Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153
154
155
156 === 2.4.1 Uplink FPORT~=5, Device Status ===
157
158 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
159
160
161 (((
162 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
163 )))
164
165 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
166 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
167 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
168
169 [[image:1656043061044-343.png]]
170
171
172 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
173
174
175
176 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
177
178 For WSC1-L, this value is 0x0D.
179
180
181
182 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
183
184 0x0100, Means: v1.0.0 version.
185
186
187
188 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
189
190 *0x01: EU868
191
192 *0x02: US915
193
194 *0x03: IN865
195
196 *0x04: AU915
197
198 *0x05: KZ865
199
200 *0x06: RU864
201
202 *0x07: AS923
203
204 *0x08: AS923-1
205
206 *0x09: AS923-2
207
208 *0x0a: AS923-3
209
210
211
212 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
213
214 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
215
216
217
218 ==== (% style="color:#037691" %)**BAT:**(%%) ====
219
220 shows the battery voltage for WSC1-L MCU.
221
222 Ex1: 0x0BD6/1000 = 3.03 V
223
224
225
226 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
227
228 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
229 |Byte3|Byte2|Byte1
230
231 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
232
233 [[image:image-20220624134713-1.png]]
234
235
236 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
237
238 External sensors detected by WSC1-L include :
239
240 custom sensor A1,
241
242 PAR sensor (WSS-07),
243
244 Total Solar Radiation sensor (WSS-06),
245
246 CO2/PM2.5/PM10 (WSS-03),
247
248 Wind Speed/Direction (WSS-02)
249
250
251 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
252
253 (% style="color:#037691" %)**Downlink:0x26 01**
254
255 [[image:1656049673488-415.png]]
256
257
258
259 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
260
261 (((
262 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
263 )))
264
265 (((
266 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
267 )))
268
269
270 (((
271 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
272 )))
273
274
275 (% style="color:#4472c4" %)** Uplink Payload**:
276
277 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
278 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
279
280 (% style="color:#4472c4" %)** Sensor Segment Define**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
283 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
284
285 (% style="color:#4472c4" %)**Sensor Type Table:**
286
287 [[image:image-20220624140352-2.png]]
288
289
290 Below is an example payload:  [[image:image-20220624140615-3.png]]
291
292
293 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
294
295 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
296
297 Uplink 1:  [[image:image-20220624140735-4.png]]
298
299 Uplink 2:  [[image:image-20220624140842-5.png]]
300
301
302 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
303
304 Uplink 1:  [[image:image-20220624141025-6.png]]
305
306 Uplink 2:  [[image:image-20220624141100-7.png]]
307
308
309
310
311 === 2.4.3 Decoder in TTN V3 ===
312
313 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
314
315
316 Download decoder for suitable platform from:
317
318 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
319
320 and put as below:
321
322 [[image:1656051152438-578.png]]
323
324
325
326 == 2.5 Show data on Application Server ==
327
328 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
329
330
331 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
332
333 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
334
335 [[image:1656051197172-131.png]]
336
337
338 **Add TagoIO:**
339
340 [[image:1656051223585-631.png]]
341
342
343 **Authorization:**
344
345 [[image:1656051248318-368.png]]
346
347
348 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
349
350 [[image:1656051277767-168.png]]
351
352
353
354 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
355
356 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
357
358 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
359 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
360
361 There are two kinds of commands to configure WSC1-L, they are:
362
363 * (% style="color:#4472c4" %)**General Commands**.
364
365 These commands are to configure:
366
367 * General system settings like: uplink interval.
368 * LoRaWAN protocol & radio related command.
369
370 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
371
372 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
373
374
375 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
376
377 These commands only valid for WSC1-L, as below:
378
379
380 == 3.1 Set Transmit Interval Time ==
381
382 Feature: Change LoRaWAN End Node Transmit Interval.
383
384 (% style="color:#037691" %)**AT Command: AT+TDC**
385
386 [[image:image-20220624142619-8.png]]
387
388
389 (% style="color:#037691" %)**Downlink Command: 0x01**
390
391 Format: Command Code (0x01) followed by 3 bytes time value.
392
393 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
394
395 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
396 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
397
398
399 == 3.2 Set Emergency Mode ==
400
401 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
402
403 (% style="color:#037691" %)**AT Command:**
404
405 [[image:image-20220624142956-9.png]]
406
407
408 (% style="color:#037691" %)**Downlink Command:**
409
410 * 0xE101     Same as: AT+ALARMMOD=1
411 * 0xE100     Same as: AT+ALARMMOD=0
412
413
414 == 3.3 Add or Delete RS485 Sensor ==
415
416 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
417
418 (% style="color:#037691" %)**AT Command: **
419
420 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
421
422 * Type_Code range:  A1 ~~ A4
423 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
424 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
425 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
426 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
427 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
428 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
429
430 **Example:**
431
432 User need to change external sensor use the type code as address code.
433
434 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
435
436 [[image:image-20220624143553-10.png]]
437
438
439 The response frame of the sensor is as follows:
440
441 [[image:image-20220624143618-11.png]]
442
443
444 **Then the following parameters should be:**
445
446 * Address_Code range: A1
447 * Query_Length: 8
448 * Query_Command: A103000000019CAA
449 * Read_Length: 8
450 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
451 * has_CRC: 1
452 * timeout: 1500 (Fill in the test according to the actual situation)
453
454 **So the input command is:**
455
456 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
457
458
459 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
460
461 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
462 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
463 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
464
465 **Related commands:**
466
467 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
468
469 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
470
471
472 (% style="color:#037691" %)**Downlink Command:  **
473
474 **delete custom sensor A1:**
475
476 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
477
478 **Remove all custom sensors**
479
480 * 0xE5FF  
481
482
483 == 3.4 RS485 Test Command ==
484
485 (% style="color:#037691" %)**AT Command:**
486
487 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
488 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
489 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
490 Send command to 485 sensor
491
492 Range : no more than 10 bytes
493 )))|(% style="width:85px" %)OK
494
495 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
496
497 AT+RSWRITE=0103000001840A
498
499
500 (% style="color:#037691" %)**Downlink Command:**
501
502 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
503
504
505 == 3.5 RS485 response timeout ==
506
507 Feature: Set or get extended time to receive 485 sensor data.
508
509 (% style="color:#037691" %)**AT Command:**
510
511 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
512 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
513 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
514 Set response timeout to:
515
516 Range : 0~~10000
517 )))|(% style="width:85px" %)OK
518
519 (% style="color:#037691" %)**Downlink Command:**
520
521 Format: Command Code (0xE0) followed by 3 bytes time value.
522
523 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
524
525 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
526 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
527
528
529 == 3.6 Set Sensor Type ==
530
531 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
532
533 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
534
535 [[image:image-20220624144904-12.png]]
536
537
538 (% style="color:#037691" %)**AT Command:**
539
540 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
541 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
542 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
543
544 Eg: The setting command **AT+STYPE=802212** means:
545
546 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
547 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
548 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
549 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
550 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
551 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
552 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
553
554 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
555
556
557 (% style="color:#037691" %)**Downlink Command:**
558
559 * 0xE400802212     Same as: AT+STYPE=80221
560
561 (% style="color:red" %)**Note:**
562
563 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
564
565
566
567
568 = 4. Power consumption and battery =
569
570 == 4.1 Total Power Consumption ==
571
572 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
573
574
575 == 4.2 Reduce power consumption ==
576
577 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
578
579
580 == 4.3 Battery ==
581
582 (((
583 All sensors are only power by external power source. If external power source is off. All sensor won't work.
584 )))
585
586 (((
587 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
588 )))
589
590
591 = 5. Main Process Unit WSC1-L =
592
593 == 5.1 Features ==
594
595 * Wall Attachable.
596 * LoRaWAN v1.0.3 Class A protocol.
597 * RS485 / Modbus protocol
598 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
599 * AT Commands to change parameters
600 * Remote configure parameters via LoRaWAN Downlink
601 * Firmware upgradable via program port
602 * Powered by external 12v battery
603 * Back up rechargeable 1000mAh battery
604 * IP Rating: IP65
605 * Support default sensors or 3rd party RS485 sensors
606
607
608 == 5.2 Power Consumption ==
609
610 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
611
612
613 == 5.3 Storage & Operation Temperature ==
614
615 -20°C to +60°C
616
617
618 == 5.4 Pin Mapping ==
619
620 [[image:1656054149793-239.png]]
621
622
623 == 5.5 Mechanical ==
624
625 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
626
627
628 == 5.6 Connect to RS485 Sensors ==
629
630 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
631
632
633 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
634
635
636 Hardware Design for the Converter Board please see:
637
638 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
639
640
641
642
643
644 = 6. Weather Sensors =
645
646 == 6.1 Rain Gauge ~-~- WSS-01 ==
647
648 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
649
650
651 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
652
653 shape to make sure it works smoothly and is easy to clean.
654
655
656 WSS-01 is designed to support the Dragino Weather station solution.
657
658 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
659
660 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
661
662
663 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
664
665 to screw up and adjust the bottom horizontally.
666
667
668 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
669
670
671
672 === 6.1.1 Feature ===
673
674 * RS485 Rain Gauge
675 * Small dimension, easy to install
676 * Vents under funnel, avoid leaf or other things to avoid rain flow.
677 * ABS enclosure.
678 * Horizontal adjustable.
679
680 === 6.1.2 Specification ===
681
682 * Resolution: 0.2mm
683 * Accuracy: ±3%
684 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
685 * Input Power: DC 5~~24v
686 * Interface: RS485
687 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
688 * Working Humidity: <100% (no dewing)
689 * Power Consumption: 4mA @ 12v.
690
691 === 6.1.3 Dimension ===
692
693 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
694
695
696 === 6.1.4 Pin Mapping ===
697
698 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
699
700
701
702
703 === 6.1.5 Installation Notice ===
704
705 Do not power on while connect the cables. Double check the wiring before power on.
706
707 Installation Photo as reference:
708
709
710 (% style="color:#4472c4" %)** Install on Ground:**
711
712 WSS-01 Rain Gauge include screws so can install in ground directly .
713
714
715 (% style="color:#4472c4" %)** Install on pole:**
716
717 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
718
719 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
720
721
722 WS-K2: Bracket Kit for Pole installation:
723
724 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
725
726 WSSC-K2 dimension document, please see:
727
728 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
729
730
731
732 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
733
734 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
735
736 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
737
738
739 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
740
741
742 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
743
744 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
745
746
747 === 6.2.1 Feature ===
748
749 * RS485 wind speed / direction sensor
750 * PC enclosure, resist corrosion
751
752 === 6.2.2 Specification ===
753
754 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
755 * Wind direction range: 0 ~~ 360°
756 * Start wind speed: ≤0.3m/s
757 * Accuracy: ±(0.3+0.03V)m/s , ±1°
758 * Input Power: DC 5~~24v
759 * Interface: RS485
760 * Working Temperature: -30℃~70℃
761 * Working Humidity: <100% (no dewing)
762 * Power Consumption: 13mA ~~ 12v.
763 * Cable Length: 2 meters
764
765 === 6.2.3 Dimension ===
766
767 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
768
769
770 === 6.2.4 Pin Mapping ===
771
772 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
773
774
775 === 6.2.4 Angle Mapping ===
776
777 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
778
779
780 === 6.2.5 Installation Notice ===
781
782 Do not power on while connect the cables. Double check the wiring before power on.
783
784
785 The sensor must be installed with below direction, towards North.
786
787
788 |(((
789 North
790 )))
791
792 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
793
794
795
796
797
798
799
800
801 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
802
803 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
804
805
806 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
807
808
809 WSS-03 is designed to support the Dragino Weather station solution.
810
811 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
812
813 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
814
815
816 === 6.3.1 Feature ===
817
818 * RS485 CO2, PM2.5, PM10 sensor
819 * NDIR to measure CO2 with Internal Temperature Compensation
820 * Laser Beam Scattering to PM2.5 and PM10
821
822 === 6.3.2 Specification ===
823
824 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
825 * CO2 resolution: 1ppm
826 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
827 * PM2.5/PM10 resolution: 1μg/m3
828 * Input Power: DC 7 ~~ 24v
829 * Preheat time: 3min
830 * Interface: RS485
831 * Working Temperature:
832 ** CO2: 0℃~50℃;
833 ** PM2.5/PM10: -30 ~~ 50℃
834 * Working Humidity:
835 ** PM2.5/PM10: 15~80%RH (no dewing)
836 ** CO2: 0~95%RH
837 * Power Consumption: 50mA@ 12v.
838
839 === 6.3.3 Dimension ===
840
841 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
842
843
844 === 6.3.4 Pin Mapping ===
845
846 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
847
848
849 === 6.3.5 Installation Notice ===
850
851 Do not power on while connect the cables. Double check the wiring before power on.
852
853 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
854
855 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
856
857
858
859
860
861
862 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
863
864 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
865
866
867 WSS-04 has auto heating feature, this ensures measurement more reliable.
868
869
870 WSS-04 is designed to support the Dragino Weather station solution.
871
872 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
873
874 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
875
876
877
878 === 6.4.1 Feature ===
879
880 * RS485 Rain/Snow detect sensor
881 * Surface heating to dry
882 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
883
884 === 6.4.2 Specification ===
885
886 * Detect if there is rain or snow
887 * Input Power: DC 12 ~~ 24v
888 * Interface: RS485
889 * Working Temperature: -30℃~70℃
890 * Working Humidity: 10~90%RH
891 * Power Consumption:
892 ** No heating: 12mA @ 12v,
893 ** heating: 94ma @ 12v.
894
895 === 6.4.3 Dimension ===
896
897 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
898
899
900 === 6.4.4 Pin Mapping ===
901
902 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
903
904
905 === 6.4.5 Installation Notice ===
906
907 Do not power on while connect the cables. Double check the wiring before power on.
908
909
910 Install with 15°degree.
911
912 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
913
914 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
915
916
917
918
919 === 6.4.6 Heating ===
920
921
922 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
923
924
925
926
927
928 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
929
930 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
931
932
933 WSS-05 is designed to support the Dragino Weather station solution.
934
935 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
936
937 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
938
939
940 === 6.5.1 Feature ===
941
942 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
943
944 === 6.5.2 Specification ===
945
946 * Input Power: DC 12 ~~ 24v
947 * Interface: RS485
948 * Temperature Sensor Spec:
949 ** Range: -30 ~~ 70℃
950 ** resolution 0.1℃
951 ** Accuracy: ±0.5℃
952 * Humidity Sensor Spec:
953 ** Range: 0 ~~ 100% RH
954 ** resolution 0.1 %RH
955 ** Accuracy: 3% RH
956 * Pressure Sensor Spec:
957 ** Range: 10~1100hPa
958 ** Resolution: 0.1hPa
959 ** Accuracy: ±0.1hPa
960 * Illuminate sensor:
961 ** Range: 0~2/20/200kLux
962 ** Resolution: 10 Lux
963 ** Accuracy: ±3%FS
964 * Working Temperature: -30℃~70℃
965 * Working Humidity: 10~90%RH
966 * Power Consumption: 4mA @ 12v
967
968 === 6.5.3 Dimension ===
969
970 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
971
972
973 === 6.5.4 Pin Mapping ===
974
975 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
976
977
978 === 6.5.5 Installation Notice ===
979
980 Do not power on while connect the cables. Double check the wiring before power on.
981
982
983
984 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
985
986
987 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
988
989
990 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
991
992 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
993
994
995 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
996
997
998 WSS-06 is designed to support the Dragino Weather station solution.
999
1000
1001 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1002
1003 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1004
1005
1006
1007 === 6.6.1 Feature ===
1008
1009 * RS485 Total Solar Radiation sensor
1010 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1011 * Measure Reflected Radiation if sense area towards ground.
1012
1013 === 6.6.2 Specification ===
1014
1015 * Input Power: DC 5 ~~ 24v
1016 * Interface: RS485
1017 * Detect spectrum: 0.3~3μm(300~3000nm)
1018 * Measure strength range: 0~2000W/m2
1019 * Resolution: 0.1W/m2
1020 * Accuracy: ±3%
1021 * Yearly Stability: ≤±2%
1022 * Cosine response: ≤7% (@ Sun angle 10°)
1023 * Temperature Effect: ±2%(-10℃~40℃)
1024 * Working Temperature: -40℃~70℃
1025 * Working Humidity: 10~90%RH
1026 * Power Consumption: 4mA @ 12v
1027
1028 === 6.6.3 Dimension ===
1029
1030 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1031
1032
1033 === 6.6.4 Pin Mapping ===
1034
1035 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1036
1037
1038 === 6.6.5 Installation Notice ===
1039
1040 Do not power on while connect the cables. Double check the wiring before power on.
1041
1042 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1043
1044 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1045
1046
1047 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1048
1049 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1050
1051
1052 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1053
1054
1055
1056 WSS-07 is designed to support the Dragino Weather station solution.
1057
1058
1059 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1060
1061 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1062
1063
1064 === 6.7.1 Feature ===
1065
1066 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1067
1068
1069 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1070
1071
1072 === 6.7.2 Specification ===
1073
1074 * Input Power: DC 5 ~~ 24v
1075 * Interface: RS485
1076 * Response Spectrum: 400~700nm
1077 * Measure range: 0~2500μmol/m2•s
1078 * Resolution: 1μmol/m2•s
1079 * Accuracy: ±2%
1080 * Yearly Stability: ≤±2%
1081 * Working Temperature: -30℃~75℃
1082 * Working Humidity: 10~90%RH
1083 * Power Consumption: 3mA @ 12v
1084
1085 === 6.7.3 Dimension ===
1086
1087 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1088
1089
1090 === 6.7.4 Pin Mapping ===
1091
1092 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1093
1094
1095 === 6.7.5 Installation Notice ===
1096
1097 Do not power on while connect the cables. Double check the wiring before power on.
1098
1099
1100 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1101
1102 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1103
1104
1105 = 7. FAQ =
1106
1107 == 7.1 What else do I need to purchase to build Weather Station? ==
1108
1109 Below is the installation photo and structure:
1110
1111 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1112
1113
1114 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1115
1116
1117
1118
1119 == 7.2 How to upgrade firmware for WSC1-L? ==
1120
1121 Firmware Location & Change log:
1122
1123 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1124
1125
1126 Firmware Upgrade instruction:
1127
1128 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1129
1130
1131 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1132
1133 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1134
1135
1136
1137 == 7.4 Can I add my weather sensors? ==
1138
1139 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1140
1141
1142 = 8. Trouble Shooting =
1143
1144
1145
1146
1147
1148
1149 = 9. Order Info =
1150
1151
1152 == 9.1 Main Process Unit ==
1153
1154 Part Number: **WSC1-L-XX**
1155
1156 **XX**: The default frequency band
1157
1158 * **AS923**: LoRaWAN AS923 band
1159 * **AU915**: LoRaWAN AU915 band
1160 * **EU433**: LoRaWAN EU433 band
1161 * **EU868**: LoRaWAN EU868 band
1162 * **KR920**: LoRaWAN KR920 band
1163 * **US915**: LoRaWAN US915 band
1164 * **IN865**: LoRaWAN IN865 band
1165 * **CN470**: LoRaWAN CN470 band
1166
1167 == 9.2 Sensors ==
1168
1169 |**Sensor Model**|**Part Number**
1170 |**Rain Gauge**|WSS-01
1171 |**Rain Gauge installation Bracket for Pole**|WS-K2
1172 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1173 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1174 |**Rain/Snow Detect Sensor**|WSS-04
1175 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1176 |**Total Solar Radiation Sensor**|WSS-06
1177 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1178
1179 = 10. Support =
1180
1181 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1182 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1183
1184 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1185
1186
1187
1188
1189
1190 = 11. Appendix I: Field Installation Photo =
1191
1192
1193 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1194
1195
1196 **Storage Battery**: 12v,12AH li battery
1197
1198
1199 Wind Speed/Direction.
1200
1201 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1202
1203
1204 Total Solar Radiation sensor
1205
1206 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1207
1208
1209
1210 PAR Sensor
1211
1212 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1213
1214
1215 CO2/PM2.5/PM10 3 in 1 sensor
1216
1217 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1218
1219
1220 Rain / Snow Detect:
1221
1222 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1223
1224
1225 Rain Gauge.
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0