Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153
154
155 === 2.4.1 Uplink FPORT~=5, Device Status ===
156
157 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
158
159
160 (((
161 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
162 )))
163
164 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
165 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
166 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
167
168 [[image:1656043061044-343.png]]
169
170
171 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
172
173
174
175 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
176
177 For WSC1-L, this value is 0x0D.
178
179
180
181 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
182
183 0x0100, Means: v1.0.0 version.
184
185
186
187 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
188
189 *0x01: EU868
190
191 *0x02: US915
192
193 *0x03: IN865
194
195 *0x04: AU915
196
197 *0x05: KZ865
198
199 *0x06: RU864
200
201 *0x07: AS923
202
203 *0x08: AS923-1
204
205 *0x09: AS923-2
206
207 *0x0a: AS923-3
208
209
210
211 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
212
213 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
214
215
216
217 ==== (% style="color:#037691" %)**BAT:**(%%) ====
218
219 shows the battery voltage for WSC1-L MCU.
220
221 Ex1: 0x0BD6/1000 = 3.03 V
222
223
224
225 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
226
227 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
228 |Byte3|Byte2|Byte1
229
230 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
231
232 [[image:image-20220624134713-1.png]]
233
234
235 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
236
237 External sensors detected by WSC1-L include :
238
239 custom sensor A1,
240
241 PAR sensor (WSS-07),
242
243 Total Solar Radiation sensor (WSS-06),
244
245 CO2/PM2.5/PM10 (WSS-03),
246
247 Wind Speed/Direction (WSS-02)
248
249
250 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
251
252 (% style="color:#037691" %)**Downlink:0x26 01**
253
254 [[image:1656049673488-415.png]]
255
256
257
258 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
259
260 (((
261 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
262 )))
263
264 (((
265 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
266 )))
267
268
269 (((
270 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
271 )))
272
273
274 (% style="color:#4472c4" %)** Uplink Payload**:
275
276 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
277 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
278
279 (% style="color:#4472c4" %)** Sensor Segment Define**:
280
281 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
282 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
283
284 (% style="color:#4472c4" %)**Sensor Type Table:**
285
286 [[image:image-20220624140352-2.png]]
287
288
289 Below is an example payload:  [[image:image-20220624140615-3.png]]
290
291
292 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
293
294 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
295
296 Uplink 1:  [[image:image-20220624140735-4.png]]
297
298 Uplink 2:  [[image:image-20220624140842-5.png]]
299
300
301 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
302
303 Uplink 1:  [[image:image-20220624141025-6.png]]
304
305 Uplink 2:  [[image:image-20220624141100-7.png]]
306
307
308
309
310 === 2.4.3 Decoder in TTN V3 ===
311
312 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
313
314
315 Download decoder for suitable platform from:
316
317 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
318
319 and put as below:
320
321 [[image:1656051152438-578.png]]
322
323
324
325 == 2.5 Show data on Application Server ==
326
327 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
328
329
330 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
331
332 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
333
334 [[image:1656051197172-131.png]]
335
336
337 **Add TagoIO:**
338
339 [[image:1656051223585-631.png]]
340
341
342 **Authorization:**
343
344 [[image:1656051248318-368.png]]
345
346
347 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
348
349 [[image:1656051277767-168.png]]
350
351
352
353 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
354
355 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
356
357 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
358 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
359
360 There are two kinds of commands to configure WSC1-L, they are:
361
362 * (% style="color:#4472c4" %)**General Commands**.
363
364 These commands are to configure:
365
366 * General system settings like: uplink interval.
367 * LoRaWAN protocol & radio related command.
368
369 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
370
371 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
372
373
374 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
375
376 These commands only valid for WSC1-L, as below:
377
378
379 == 3.1 Set Transmit Interval Time ==
380
381 Feature: Change LoRaWAN End Node Transmit Interval.
382
383 (% style="color:#037691" %)**AT Command: AT+TDC**
384
385 [[image:image-20220624142619-8.png]]
386
387
388 (% style="color:#037691" %)**Downlink Command: 0x01**
389
390 Format: Command Code (0x01) followed by 3 bytes time value.
391
392 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
393
394 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
395 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
396
397 == 3.2 Set Emergency Mode ==
398
399 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
400
401 (% style="color:#037691" %)**AT Command:**
402
403 [[image:image-20220624142956-9.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command:**
407
408 * 0xE101     Same as: AT+ALARMMOD=1
409 * 0xE100     Same as: AT+ALARMMOD=0
410
411 == 3.3 Add or Delete RS485 Sensor ==
412
413 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
414
415 (% style="color:#037691" %)**AT Command: **
416
417 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
418
419 * Type_Code range:  A1 ~~ A4
420 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
421 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
422 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
423 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
424 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
425 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
426
427 **Example:**
428
429 User need to change external sensor use the type code as address code.
430
431 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
432
433 [[image:image-20220624143553-10.png]]
434
435
436 The response frame of the sensor is as follows:
437
438 [[image:image-20220624143618-11.png]]
439
440
441 **Then the following parameters should be:**
442
443 * Address_Code range: A1
444 * Query_Length: 8
445 * Query_Command: A103000000019CAA
446 * Read_Length: 8
447 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
448 * has_CRC: 1
449 * timeout: 1500 (Fill in the test according to the actual situation)
450
451 **So the input command is:**
452
453 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
454
455
456 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
457
458 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
459 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
460 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
461
462 **Related commands:**
463
464 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
465
466 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
467
468
469 (% style="color:#037691" %)**Downlink Command:  **
470
471 **delete custom sensor A1:**
472
473 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
474
475 **Remove all custom sensors**
476
477 * 0xE5FF  
478
479 == 3.4 RS485 Test Command ==
480
481 (% style="color:#037691" %)**AT Command:**
482
483 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
484 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
485 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
486 Send command to 485 sensor
487
488 Range : no more than 10 bytes
489 )))|(% style="width:85px" %)OK
490
491 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
492
493 AT+RSWRITE=0103000001840A
494
495
496 (% style="color:#037691" %)**Downlink Command:**
497
498 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
499
500 == 3.5 RS485 response timeout ==
501
502 Feature: Set or get extended time to receive 485 sensor data.
503
504 (% style="color:#037691" %)**AT Command:**
505
506 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
507 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
508 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
509 Set response timeout to:
510
511 Range : 0~~10000
512 )))|(% style="width:85px" %)OK
513
514 (% style="color:#037691" %)**Downlink Command:**
515
516 Format: Command Code (0xE0) followed by 3 bytes time value.
517
518 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
519
520 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
521 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
522
523 == 3.6 Set Sensor Type ==
524
525 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
526
527 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
528
529 [[image:image-20220624144904-12.png]]
530
531
532 (% style="color:#037691" %)**AT Command:**
533
534 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
535 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
536 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
537
538 Eg: The setting command **AT+STYPE=802212** means:
539
540 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
541 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
542 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
543 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
544 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
545 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
546 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
547
548 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
549
550
551 (% style="color:#037691" %)**Downlink Command:**
552
553 * 0xE400802212     Same as: AT+STYPE=80221
554
555 (% style="color:red" %)**Note:**
556
557 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
558
559
560
561
562 = 4. Power consumption and battery =
563
564 == 4.1 Total Power Consumption ==
565
566 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
567
568
569 == 4.2 Reduce power consumption ==
570
571 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
572
573
574 == 4.3 Battery ==
575
576 (((
577 All sensors are only power by external power source. If external power source is off. All sensor won't work.
578 )))
579
580 (((
581 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
582 )))
583
584
585 = 5. Main Process Unit WSC1-L =
586
587 == 5.1 Features ==
588
589 * Wall Attachable.
590 * LoRaWAN v1.0.3 Class A protocol.
591 * RS485 / Modbus protocol
592 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
593 * AT Commands to change parameters
594 * Remote configure parameters via LoRaWAN Downlink
595 * Firmware upgradable via program port
596 * Powered by external 12v battery
597 * Back up rechargeable 1000mAh battery
598 * IP Rating: IP65
599 * Support default sensors or 3rd party RS485 sensors
600
601 == 5.2 Power Consumption ==
602
603 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
604
605
606 == 5.3 Storage & Operation Temperature ==
607
608 -20°C to +60°C
609
610
611 == 5.4 Pin Mapping ==
612
613 [[image:1656054149793-239.png]]
614
615
616 == 5.5 Mechanical ==
617
618 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
619
620
621 == 5.6 Connect to RS485 Sensors ==
622
623 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
624
625
626 [[image:1656054389031-379.png]]
627
628
629 Hardware Design for the Converter Board please see:
630
631 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
632
633
634 = 6. Weather Sensors =
635
636 == 6.1 Rain Gauge ~-~- WSS-01 ==
637
638
639 (((
640 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
641 )))
642
643 (((
644 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
645 )))
646
647 (((
648 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
649 )))
650
651 (((
652 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
653 )))
654
655 (((
656 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
657 )))
658
659
660 === 6.1.1 Feature ===
661
662 * RS485 Rain Gauge
663 * Small dimension, easy to install
664 * Vents under funnel, avoid leaf or other things to avoid rain flow.
665 * ABS enclosure.
666 * Horizontal adjustable.
667
668
669
670
671 === 6.1.2 Specification ===
672
673 * Resolution: 0.2mm
674 * Accuracy: ±3%
675 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
676 * Input Power: DC 5~~24v
677 * Interface: RS485
678 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
679 * Working Humidity: <100% (no dewing)
680 * Power Consumption: 4mA @ 12v.
681
682
683
684
685 === 6.1.3 Dimension ===
686
687 [[image:1656054957406-980.png]]
688
689
690 === 6.1.4 Pin Mapping ===
691
692 [[image:1656054972828-692.png]]
693
694
695 === 6.1.5 Installation Notice ===
696
697 Do not power on while connect the cables. Double check the wiring before power on.
698
699 Installation Photo as reference:
700
701
702 (% style="color:#4472c4" %)** Install on Ground:**
703
704 WSS-01 Rain Gauge include screws so can install in ground directly .
705
706
707 (% style="color:#4472c4" %)** Install on pole:**
708
709 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
710
711 [[image:image-20220624152218-1.png||height="526" width="276"]]
712
713 WS-K2: Bracket Kit for Pole installation
714
715
716
717 WSSC-K2 dimension document, please see:
718
719 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
720
721
722 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
723
724 [[image:1656055444035-179.png]]
725
726 (((
727 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
728 )))
729
730 (((
731 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
732 )))
733
734 (((
735 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
736 )))
737
738
739 === 6.2.1 Feature ===
740
741 * RS485 wind speed / direction sensor
742 * PC enclosure, resist corrosion
743
744
745
746
747 === 6.2.2 Specification ===
748
749 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
750 * Wind direction range: 0 ~~ 360°
751 * Start wind speed: ≤0.3m/s
752 * Accuracy: ±(0.3+0.03V)m/s , ±1°
753 * Input Power: DC 5~~24v
754 * Interface: RS485
755 * Working Temperature: -30℃~70℃
756 * Working Humidity: <100% (no dewing)
757 * Power Consumption: 13mA ~~ 12v.
758 * Cable Length: 2 meters
759
760
761
762
763 === 6.2.3 Dimension ===
764
765 [[image:image-20220624152813-2.png]]
766
767
768 === 6.2.4 Pin Mapping ===
769
770 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
771
772
773 === 6.2.4 Angle Mapping ===
774
775 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
776
777
778 === 6.2.5 Installation Notice ===
779
780 Do not power on while connect the cables. Double check the wiring before power on.
781
782
783 The sensor must be installed with below direction, towards North.
784
785
786 |(((
787 North
788 )))
789
790 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
791
792
793
794
795
796
797
798
799 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
800
801 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
802
803
804 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
805
806
807 WSS-03 is designed to support the Dragino Weather station solution.
808
809 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
810
811 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
812
813
814 === 6.3.1 Feature ===
815
816 * RS485 CO2, PM2.5, PM10 sensor
817 * NDIR to measure CO2 with Internal Temperature Compensation
818 * Laser Beam Scattering to PM2.5 and PM10
819
820
821
822
823 === 6.3.2 Specification ===
824
825 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
826 * CO2 resolution: 1ppm
827 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
828 * PM2.5/PM10 resolution: 1μg/m3
829 * Input Power: DC 7 ~~ 24v
830 * Preheat time: 3min
831 * Interface: RS485
832 * Working Temperature:
833 ** CO2: 0℃~50℃;
834 ** PM2.5/PM10: -30 ~~ 50℃
835 * Working Humidity:
836 ** PM2.5/PM10: 15~80%RH (no dewing)
837 ** CO2: 0~95%RH
838 * Power Consumption: 50mA@ 12v.
839
840
841
842
843 === 6.3.3 Dimension ===
844
845 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
846
847
848 === 6.3.4 Pin Mapping ===
849
850 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
851
852
853 === 6.3.5 Installation Notice ===
854
855 Do not power on while connect the cables. Double check the wiring before power on.
856
857 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
858
859 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
860
861
862
863
864
865
866 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
867
868 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
869
870
871 WSS-04 has auto heating feature, this ensures measurement more reliable.
872
873
874 WSS-04 is designed to support the Dragino Weather station solution.
875
876 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
877
878 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
879
880
881
882 === 6.4.1 Feature ===
883
884 * RS485 Rain/Snow detect sensor
885 * Surface heating to dry
886 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
887
888
889
890
891 === 6.4.2 Specification ===
892
893 * Detect if there is rain or snow
894 * Input Power: DC 12 ~~ 24v
895 * Interface: RS485
896 * Working Temperature: -30℃~70℃
897 * Working Humidity: 10~90%RH
898 * Power Consumption:
899 ** No heating: 12mA @ 12v,
900 ** heating: 94ma @ 12v.
901
902
903
904
905 === 6.4.3 Dimension ===
906
907 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
908
909
910 === 6.4.4 Pin Mapping ===
911
912 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
913
914
915 === 6.4.5 Installation Notice ===
916
917 Do not power on while connect the cables. Double check the wiring before power on.
918
919
920 Install with 15°degree.
921
922 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
923
924 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
925
926
927
928
929 === 6.4.6 Heating ===
930
931
932 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
933
934
935
936
937
938 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
939
940 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
941
942
943 WSS-05 is designed to support the Dragino Weather station solution.
944
945 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
946
947 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
948
949
950 === 6.5.1 Feature ===
951
952 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
953
954
955
956
957 === 6.5.2 Specification ===
958
959 * Input Power: DC 12 ~~ 24v
960 * Interface: RS485
961 * Temperature Sensor Spec:
962 ** Range: -30 ~~ 70℃
963 ** resolution 0.1℃
964 ** Accuracy: ±0.5℃
965 * Humidity Sensor Spec:
966 ** Range: 0 ~~ 100% RH
967 ** resolution 0.1 %RH
968 ** Accuracy: 3% RH
969 * Pressure Sensor Spec:
970 ** Range: 10~1100hPa
971 ** Resolution: 0.1hPa
972 ** Accuracy: ±0.1hPa
973 * Illuminate sensor:
974 ** Range: 0~2/20/200kLux
975 ** Resolution: 10 Lux
976 ** Accuracy: ±3%FS
977 * Working Temperature: -30℃~70℃
978 * Working Humidity: 10~90%RH
979 * Power Consumption: 4mA @ 12v
980
981
982
983
984 === 6.5.3 Dimension ===
985
986 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
987
988
989 === 6.5.4 Pin Mapping ===
990
991 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
992
993
994 === 6.5.5 Installation Notice ===
995
996 Do not power on while connect the cables. Double check the wiring before power on.
997
998
999
1000 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1001
1002
1003 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1004
1005
1006 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1007
1008 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1009
1010
1011 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1012
1013
1014 WSS-06 is designed to support the Dragino Weather station solution.
1015
1016
1017 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1018
1019 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1020
1021
1022
1023 === 6.6.1 Feature ===
1024
1025 * RS485 Total Solar Radiation sensor
1026 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1027 * Measure Reflected Radiation if sense area towards ground.
1028
1029
1030
1031
1032 === 6.6.2 Specification ===
1033
1034 * Input Power: DC 5 ~~ 24v
1035 * Interface: RS485
1036 * Detect spectrum: 0.3~3μm(300~3000nm)
1037 * Measure strength range: 0~2000W/m2
1038 * Resolution: 0.1W/m2
1039 * Accuracy: ±3%
1040 * Yearly Stability: ≤±2%
1041 * Cosine response: ≤7% (@ Sun angle 10°)
1042 * Temperature Effect: ±2%(-10℃~40℃)
1043 * Working Temperature: -40℃~70℃
1044 * Working Humidity: 10~90%RH
1045 * Power Consumption: 4mA @ 12v
1046
1047
1048
1049
1050 === 6.6.3 Dimension ===
1051
1052 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1053
1054
1055 === 6.6.4 Pin Mapping ===
1056
1057 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1058
1059
1060 === 6.6.5 Installation Notice ===
1061
1062 Do not power on while connect the cables. Double check the wiring before power on.
1063
1064 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1065
1066 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1067
1068
1069 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1070
1071 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1072
1073
1074 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1075
1076
1077
1078 WSS-07 is designed to support the Dragino Weather station solution.
1079
1080
1081 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1082
1083 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1084
1085
1086 === 6.7.1 Feature ===
1087
1088 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1089
1090
1091 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1092
1093
1094 === 6.7.2 Specification ===
1095
1096 * Input Power: DC 5 ~~ 24v
1097 * Interface: RS485
1098 * Response Spectrum: 400~700nm
1099 * Measure range: 0~2500μmol/m2•s
1100 * Resolution: 1μmol/m2•s
1101 * Accuracy: ±2%
1102 * Yearly Stability: ≤±2%
1103 * Working Temperature: -30℃~75℃
1104 * Working Humidity: 10~90%RH
1105 * Power Consumption: 3mA @ 12v
1106
1107
1108
1109
1110 === 6.7.3 Dimension ===
1111
1112 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1113
1114
1115 === 6.7.4 Pin Mapping ===
1116
1117 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1118
1119
1120 === 6.7.5 Installation Notice ===
1121
1122 Do not power on while connect the cables. Double check the wiring before power on.
1123
1124
1125 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1126
1127 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1128
1129
1130 = 7. FAQ =
1131
1132 == 7.1 What else do I need to purchase to build Weather Station? ==
1133
1134 Below is the installation photo and structure:
1135
1136 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1137
1138
1139 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1140
1141
1142
1143
1144 == 7.2 How to upgrade firmware for WSC1-L? ==
1145
1146 Firmware Location & Change log:
1147
1148 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1149
1150
1151 Firmware Upgrade instruction:
1152
1153 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1154
1155
1156 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1157
1158 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1159
1160
1161
1162 == 7.4 Can I add my weather sensors? ==
1163
1164 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1165
1166
1167 = 8. Trouble Shooting =
1168
1169
1170
1171
1172
1173
1174 = 9. Order Info =
1175
1176
1177 == 9.1 Main Process Unit ==
1178
1179 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1180
1181 (% style="color:blue" %)**XX**(%%): The default frequency band
1182
1183 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1184 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1185 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1186 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1187 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1188 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1189 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1190 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1191
1192
1193
1194
1195 == 9.2 Sensors ==
1196
1197 |**Sensor Model**|**Part Number**
1198 |**Rain Gauge**|WSS-01
1199 |**Rain Gauge installation Bracket for Pole**|WS-K2
1200 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1201 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1202 |**Rain/Snow Detect Sensor**|WSS-04
1203 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1204 |**Total Solar Radiation Sensor**|WSS-06
1205 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1206
1207
1208 = 10. Support =
1209
1210 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1211 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1212
1213 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1214
1215
1216
1217
1218
1219 = 11. Appendix I: Field Installation Photo =
1220
1221
1222 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1223
1224
1225 **Storage Battery**: 12v,12AH li battery
1226
1227
1228 Wind Speed/Direction.
1229
1230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1231
1232
1233 Total Solar Radiation sensor
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1236
1237
1238
1239 PAR Sensor
1240
1241 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1242
1243
1244 CO2/PM2.5/PM10 3 in 1 sensor
1245
1246 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1247
1248
1249 Rain / Snow Detect:
1250
1251 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1252
1253
1254 Rain Gauge.
1255
1256 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0