Version 46.3 by Xiaoling on 2022/06/24 15:42

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)** Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85
86
87 == 2.2 How it works? ==
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
103
104
105
106
107
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166 === 2.4.1 Uplink FPORT~=5, Device Status ===
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185
186 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
187
188 For WSC1-L, this value is 0x0D.
189
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 shows the battery voltage for WSC1-L MCU.
231
232 Ex1: 0x0BD6/1000 = 3.03 V
233
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220624140352-2.png]]
298
299
300 Below is an example payload:  [[image:image-20220624140615-3.png]]
301
302
303 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
304
305 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
306
307 Uplink 1:  [[image:image-20220624140735-4.png]]
308
309 Uplink 2:  [[image:image-20220624140842-5.png]]
310
311
312 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
313
314 Uplink 1:  [[image:image-20220624141025-6.png]]
315
316 Uplink 2:  [[image:image-20220624141100-7.png]]
317
318
319
320
321 === 2.4.3 Decoder in TTN V3 ===
322
323 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
324
325
326 Download decoder for suitable platform from:
327
328 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
329
330 and put as below:
331
332 [[image:1656051152438-578.png]]
333
334
335
336 == 2.5 Show data on Application Server ==
337
338 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
339
340
341 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
342
343 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
344
345 [[image:1656051197172-131.png]]
346
347
348 **Add TagoIO:**
349
350 [[image:1656051223585-631.png]]
351
352
353 **Authorization:**
354
355 [[image:1656051248318-368.png]]
356
357
358 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
359
360 [[image:1656051277767-168.png]]
361
362
363
364 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
365
366 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
367
368 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
369 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
370
371 There are two kinds of commands to configure WSC1-L, they are:
372
373 * (% style="color:#4472c4" %)**General Commands**.
374
375 These commands are to configure:
376
377 * General system settings like: uplink interval.
378 * LoRaWAN protocol & radio related command.
379
380 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
381
382 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
383
384
385 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
386
387 These commands only valid for WSC1-L, as below:
388
389
390
391
392
393
394 == 3.1 Set Transmit Interval Time ==
395
396 Feature: Change LoRaWAN End Node Transmit Interval.
397
398 (% style="color:#037691" %)**AT Command: AT+TDC**
399
400 [[image:image-20220624142619-8.png]]
401
402
403 (% style="color:#037691" %)**Downlink Command: 0x01**
404
405 Format: Command Code (0x01) followed by 3 bytes time value.
406
407 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
408
409 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
410 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
411
412
413
414
415
416
417 == 3.2 Set Emergency Mode ==
418
419 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
420
421 (% style="color:#037691" %)**AT Command:**
422
423 [[image:image-20220624142956-9.png]]
424
425
426 (% style="color:#037691" %)**Downlink Command:**
427
428 * 0xE101     Same as: AT+ALARMMOD=1
429 * 0xE100     Same as: AT+ALARMMOD=0
430
431
432
433
434
435
436 == 3.3 Add or Delete RS485 Sensor ==
437
438 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
439
440 (% style="color:#037691" %)**AT Command: **
441
442 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
443
444 * Type_Code range:  A1 ~~ A4
445 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
446 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
447 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
448 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
449 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
450 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
451
452 **Example:**
453
454 User need to change external sensor use the type code as address code.
455
456 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
457
458 [[image:image-20220624143553-10.png]]
459
460
461 The response frame of the sensor is as follows:
462
463 [[image:image-20220624143618-11.png]]
464
465
466 **Then the following parameters should be:**
467
468 * Address_Code range: A1
469 * Query_Length: 8
470 * Query_Command: A103000000019CAA
471 * Read_Length: 8
472 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
473 * has_CRC: 1
474 * timeout: 1500 (Fill in the test according to the actual situation)
475
476 **So the input command is:**
477
478 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
479
480
481 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
482
483 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
484 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
485 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
486
487 **Related commands:**
488
489 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
490
491 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
492
493
494 (% style="color:#037691" %)**Downlink Command:  **
495
496 **delete custom sensor A1:**
497
498 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
499
500 **Remove all custom sensors**
501
502 * 0xE5FF  
503
504
505
506
507
508
509 == 3.4 RS485 Test Command ==
510
511 (% style="color:#037691" %)**AT Command:**
512
513 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
514 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
515 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
516 Send command to 485 sensor
517
518 Range : no more than 10 bytes
519 )))|(% style="width:85px" %)OK
520
521 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
522
523 AT+RSWRITE=0103000001840A
524
525
526 (% style="color:#037691" %)**Downlink Command:**
527
528 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
529
530
531
532
533
534
535 == 3.5 RS485 response timeout ==
536
537 Feature: Set or get extended time to receive 485 sensor data.
538
539 (% style="color:#037691" %)**AT Command:**
540
541 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
542 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
543 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
544 Set response timeout to:
545
546 Range : 0~~10000
547 )))|(% style="width:85px" %)OK
548
549 (% style="color:#037691" %)**Downlink Command:**
550
551 Format: Command Code (0xE0) followed by 3 bytes time value.
552
553 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
554
555 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
556 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
557
558
559
560
561
562
563 == 3.6 Set Sensor Type ==
564
565 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
566
567 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
568
569 [[image:image-20220624144904-12.png]]
570
571
572 (% style="color:#037691" %)**AT Command:**
573
574 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
575 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
576 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
577
578 Eg: The setting command **AT+STYPE=802212** means:
579
580 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
581 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
582 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
583 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
584 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
585 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
586 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
587
588 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
589
590
591 (% style="color:#037691" %)**Downlink Command:**
592
593 * 0xE400802212     Same as: AT+STYPE=80221
594
595 (% style="color:red" %)**Note:**
596
597 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
598
599
600
601
602 = 4. Power consumption and battery =
603
604 == 4.1 Total Power Consumption ==
605
606 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
607
608
609 == 4.2 Reduce power consumption ==
610
611 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
612
613
614 == 4.3 Battery ==
615
616 (((
617 All sensors are only power by external power source. If external power source is off. All sensor won't work.
618 )))
619
620 (((
621 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
622 )))
623
624
625 = 5. Main Process Unit WSC1-L =
626
627 == 5.1 Features ==
628
629 * Wall Attachable.
630 * LoRaWAN v1.0.3 Class A protocol.
631 * RS485 / Modbus protocol
632 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
633 * AT Commands to change parameters
634 * Remote configure parameters via LoRaWAN Downlink
635 * Firmware upgradable via program port
636 * Powered by external 12v battery
637 * Back up rechargeable 1000mAh battery
638 * IP Rating: IP65
639 * Support default sensors or 3rd party RS485 sensors
640
641 == 5.2 Power Consumption ==
642
643 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
644
645
646 == 5.3 Storage & Operation Temperature ==
647
648 -20°C to +60°C
649
650
651 == 5.4 Pin Mapping ==
652
653 [[image:1656054149793-239.png]]
654
655
656 == 5.5 Mechanical ==
657
658 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
659
660
661 == 5.6 Connect to RS485 Sensors ==
662
663 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
664
665
666 [[image:1656054389031-379.png]]
667
668
669 Hardware Design for the Converter Board please see:
670
671 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
672
673
674 = 6. Weather Sensors =
675
676 == 6.1 Rain Gauge ~-~- WSS-01 ==
677
678
679 (((
680 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
681 )))
682
683 (((
684 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
685 )))
686
687 (((
688 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
689 )))
690
691 (((
692 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
693 )))
694
695 (((
696 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
697 )))
698
699
700 === 6.1.1 Feature ===
701
702 * RS485 Rain Gauge
703 * Small dimension, easy to install
704 * Vents under funnel, avoid leaf or other things to avoid rain flow.
705 * ABS enclosure.
706 * Horizontal adjustable.
707
708
709
710 === 6.1.2 Specification ===
711
712 * Resolution: 0.2mm
713 * Accuracy: ±3%
714 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
715 * Input Power: DC 5~~24v
716 * Interface: RS485
717 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
718 * Working Humidity: <100% (no dewing)
719 * Power Consumption: 4mA @ 12v.
720
721
722
723 === 6.1.3 Dimension ===
724
725 [[image:1656054957406-980.png]]
726
727
728 === 6.1.4 Pin Mapping ===
729
730 [[image:1656054972828-692.png]]
731
732
733 === 6.1.5 Installation Notice ===
734
735 Do not power on while connect the cables. Double check the wiring before power on.
736
737 Installation Photo as reference:
738
739
740 (% style="color:#4472c4" %)** Install on Ground:**
741
742 WSS-01 Rain Gauge include screws so can install in ground directly .
743
744
745 (% style="color:#4472c4" %)** Install on pole:**
746
747 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
748
749 [[image:image-20220624152218-1.png||height="526" width="276"]]
750
751 WS-K2: Bracket Kit for Pole installation
752
753
754
755 WSSC-K2 dimension document, please see:
756
757 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
758
759
760 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
761
762 [[image:1656055444035-179.png]]
763
764 (((
765 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
766 )))
767
768 (((
769 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
770 )))
771
772 (((
773 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
774 )))
775
776
777 === 6.2.1 Feature ===
778
779 * RS485 wind speed / direction sensor
780 * PC enclosure, resist corrosion
781
782
783
784 === 6.2.2 Specification ===
785
786 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
787 * Wind direction range: 0 ~~ 360°
788 * Start wind speed: ≤0.3m/s
789 * Accuracy: ±(0.3+0.03V)m/s , ±1°
790 * Input Power: DC 5~~24v
791 * Interface: RS485
792 * Working Temperature: -30℃~70℃
793 * Working Humidity: <100% (no dewing)
794 * Power Consumption: 13mA ~~ 12v.
795 * Cable Length: 2 meters
796
797
798
799 === 6.2.3 Dimension ===
800
801 [[image:image-20220624152813-2.png]]
802
803
804 === 6.2.4 Pin Mapping ===
805
806 [[image:1656056281231-994.png]]
807
808
809 === 6.2.5  Angle Mapping ===
810
811 [[image:1656056303845-585.png]]
812
813
814 === 6.2.6  Installation Notice ===
815
816 Do not power on while connect the cables. Double check the wiring before power on.
817
818 The sensor must be installed with below direction, towards North.
819
820 [[image:image-20220624153901-3.png]]
821
822
823 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
824
825 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
826
827
828 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
829
830
831 WSS-03 is designed to support the Dragino Weather station solution.
832
833 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
834
835 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
836
837
838 === 6.3.1 Feature ===
839
840 * RS485 CO2, PM2.5, PM10 sensor
841 * NDIR to measure CO2 with Internal Temperature Compensation
842 * Laser Beam Scattering to PM2.5 and PM10
843
844
845
846 === 6.3.2 Specification ===
847
848 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
849 * CO2 resolution: 1ppm
850 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
851 * PM2.5/PM10 resolution: 1μg/m3
852 * Input Power: DC 7 ~~ 24v
853 * Preheat time: 3min
854 * Interface: RS485
855 * Working Temperature:
856 ** CO2: 0℃~50℃;
857 ** PM2.5/PM10: -30 ~~ 50℃
858 * Working Humidity:
859 ** PM2.5/PM10: 15~80%RH (no dewing)
860 ** CO2: 0~95%RH
861 * Power Consumption: 50mA@ 12v.
862
863
864
865 === 6.3.3 Dimension ===
866
867 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
868
869
870 === 6.3.4 Pin Mapping ===
871
872 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
873
874
875 === 6.3.5 Installation Notice ===
876
877 Do not power on while connect the cables. Double check the wiring before power on.
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
880
881 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
882
883
884
885
886
887
888 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
889
890 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
891
892
893 WSS-04 has auto heating feature, this ensures measurement more reliable.
894
895
896 WSS-04 is designed to support the Dragino Weather station solution.
897
898 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
899
900 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
901
902
903
904 === 6.4.1 Feature ===
905
906 * RS485 Rain/Snow detect sensor
907 * Surface heating to dry
908 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
909
910
911
912 === 6.4.2 Specification ===
913
914 * Detect if there is rain or snow
915 * Input Power: DC 12 ~~ 24v
916 * Interface: RS485
917 * Working Temperature: -30℃~70℃
918 * Working Humidity: 10~90%RH
919 * Power Consumption:
920 ** No heating: 12mA @ 12v,
921 ** heating: 94ma @ 12v.
922
923
924
925 === 6.4.3 Dimension ===
926
927 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
928
929
930 === 6.4.4 Pin Mapping ===
931
932 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
933
934
935 === 6.4.5 Installation Notice ===
936
937 Do not power on while connect the cables. Double check the wiring before power on.
938
939
940 Install with 15°degree.
941
942 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
943
944 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
945
946
947
948
949 === 6.4.6 Heating ===
950
951
952 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
953
954
955
956
957
958 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
959
960 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
961
962
963 WSS-05 is designed to support the Dragino Weather station solution.
964
965 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
966
967 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
968
969
970 === 6.5.1 Feature ===
971
972 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
973
974
975
976 === 6.5.2 Specification ===
977
978 * Input Power: DC 12 ~~ 24v
979 * Interface: RS485
980 * Temperature Sensor Spec:
981 ** Range: -30 ~~ 70℃
982 ** resolution 0.1℃
983 ** Accuracy: ±0.5℃
984 * Humidity Sensor Spec:
985 ** Range: 0 ~~ 100% RH
986 ** resolution 0.1 %RH
987 ** Accuracy: 3% RH
988 * Pressure Sensor Spec:
989 ** Range: 10~1100hPa
990 ** Resolution: 0.1hPa
991 ** Accuracy: ±0.1hPa
992 * Illuminate sensor:
993 ** Range: 0~2/20/200kLux
994 ** Resolution: 10 Lux
995 ** Accuracy: ±3%FS
996 * Working Temperature: -30℃~70℃
997 * Working Humidity: 10~90%RH
998 * Power Consumption: 4mA @ 12v
999
1000
1001
1002 === 6.5.3 Dimension ===
1003
1004 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1005
1006
1007 === 6.5.4 Pin Mapping ===
1008
1009 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1010
1011
1012 === 6.5.5 Installation Notice ===
1013
1014 Do not power on while connect the cables. Double check the wiring before power on.
1015
1016
1017
1018 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1019
1020
1021 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1022
1023
1024 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1025
1026 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1027
1028
1029 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1030
1031
1032 WSS-06 is designed to support the Dragino Weather station solution.
1033
1034
1035 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1036
1037 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1038
1039
1040
1041 === 6.6.1 Feature ===
1042
1043 * RS485 Total Solar Radiation sensor
1044 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1045 * Measure Reflected Radiation if sense area towards ground.
1046
1047
1048
1049 === 6.6.2 Specification ===
1050
1051 * Input Power: DC 5 ~~ 24v
1052 * Interface: RS485
1053 * Detect spectrum: 0.3~3μm(300~3000nm)
1054 * Measure strength range: 0~2000W/m2
1055 * Resolution: 0.1W/m2
1056 * Accuracy: ±3%
1057 * Yearly Stability: ≤±2%
1058 * Cosine response: ≤7% (@ Sun angle 10°)
1059 * Temperature Effect: ±2%(-10℃~40℃)
1060 * Working Temperature: -40℃~70℃
1061 * Working Humidity: 10~90%RH
1062 * Power Consumption: 4mA @ 12v
1063
1064
1065
1066 === 6.6.3 Dimension ===
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1069
1070
1071 === 6.6.4 Pin Mapping ===
1072
1073 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1074
1075
1076 === 6.6.5 Installation Notice ===
1077
1078 Do not power on while connect the cables. Double check the wiring before power on.
1079
1080 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1081
1082 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1083
1084
1085 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1086
1087 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1088
1089
1090 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1091
1092
1093
1094 WSS-07 is designed to support the Dragino Weather station solution.
1095
1096
1097 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1098
1099 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1100
1101
1102 === 6.7.1 Feature ===
1103
1104 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1105
1106
1107 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1108
1109
1110 === 6.7.2 Specification ===
1111
1112 * Input Power: DC 5 ~~ 24v
1113 * Interface: RS485
1114 * Response Spectrum: 400~700nm
1115 * Measure range: 0~2500μmol/m2•s
1116 * Resolution: 1μmol/m2•s
1117 * Accuracy: ±2%
1118 * Yearly Stability: ≤±2%
1119 * Working Temperature: -30℃~75℃
1120 * Working Humidity: 10~90%RH
1121 * Power Consumption: 3mA @ 12v
1122
1123
1124
1125 === 6.7.3 Dimension ===
1126
1127 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1128
1129
1130 === 6.7.4 Pin Mapping ===
1131
1132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1133
1134
1135 === 6.7.5 Installation Notice ===
1136
1137 Do not power on while connect the cables. Double check the wiring before power on.
1138
1139
1140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1141
1142 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1143
1144
1145 = 7. FAQ =
1146
1147 == 7.1 What else do I need to purchase to build Weather Station? ==
1148
1149 Below is the installation photo and structure:
1150
1151 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1152
1153
1154 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1155
1156
1157
1158
1159 == 7.2 How to upgrade firmware for WSC1-L? ==
1160
1161 Firmware Location & Change log:
1162
1163 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1164
1165
1166 Firmware Upgrade instruction:
1167
1168 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1169
1170
1171 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1172
1173 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1174
1175
1176
1177 == 7.4 Can I add my weather sensors? ==
1178
1179 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1180
1181
1182 = 8. Trouble Shooting =
1183
1184
1185
1186
1187
1188
1189 = 9. Order Info =
1190
1191
1192 == 9.1 Main Process Unit ==
1193
1194 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1195
1196 (% style="color:blue" %)**XX**(%%): The default frequency band
1197
1198 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1199 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1200 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1201 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1202 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1203 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1204 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1205 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1206
1207
1208
1209 == 9.2 Sensors ==
1210
1211 |**Sensor Model**|**Part Number**
1212 |**Rain Gauge**|WSS-01
1213 |**Rain Gauge installation Bracket for Pole**|WS-K2
1214 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1215 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1216 |**Rain/Snow Detect Sensor**|WSS-04
1217 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1218 |**Total Solar Radiation Sensor**|WSS-06
1219 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1220
1221 = 10. Support =
1222
1223 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1224 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1225
1226 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1227
1228
1229
1230
1231
1232 = 11. Appendix I: Field Installation Photo =
1233
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1236
1237
1238 **Storage Battery**: 12v,12AH li battery
1239
1240
1241 Wind Speed/Direction.
1242
1243 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1244
1245
1246 Total Solar Radiation sensor
1247
1248 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1249
1250
1251
1252 PAR Sensor
1253
1254 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1255
1256
1257 CO2/PM2.5/PM10 3 in 1 sensor
1258
1259 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1260
1261
1262 Rain / Snow Detect:
1263
1264 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1265
1266
1267 Rain Gauge.
1268
1269 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]