Version 4.3 by Xiaoling on 2022/06/24 11:40

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36
37 )))
38
39 (((
40 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
41 )))
42
43 (((
44
45 )))
46
47 (((
48 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
49 )))
50
51
52
53 = 2. How to use =
54
55 == 2.1 Installation ==
56
57 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
58
59 [[image:1656041948552-849.png]]
60
61
62 (% style="color:blue" %)** Wiring:**
63
64 ~1. WSC1-L and sensors all powered by solar power via MPPT
65
66 2. WSC1-L and sensors connect to each other via RS485/Modbus.
67
68 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
69
70
71 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
72
73 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
74
75
76
77
78 (% style="color:red" %) ** Notice 1:**
79
80 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
81 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
82 * Weather sensors won’t work if solar panel and storage battery fails.
83
84 (% style="color:red" %)** Notice 2:**
85
86 Due to shipment and importation limitation, user is better to purchase below parts locally:
87
88 * Solar Panel
89 * Storage Battery
90 * MPPT Solar Recharger
91 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
92 * Cabinet.
93
94 == 2.2 How it works? ==
95
96 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
97
98
99 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
100
101 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
102
103
104 Notice:
105
106 1. WSC1-L will auto scan available weather sensors when power on or reboot.
107 1. User can send a downlink command( 增加下发命令的连接) to WSC1-L to do a re-scan on the available sensors.
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 Add APP EUI in the application.
131
132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
133
134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
135
136
137
138
139
140
141
142
143
144 Choose Manually to add WSC1-L
145
146
147 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
148
149 Add APP KEY and DEV EUI
150
151 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
152
153
154
155
156 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
157
158
159 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
160
161
162
163
164 == 2.4 Uplink Payload ==
165
166 Uplink payloads include two types: Valid Sensor Value and other status / control command.
167
168 * Valid Sensor Value: Use FPORT=2
169 * Other control command: Use FPORT other than 2.
170
171 === 2.4.1 Uplink FPORT ===
172
173 5, Device Status ===
174
175 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
176
177
178 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
179
180 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
181 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
182
183 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
184
185
186 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
187
188
189
190 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
191
192 For WSC1-L, this value is 0x0D.
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
201
202 *0x01: EU868
203
204 *0x02: US915
205
206 *0x03: IN865
207
208 *0x04: AU915
209
210 *0x05: KZ865
211
212 *0x06: RU864
213
214 *0x07: AS923
215
216 *0x08: AS923-1
217
218 *0x09: AS923-2
219
220 *0x0a: AS923-3
221
222
223 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
224
225 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 shows the battery voltage for WSC1-L MCU.
231
232 Ex1: 0x0BD6/1000 = 3.03 V
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241
242 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
243 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
244 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
245 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
246 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
247 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264
265
266 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
267
268 (% style="color:#037691" %)**Downlink:0x26 01**
269
270 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
271
272
273
274
275 === 2.4.2 Uplink FPORT ===
276
277 2, Real time sensor value ===
278
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
280
281 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
282
283
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285
286 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 |Type Code|Length (Bytes)|Measured Value
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294
295
296 Sensor Type Table:
297
298 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
299 |**Wind Speed**|0x01|(((
300 Speed: 0~60m/s
301
302 Level: 0~17
303 )))|0x03 |(((
304 0x0024/10=3.6m/s
305
306 (0x02FE: No Sensor, 0x02FF: Value Error)
307
308 0x02=2
309
310 (0x14: No Sensor, 0x15: Value Error)
311 )))
312 |**Wind Direction**|0x02|(((
313 Angel: 0~360°
314
315 Direction: 16 positions
316 )))|0x03|(((
317 0x029A/10=66.6°
318
319 (0x0EFE: No Sensor,0x0EFF: Value Error)
320
321 0X03=3(ENE)
322
323 (0x14: No Sensor,0x15: Value Error)
324 )))
325 |**Illumination**|0x03|0~200000Lux|0x02|(((
326 0x04D2 *10=12340Lux
327
328 (0x4EFE: No Sensor,0x4EFF: Value Error)
329 )))
330 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
331 0x00 (00) No Rain or snow detected
332
333 (0x02: No Sensor,0x03: Value Error)
334 )))
335 |**CO2**|0x05|0~5000ppm|0x02|(((
336 0x0378=888ppm
337
338 (0x14FE: No Sensor,0x14FF: Value Error)
339 )))
340 |**Temperature**|0x06|-30℃~70℃|0x02|(((
341 0xFFDD/10=-3.5℃
342
343 (0x02FE: No Sensor,0x02FF: Value Error)
344 )))
345 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
346 |**Pressure**|0x08|10~1100hPa|0x02|(((
347 0x2748/10=1005.6hPa
348
349 (0x00: No Sensor,0x01: Value Error)
350 )))
351 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
352 0x0000/10=0mm /min
353
354 (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
357 0x0023=35μg/m^^3 ^^
358
359 (0x03FE: No Sensor,0x03FF: Value Error)
360 )))
361 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
362 0x002D=45μg/m^^3 ^^
363
364 (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
367 0x00B3=179μmol/m^^2^^•s
368
369 (0x09FE: No Sensor,0x9FF: Value Error)
370 )))
371 |(((
372 **Total Solar**
373
374 **Radiation**
375 )))|0x0D|0~2000W/m^^2^^|0x02|(((
376 0x0073/10=11.5W/m^^2^^
377
378 (0x4EFE: No Sensor,0x4EFF: Value Error)
379 )))
380
381 Below is an example payload:
382
383 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
384
385
386 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
387
388 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
389
390 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
391
392
393 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
394
395 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
396
397 Uplink 2: 0D 02 00 73
398
399
400
401
402 === 2.4.3 Decoder in TTN V3 ===
403
404 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
405
406
407 Download decoder for suitable platform from:
408
409 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
410
411 and put as below:
412
413 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
414
415
416
417 == 2.5 Show data on Application Server ==
418
419 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
420
421
422 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
423
424 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
425
426 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
427
428
429 Add TagoIO:
430
431 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
432
433 Authorization:
434
435 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
436
437
438 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
439
440 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
441
442
443
444 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
445
446 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
447
448 * AT Command Connection: See [[FAQ>>||anchor="H"]].
449 * LoRaWAN Downlink instruction for different platforms:
450
451 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
452
453
454 There are two kinds of commands to configure WSC1-L, they are:
455
456 * (% style="color:#4472c4" %)**General Commands**.
457
458 These commands are to configure:
459
460 * General system settings like: uplink interval.
461 * LoRaWAN protocol & radio related command.
462
463 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
464
465 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
466
467 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
468
469
470 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
471
472 These commands only valid for WSC1-L, as below:
473
474
475 == 3.1 Set Transmit Interval Time ==
476
477 Feature: Change LoRaWAN End Node Transmit Interval.
478
479 (% style="color:#037691" %)**AT Command: AT+TDC**
480
481 |**Command Example**|**Function**|**Response**
482 |AT+TDC?|Show current transmit Interval|(((
483 30000
484
485 OK
486
487 the interval is 30000ms = 30s
488 )))
489 |AT+TDC=60000|Set Transmit Interval|(((
490 OK
491
492 Set transmit interval to 60000ms = 60 seconds
493 )))
494
495 (% style="color:#037691" %)**Downlink Command: 0x01**
496
497 Format: Command Code (0x01) followed by 3 bytes time value.
498
499 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
500
501 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
502 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
503
504 == 3.2 Set Emergency Mode ==
505
506 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
507
508
509 (% style="color:#037691" %)**AT Command:**
510
511 |**Command Example**|**Function**|**Response**
512 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
513 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
514
515 (% style="color:#037691" %)**Downlink Command:**
516
517 * 0xE101     Same as: AT+ALARMMOD=1
518 * 0xE100     Same as: AT+ALARMMOD=0
519
520 == 3.3 Add or Delete RS485 Sensor ==
521
522 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
523
524 (% style="color:#037691" %)**AT Command: **
525
526 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
527
528 * Type_Code range: A1 ~~ A4
529 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
530 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
531 * Read_Length: RS485 response frame length supposed to receive. Max can receive
532 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
533 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
534 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
535
536 Example:
537
538 User need to change external sensor use the type code as address code.
539
540 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
541
542 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
543 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
544 | | | | | | | |
545
546 The response frame of the sensor is as follows:
547
548 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
549 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
550 | | | | | | | |
551
552 Then the following parameters should be:
553
554 * Address_Code range: A1
555 * Query_Length: 8
556 * Query_Command: A103000000019CAA
557 * Read_Length: 8
558 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
559 * has_CRC: 1
560 * timeout: 1500 (Fill in the test according to the actual situation)
561
562 So the input command is:
563
564 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
565
566
567 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
568
569 |Type Code|Length (Bytes)|Measured Value
570 |A1|2|0x000A
571
572 Related commands:
573
574 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
575
576 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
577
578
579 (% style="color:#037691" %)**Downlink Command:  **
580
581 **delete custom sensor A1:**
582
583 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
584
585 **Remove all custom sensors**
586
587 * 0xE5FF  
588
589 == 3.4 RS485 Test Command ==
590
591 (% style="color:#037691" %)**AT Command:**
592
593 |**Command Example**|**Function**|**Response**
594 |AT+RSWRITE=xxxxxx|(((
595 Send command to 485 sensor
596
597 Range : no more than 10 bytes
598 )))|OK
599
600 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
601
602 AT+RSWRITE=0103000001840A
603
604
605 (% style="color:#037691" %)**Downlink Command:**
606
607 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
608
609 == 3.5 RS485 response timeout ==
610
611 Feature: Set or get extended time to receive 485 sensor data.
612
613 (% style="color:#037691" %)**AT Command:**
614
615 |**Command Example**|**Function**|**Response**
616 |AT+DTR=1000|(((
617 Set response timeout to:
618
619 Range : 0~~10000
620 )))|OK
621
622 (% style="color:#037691" %)**Downlink Command:**
623
624 Format: Command Code (0xE0) followed by 3 bytes time value.
625
626 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
627
628 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
629 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
630
631 == 3.6 Set Sensor Type ==
632
633 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
634
635 See [[definition>>||anchor="H"]] for the sensor type.
636
637
638 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
639 | |A4|A3|A2|A1| | |
640 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
641 | | |Solar Radiation|PAR|PM10|PM2.5|(((
642 Rain
643
644 Gauge
645 )))|(((
646 Air
647
648 Pressure
649 )))
650 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
651 |Humidity|Temperature|CO2|(((
652 Rain/Snow
653
654 Detect
655 )))|illuminance|(((
656 Wind
657
658 Direction
659 )))|Wind Speed|BAT
660
661 (% style="color:#037691" %)**AT Command:**
662
663 |**Command Example**|**Function**|**Response**
664 |AT+STYPE=80221|Set sensor types|OK
665
666 Eg: The setting command **AT+STYPE=802212** means:
667
668 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
669 |0|0|0|0|1|0|0|0
670 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
671 |0|0|0|0|0|0|1|0
672 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
673 |0|0|1|0|0|0|0|1
674
675 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
676
677
678 (% style="color:#037691" %)**Downlink Command:**
679
680 * 0xE400802212     Same as: AT+STYPE=80221
681
682 (% style="color:red" %)**Note:**
683
684 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
685
686
687
688
689
690 = 4. Power consumption and battery =
691
692 == 4.1 Total Power Consumption ==
693
694 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
695
696
697 == 4.2 Reduce power consumption ==
698
699 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
700
701
702
703 == 4.3 Battery ==
704
705 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
706
707
708 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
709
710
711
712 = 5. Main Process Unit WSC1-L =
713
714 == 5.1 Features ==
715
716 * Wall Attachable.
717 * LoRaWAN v1.0.3 Class A protocol.
718 * RS485 / Modbus protocol
719 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
720 * AT Commands to change parameters
721 * Remote configure parameters via LoRaWAN Downlink
722 * Firmware upgradable via program port
723 * Powered by external 12v battery
724 * Back up rechargeable 1000mAh battery
725 * IP Rating: IP65
726 * Support default sensors or 3rd party RS485 sensors
727
728 == 5.2 Power Consumption ==
729
730 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
731
732
733
734 == 5.3 Storage & Operation Temperature ==
735
736 -20°C to +60°C
737
738
739 == 5.4 Pin Mapping ==
740
741 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
742
743
744 == 5.5 Mechanical ==
745
746 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
747
748
749
750
751 == 5.6 Connect to RS485 Sensors ==
752
753 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
754
755
756 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
757
758
759 Hardware Design for the Converter Board please see:
760
761 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
762
763
764
765
766
767 = 6. Weather Sensors =
768
769 == 6.1 Rain Gauge ~-~- WSS-01 ==
770
771 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
772
773
774 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
775
776 shape to make sure it works smoothly and is easy to clean.
777
778
779 WSS-01 is designed to support the Dragino Weather station solution.
780
781 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
782
783 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
784
785
786 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
787
788 to screw up and adjust the bottom horizontally.
789
790
791 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
792
793
794
795 === 6.1.1 Feature ===
796
797 * RS485 Rain Gauge
798 * Small dimension, easy to install
799 * Vents under funnel, avoid leaf or other things to avoid rain flow.
800 * ABS enclosure.
801 * Horizontal adjustable.
802
803 === 6.1.2 Specification ===
804
805 * Resolution: 0.2mm
806 * Accuracy: ±3%
807 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
808 * Input Power: DC 5~~24v
809 * Interface: RS485
810 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
811 * Working Humidity: <100% (no dewing)
812 * Power Consumption: 4mA @ 12v.
813
814 === 6.1.3 Dimension ===
815
816 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
817
818
819 === 6.1.4 Pin Mapping ===
820
821 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
822
823
824
825
826 === 6.1.5 Installation Notice ===
827
828 Do not power on while connect the cables. Double check the wiring before power on.
829
830 Installation Photo as reference:
831
832
833 (% style="color:#4472c4" %)** Install on Ground:**
834
835 WSS-01 Rain Gauge include screws so can install in ground directly .
836
837
838 (% style="color:#4472c4" %)** Install on pole:**
839
840 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
841
842 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
843
844
845 WS-K2: Bracket Kit for Pole installation:
846
847 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
848
849 WSSC-K2 dimension document, please see:
850
851 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
852
853
854
855 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
856
857 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
858
859 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
860
861
862 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
863
864
865 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
866
867 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
868
869
870 === 6.2.1 Feature ===
871
872 * RS485 wind speed / direction sensor
873 * PC enclosure, resist corrosion
874
875 === 6.2.2 Specification ===
876
877 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
878 * Wind direction range: 0 ~~ 360°
879 * Start wind speed: ≤0.3m/s
880 * Accuracy: ±(0.3+0.03V)m/s , ±1°
881 * Input Power: DC 5~~24v
882 * Interface: RS485
883 * Working Temperature: -30℃~70℃
884 * Working Humidity: <100% (no dewing)
885 * Power Consumption: 13mA ~~ 12v.
886 * Cable Length: 2 meters
887
888 === 6.2.3 Dimension ===
889
890 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
891
892
893 === 6.2.4 Pin Mapping ===
894
895 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
896
897
898 === 6.2.4 Angle Mapping ===
899
900 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
901
902
903 === 6.2.5 Installation Notice ===
904
905 Do not power on while connect the cables. Double check the wiring before power on.
906
907
908 The sensor must be installed with below direction, towards North.
909
910
911 |(((
912 North
913 )))
914
915 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
916
917
918
919
920
921
922
923
924 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
925
926 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
927
928
929 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
930
931
932 WSS-03 is designed to support the Dragino Weather station solution.
933
934 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
935
936 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
937
938
939 === 6.3.1 Feature ===
940
941 * RS485 CO2, PM2.5, PM10 sensor
942 * NDIR to measure CO2 with Internal Temperature Compensation
943 * Laser Beam Scattering to PM2.5 and PM10
944
945 === 6.3.2 Specification ===
946
947 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
948 * CO2 resolution: 1ppm
949 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
950 * PM2.5/PM10 resolution: 1μg/m3
951 * Input Power: DC 7 ~~ 24v
952 * Preheat time: 3min
953 * Interface: RS485
954 * Working Temperature:
955 ** CO2: 0℃~50℃;
956 ** PM2.5/PM10: -30 ~~ 50℃
957 * Working Humidity:
958 ** PM2.5/PM10: 15~80%RH (no dewing)
959 ** CO2: 0~95%RH
960 * Power Consumption: 50mA@ 12v.
961
962 === 6.3.3 Dimension ===
963
964 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
965
966
967 === 6.3.4 Pin Mapping ===
968
969 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
970
971
972 === 6.3.5 Installation Notice ===
973
974 Do not power on while connect the cables. Double check the wiring before power on.
975
976 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
977
978 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
979
980
981
982
983
984
985 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
986
987 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
988
989
990 WSS-04 has auto heating feature, this ensures measurement more reliable.
991
992
993 WSS-04 is designed to support the Dragino Weather station solution.
994
995 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
996
997 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
998
999
1000
1001 === 6.4.1 Feature ===
1002
1003 * RS485 Rain/Snow detect sensor
1004 * Surface heating to dry
1005 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1006
1007 === 6.4.2 Specification ===
1008
1009 * Detect if there is rain or snow
1010 * Input Power: DC 12 ~~ 24v
1011 * Interface: RS485
1012 * Working Temperature: -30℃~70℃
1013 * Working Humidity: 10~90%RH
1014 * Power Consumption:
1015 ** No heating: 12mA @ 12v,
1016 ** heating: 94ma @ 12v.
1017
1018 === 6.4.3 Dimension ===
1019
1020 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1021
1022
1023 === 6.4.4 Pin Mapping ===
1024
1025 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1026
1027
1028 === 6.4.5 Installation Notice ===
1029
1030 Do not power on while connect the cables. Double check the wiring before power on.
1031
1032
1033 Install with 15°degree.
1034
1035 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1036
1037 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1038
1039
1040
1041
1042 === 6.4.6 Heating ===
1043
1044
1045 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1046
1047
1048
1049
1050
1051 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1052
1053 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1054
1055
1056 WSS-05 is designed to support the Dragino Weather station solution.
1057
1058 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1059
1060 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1061
1062
1063 === 6.5.1 Feature ===
1064
1065 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1066
1067 === 6.5.2 Specification ===
1068
1069 * Input Power: DC 12 ~~ 24v
1070 * Interface: RS485
1071 * Temperature Sensor Spec:
1072 ** Range: -30 ~~ 70℃
1073 ** resolution 0.1℃
1074 ** Accuracy: ±0.5℃
1075 * Humidity Sensor Spec:
1076 ** Range: 0 ~~ 100% RH
1077 ** resolution 0.1 %RH
1078 ** Accuracy: 3% RH
1079 * Pressure Sensor Spec:
1080 ** Range: 10~1100hPa
1081 ** Resolution: 0.1hPa
1082 ** Accuracy: ±0.1hPa
1083 * Illuminate sensor:
1084 ** Range: 0~2/20/200kLux
1085 ** Resolution: 10 Lux
1086 ** Accuracy: ±3%FS
1087 * Working Temperature: -30℃~70℃
1088 * Working Humidity: 10~90%RH
1089 * Power Consumption: 4mA @ 12v
1090
1091 === 6.5.3 Dimension ===
1092
1093 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1094
1095
1096 === 6.5.4 Pin Mapping ===
1097
1098 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1099
1100
1101 === 6.5.5 Installation Notice ===
1102
1103 Do not power on while connect the cables. Double check the wiring before power on.
1104
1105
1106
1107 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1108
1109
1110 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1111
1112
1113 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1114
1115 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1116
1117
1118 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1119
1120
1121 WSS-06 is designed to support the Dragino Weather station solution.
1122
1123
1124 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1125
1126 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1127
1128
1129
1130 === 6.6.1 Feature ===
1131
1132 * RS485 Total Solar Radiation sensor
1133 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1134 * Measure Reflected Radiation if sense area towards ground.
1135
1136 === 6.6.2 Specification ===
1137
1138 * Input Power: DC 5 ~~ 24v
1139 * Interface: RS485
1140 * Detect spectrum: 0.3~3μm(300~3000nm)
1141 * Measure strength range: 0~2000W/m2
1142 * Resolution: 0.1W/m2
1143 * Accuracy: ±3%
1144 * Yearly Stability: ≤±2%
1145 * Cosine response: ≤7% (@ Sun angle 10°)
1146 * Temperature Effect: ±2%(-10℃~40℃)
1147 * Working Temperature: -40℃~70℃
1148 * Working Humidity: 10~90%RH
1149 * Power Consumption: 4mA @ 12v
1150
1151 === 6.6.3 Dimension ===
1152
1153 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1154
1155
1156 === 6.6.4 Pin Mapping ===
1157
1158 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1159
1160
1161 === 6.6.5 Installation Notice ===
1162
1163 Do not power on while connect the cables. Double check the wiring before power on.
1164
1165 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1166
1167 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1168
1169
1170 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1171
1172 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1173
1174
1175 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1176
1177
1178
1179 WSS-07 is designed to support the Dragino Weather station solution.
1180
1181
1182 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1183
1184 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1185
1186
1187 === 6.7.1 Feature ===
1188
1189 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1190
1191
1192 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1193
1194
1195 === 6.7.2 Specification ===
1196
1197 * Input Power: DC 5 ~~ 24v
1198 * Interface: RS485
1199 * Response Spectrum: 400~700nm
1200 * Measure range: 0~2500μmol/m2•s
1201 * Resolution: 1μmol/m2•s
1202 * Accuracy: ±2%
1203 * Yearly Stability: ≤±2%
1204 * Working Temperature: -30℃~75℃
1205 * Working Humidity: 10~90%RH
1206 * Power Consumption: 3mA @ 12v
1207
1208 === 6.7.3 Dimension ===
1209
1210 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1211
1212
1213 === 6.7.4 Pin Mapping ===
1214
1215 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1216
1217
1218 === 6.7.5 Installation Notice ===
1219
1220 Do not power on while connect the cables. Double check the wiring before power on.
1221
1222
1223 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1226
1227
1228 = 7. FAQ =
1229
1230 == 7.1 What else do I need to purchase to build Weather Station? ==
1231
1232 Below is the installation photo and structure:
1233
1234 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1235
1236
1237 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1238
1239
1240
1241
1242 == 7.2 How to upgrade firmware for WSC1-L? ==
1243
1244 Firmware Location & Change log:
1245
1246 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1247
1248
1249 Firmware Upgrade instruction:
1250
1251 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1252
1253
1254 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1255
1256 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1257
1258
1259
1260 == 7.4 Can I add my weather sensors? ==
1261
1262 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1263
1264
1265 = 8. Trouble Shooting =
1266
1267
1268
1269
1270
1271
1272 = 9. Order Info =
1273
1274
1275 == 9.1 Main Process Unit ==
1276
1277 Part Number: **WSC1-L-XX**
1278
1279 **XX**: The default frequency band
1280
1281 * **AS923**: LoRaWAN AS923 band
1282 * **AU915**: LoRaWAN AU915 band
1283 * **EU433**: LoRaWAN EU433 band
1284 * **EU868**: LoRaWAN EU868 band
1285 * **KR920**: LoRaWAN KR920 band
1286 * **US915**: LoRaWAN US915 band
1287 * **IN865**: LoRaWAN IN865 band
1288 * **CN470**: LoRaWAN CN470 band
1289
1290 == 9.2 Sensors ==
1291
1292 |**Sensor Model**|**Part Number**
1293 |**Rain Gauge**|WSS-01
1294 |**Rain Gauge installation Bracket for Pole**|WS-K2
1295 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1296 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1297 |**Rain/Snow Detect Sensor**|WSS-04
1298 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1299 |**Total Solar Radiation Sensor**|WSS-06
1300 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1301
1302 = 10. Support =
1303
1304 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1305 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1306
1307 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1308
1309
1310
1311
1312
1313 = 11. Appendix I: Field Installation Photo =
1314
1315
1316 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1317
1318
1319 **Storage Battery**: 12v,12AH li battery
1320
1321
1322 Wind Speed/Direction.
1323
1324 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1325
1326
1327 Total Solar Radiation sensor
1328
1329 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1330
1331
1332
1333 PAR Sensor
1334
1335 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1336
1337
1338 CO2/PM2.5/PM10 3 in 1 sensor
1339
1340 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1341
1342
1343 Rain / Snow Detect:
1344
1345 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1346
1347
1348 Rain Gauge.
1349
1350 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0