.2 Specification ===
715
716 * Resolution: 0.2mm
717 * Accuracy: ±3%
718 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
719 * Input Power: DC 5~~24v
720 * Interface: RS485
721 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
722 * Working Humidity: <100% (no dewing)
723 * Power Consumption: 4mA @ 12v.
724
725
726
727 === 6.1.3 Dimension ===
728
729 [[image:1656054957406-980.png]]
730
731
732 === 6.1.4 Pin Mapping ===
733
734 [[image:1656054972828-692.png]]
735
736
737 === 6.1.5 Installation Notice ===
738
739 Do not power on while connect the cables. Double check the wiring before power on.
740
741 Installation Photo as reference:
742
743
744 (% style="color:#4472c4" %)** Install on Ground:**
745
746 WSS-01 Rain Gauge include screws so can install in ground directly .
747
748
749 (% style="color:#4472c4" %)** Install on pole:**
750
751 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
752
753 [[image:image-20220624152218-1.png||height="526" width="276"]]
754
755 WS-K2: Bracket Kit for Pole installation
756
757
758
759 WSSC-K2 dimension document, please see:
760
761 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
762
763
764 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
765
766 [[image:1656055444035-179.png]]
767
768 (((
769 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
770 )))
771
772 (((
773 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
774 )))
775
776 (((
777 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
778 )))
779
780
781 === 6.2.1 Feature ===
782
783 * RS485 wind speed / direction sensor
784 * PC enclosure, resist corrosion
785
786
787
788 === 6.2.2 Specification ===
789
790 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
791 * Wind direction range: 0 ~~ 360°
792 * Start wind speed: ≤0.3m/s
793 * Accuracy: ±(0.3+0.03V)m/s , ±1°
794 * Input Power: DC 5~~24v
795 * Interface: RS485
796 * Working Temperature: -30℃~70℃
797 * Working Humidity: <100% (no dewing)
798 * Power Consumption: 13mA ~~ 12v.
799 * Cable Length: 2 meters
800
801
802
803 === 6.2.3 Dimension ===
804
805 [[image:image-20220624152813-2.png]]
806
807
808 === 6.2.4 Pin Mapping ===
809
810 [[image:1656056281231-994.png]]
811
812
813 === 6.2.5  Angle Mapping ===
814
815 [[image:1656056303845-585.png]]
816
817
818 === 6.2.6  Installation Notice ===
819
820 Do not power on while connect the cables. Double check the wiring before power on.
821
822 The sensor must be installed with below direction, towards North.
823
824 [[image:image-20220624153901-3.png]]
825
826
827 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
828
829 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
830
831
832 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
833
834
835 WSS-03 is designed to support the Dragino Weather station solution.
836
837 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
838
839 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
840
841
842 === 6.3.1 Feature ===
843
844 * RS485 CO2, PM2.5, PM10 sensor
845 * NDIR to measure CO2 with Internal Temperature Compensation
846 * Laser Beam Scattering to PM2.5 and PM10
847
848
849
850 === 6.3.2 Specification ===
851
852 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
853 * CO2 resolution: 1ppm
854 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
855 * PM2.5/PM10 resolution: 1μg/m3
856 * Input Power: DC 7 ~~ 24v
857 * Preheat time: 3min
858 * Interface: RS485
859 * Working Temperature:
860 ** CO2: 0℃~50℃;
861 ** PM2.5/PM10: -30 ~~ 50℃
862 * Working Humidity:
863 ** PM2.5/PM10: 15~80%RH (no dewing)
864 ** CO2: 0~95%RH
865 * Power Consumption: 50mA@ 12v.
866
867
868
869 === 6.3.3 Dimension ===
870
871 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
872
873
874 === 6.3.4 Pin Mapping ===
875
876 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
877
878
879 === 6.3.5 Installation Notice ===
880
881 Do not power on while connect the cables. Double check the wiring before power on.
882
883 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
884
885 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
886
887
888
889
890
891
892 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
893
894 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
895
896
897 WSS-04 has auto heating feature, this ensures measurement more reliable.
898
899
900 WSS-04 is designed to support the Dragino Weather station solution.
901
902 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
903
904 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
905
906
907
908 === 6.4.1 Feature ===
909
910 * RS485 Rain/Snow detect sensor
911 * Surface heating to dry
912 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
913
914
915
916 === 6.4.2 Specification ===
917
918 * Detect if there is rain or snow
919 * Input Power: DC 12 ~~ 24v
920 * Interface: RS485
921 * Working Temperature: -30℃~70℃
922 * Working Humidity: 10~90%RH
923 * Power Consumption:
924 ** No heating: 12mA @ 12v,
925 ** heating: 94ma @ 12v.
926
927
928
929 === 6.4.3 Dimension ===
930
931 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
932
933
934 === 6.4.4 Pin Mapping ===
935
936 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
937
938
939 === 6.4.5 Installation Notice ===
940
941 Do not power on while connect the cables. Double check the wiring before power on.
942
943
944 Install with 15°degree.
945
946 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
947
948 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
949
950
951
952
953 === 6.4.6 Heating ===
954
955
956 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
957
958
959
960
961
962 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
963
964 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
965
966
967 WSS-05 is designed to support the Dragino Weather station solution.
968
969 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
970
971 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
972
973
974 === 6.5.1 Feature ===
975
976 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
977
978
979
980 === 6.5.2 Specification ===
981
982 * Input Power: DC 12 ~~ 24v
983 * Interface: RS485
984 * Temperature Sensor Spec:
985 ** Range: -30 ~~ 70℃
986 ** resolution 0.1℃
987 ** Accuracy: ±0.5℃
988 * Humidity Sensor Spec:
989 ** Range: 0 ~~ 100% RH
990 ** resolution 0.1 %RH
991 ** Accuracy: 3% RH
992 * Pressure Sensor Spec:
993 ** Range: 10~1100hPa
994 ** Resolution: 0.1hPa
995 ** Accuracy: ±0.1hPa
996 * Illuminate sensor:
997 ** Range: 0~2/20/200kLux
998 ** Resolution: 10 Lux
999 ** Accuracy: ±3%FS
1000 * Working Temperature: -30℃~70℃
1001 * Working Humidity: 10~90%RH
1002 * Power Consumption: 4mA @ 12v
1003
1004
1005
1006 === 6.5.3 Dimension ===
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1009
1010
1011 === 6.5.4 Pin Mapping ===
1012
1013 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1014
1015
1016 === 6.5.5 Installation Notice ===
1017
1018 Do not power on while connect the cables. Double check the wiring before power on.
1019
1020
1021
1022 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1023
1024
1025 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1026
1027
1028 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1029
1030 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1031
1032
1033 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1034
1035
1036 WSS-06 is designed to support the Dragino Weather station solution.
1037
1038
1039 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1040
1041 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1042
1043
1044
1045 === 6.6.1 Feature ===
1046
1047 * RS485 Total Solar Radiation sensor
1048 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1049 * Measure Reflected Radiation if sense area towards ground.
1050
1051
1052
1053 === 6.6.2 Specification ===
1054
1055 * Input Power: DC 5 ~~ 24v
1056 * Interface: RS485
1057 * Detect spectrum: 0.3~3μm(300~3000nm)
1058 * Measure strength range: 0~2000W/m2
1059 * Resolution: 0.1W/m2
1060 * Accuracy: ±3%
1061 * Yearly Stability: ≤±2%
1062 * Cosine response: ≤7% (@ Sun angle 10°)
1063 * Temperature Effect: ±2%(-10℃~40℃)
1064 * Working Temperature: -40℃~70℃
1065 * Working Humidity: 10~90%RH
1066 * Power Consumption: 4mA @ 12v
1067
1068
1069
1070 === 6.6.3 Dimension ===
1071
1072 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1073
1074
1075 === 6.6.4 Pin Mapping ===
1076
1077 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1078
1079
1080 === 6.6.5 Installation Notice ===
1081
1082 Do not power on while connect the cables. Double check the wiring before power on.
1083
1084 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1085
1086 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1087
1088
1089 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1090
1091 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1092
1093
1094 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1095
1096
1097
1098 WSS-07 is designed to support the Dragino Weather station solution.
1099
1100
1101 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1102
1103 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1104
1105
1106 === 6.7.1 Feature ===
1107
1108 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1109
1110
1111 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1112
1113
1114 === 6.7.2 Specification ===
1115
1116 * Input Power: DC 5 ~~ 24v
1117 * Interface: RS485
1118 * Response Spectrum: 400~700nm
1119 * Measure range: 0~2500μmol/m2•s
1120 * Resolution: 1μmol/m2•s
1121 * Accuracy: ±2%
1122 * Yearly Stability: ≤±2%
1123 * Working Temperature: -30℃~75℃
1124 * Working Humidity: 10~90%RH
1125 * Power Consumption: 3mA @ 12v
1126
1127
1128
1129 === 6.7.3 Dimension ===
1130
1131 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1132
1133
1134 === 6.7.4 Pin Mapping ===
1135
1136 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1137
1138
1139 === 6.7.5 Installation Notice ===
1140
1141 Do not power on while connect the cables. Double check the wiring before power on.
1142
1143
1144 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1145
1146 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1147
1148
1149 = 7. FAQ =
1150
1151 == 7.1 What else do I need to purchase to build Weather Station? ==
1152
1153 Below is the installation photo and structure:
1154
1155 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1156
1157
1158 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1159
1160
1161
1162
1163 == 7.2 How to upgrade firmware for WSC1-L? ==
1164
1165 Firmware Location & Change log:
1166
1167 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1168
1169
1170 Firmware Upgrade instruction:
1171
1172 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1173
1174
1175 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1176
1177 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1178
1179
1180
1181 == 7.4 Can I add my weather sensors? ==
1182
1183 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1184
1185
1186 = 8. Trouble Shooting =
1187
1188
1189
1190
1191
1192
1193 = 9. Order Info =
1194
1195
1196 == 9.1 Main Process Unit ==
1197
1198 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1199
1200 (% style="color:blue" %)**XX**(%%): The default frequency band
1201
1202 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1203 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1204 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1205 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1206 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1207 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1208 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1209 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1210
1211
1212
1213 == 9.2 Sensors ==
1214
1215 |**Sensor Model**|**Part Number**
1216 |**Rain Gauge**|WSS-01
1217 |**Rain Gauge installation Bracket for Pole**|WS-K2
1218 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1219 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1220 |**Rain/Snow Detect Sensor**|WSS-04
1221 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1222 |**Total Solar Radiation Sensor**|WSS-06
1223 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1224
1225 = 10. Support =
1226
1227 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1228 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1229
1230 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1231
1232
1233
1234
1235
1236 = 11. Appendix I: Field Installation Photo =
1237
1238
1239 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1240
1241
1242 **Storage Battery**: 12v,12AH li battery
1243
1244
1245 Wind Speed/Direction.
1246
1247 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1248
1249
1250 Total Solar Radiation sensor
1251
1252 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1253
1254
1255
1256 PAR Sensor
1257
1258 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1259
1260
1261 CO2/PM2.5/PM10 3 in 1 sensor
1262
1263 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1264
1265
1266 Rain / Snow Detect:
1267
1268 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1269
1270
1271 Rain Gauge.
1272
1273 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0