Version 32.9 by Xiaoling on 2022/06/24 14:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 shows the battery voltage for WSC1-L MCU.
226
227 Ex1: 0x0BD6/1000 = 3.03 V
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292 [[image:image-20220624140352-2.png]]
293
294
295 Below is an example payload:  [[image:image-20220624140615-3.png]]
296
297
298 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
299
300 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
301
302 Uplink 1:  [[image:image-20220624140735-4.png]]
303
304 Uplink 2:  [[image:image-20220624140842-5.png]]
305
306
307 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
308
309 Uplink 1:  [[image:image-20220624141025-6.png]]
310
311 Uplink 2:  [[image:image-20220624141100-7.png]]
312
313
314
315
316 === 2.4.3 Decoder in TTN V3 ===
317
318 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
319
320
321 Download decoder for suitable platform from:
322
323 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
324
325 and put as below:
326
327 [[image:1656051152438-578.png]]
328
329
330
331 == 2.5 Show data on Application Server ==
332
333 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
334
335
336 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
337
338 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
339
340 [[image:1656051197172-131.png]]
341
342
343 **Add TagoIO:**
344
345 [[image:1656051223585-631.png]]
346
347
348 **Authorization:**
349
350 [[image:1656051248318-368.png]]
351
352
353 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
354
355 [[image:1656051277767-168.png]]
356
357
358
359 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
360
361 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
362
363 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
364 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
365
366 There are two kinds of commands to configure WSC1-L, they are:
367
368 * (% style="color:#4472c4" %)**General Commands**.
369
370 These commands are to configure:
371
372 * General system settings like: uplink interval.
373 * LoRaWAN protocol & radio related command.
374
375 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
376
377 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
378
379
380 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
381
382 These commands only valid for WSC1-L, as below:
383
384
385 == 3.1 Set Transmit Interval Time ==
386
387 Feature: Change LoRaWAN End Node Transmit Interval.
388
389 (% style="color:#037691" %)**AT Command: AT+TDC**
390
391 [[image:image-20220624142619-8.png]]
392
393
394 (% style="color:#037691" %)**Downlink Command: 0x01**
395
396 Format: Command Code (0x01) followed by 3 bytes time value.
397
398 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
399
400 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
401 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
402
403
404 == 3.2 Set Emergency Mode ==
405
406 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
407
408 (% style="color:#037691" %)**AT Command:**
409
410 [[image:image-20220624142956-9.png]]
411
412
413 (% style="color:#037691" %)**Downlink Command:**
414
415 * 0xE101     Same as: AT+ALARMMOD=1
416 * 0xE100     Same as: AT+ALARMMOD=0
417
418
419 == 3.3 Add or Delete RS485 Sensor ==
420
421 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
422
423 (% style="color:#037691" %)**AT Command: **
424
425 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
426
427 * Type_Code range:  A1 ~~ A4
428 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
429 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
430 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
431 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
432 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
433 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
434
435 **Example:**
436
437 User need to change external sensor use the type code as address code.
438
439 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
440
441 [[image:image-20220624143553-10.png]]
442
443
444 The response frame of the sensor is as follows:
445
446 [[image:image-20220624143618-11.png]]
447
448
449 **Then the following parameters should be:**
450
451 * Address_Code range: A1
452 * Query_Length: 8
453 * Query_Command: A103000000019CAA
454 * Read_Length: 8
455 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
456 * has_CRC: 1
457 * timeout: 1500 (Fill in the test according to the actual situation)
458
459 **So the input command is:**
460
461 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
462
463
464 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
465
466 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
467 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
468 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
469
470 **Related commands:**
471
472 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
473
474 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
475
476
477 (% style="color:#037691" %)**Downlink Command:  **
478
479 **delete custom sensor A1:**
480
481 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
482
483 **Remove all custom sensors**
484
485 * 0xE5FF  
486
487
488 == 3.4 RS485 Test Command ==
489
490 (% style="color:#037691" %)**AT Command:**
491
492 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
493 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
494 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
495 Send command to 485 sensor
496
497 Range : no more than 10 bytes
498 )))|(% style="width:85px" %)OK
499
500 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
501
502 AT+RSWRITE=0103000001840A
503
504
505 (% style="color:#037691" %)**Downlink Command:**
506
507 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
508
509
510 == 3.5 RS485 response timeout ==
511
512 Feature: Set or get extended time to receive 485 sensor data.
513
514 (% style="color:#037691" %)**AT Command:**
515
516 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
517 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
518 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
519 Set response timeout to:
520
521 Range : 0~~10000
522 )))|(% style="width:85px" %)OK
523
524 (% style="color:#037691" %)**Downlink Command:**
525
526 Format: Command Code (0xE0) followed by 3 bytes time value.
527
528 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
529
530 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
531 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
532
533
534 == 3.6 Set Sensor Type ==
535
536 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
537
538 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
539
540 [[image:image-20220624144904-12.png]]
541
542
543
544 (% style="color:#037691" %)**AT Command:**
545
546 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
547 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
548 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
549
550 Eg: The setting command **AT+STYPE=802212** means:
551
552 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
553 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
554 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
555 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
556 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
557 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
558 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
559
560 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
561
562
563 (% style="color:#037691" %)**Downlink Command:**
564
565 * 0xE400802212     Same as: AT+STYPE=80221
566
567 (% style="color:red" %)**Note:**
568
569 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
570
571
572
573
574 = 4. Power consumption and battery =
575
576 == 4.1 Total Power Consumption ==
577
578 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
579
580
581 == 4.2 Reduce power consumption ==
582
583 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
584
585
586 == 4.3 Battery ==
587
588 (((
589 All sensors are only power by external power source. If external power source is off. All sensor won't work.
590 )))
591
592 (((
593 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
594 )))
595
596
597
598 = 5. Main Process Unit WSC1-L =
599
600 == 5.1 Features ==
601
602 * Wall Attachable.
603 * LoRaWAN v1.0.3 Class A protocol.
604 * RS485 / Modbus protocol
605 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
606 * AT Commands to change parameters
607 * Remote configure parameters via LoRaWAN Downlink
608 * Firmware upgradable via program port
609 * Powered by external 12v battery
610 * Back up rechargeable 1000mAh battery
611 * IP Rating: IP65
612 * Support default sensors or 3rd party RS485 sensors
613
614
615
616
617
618 == 5.2 Power Consumption ==
619
620 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
621
622
623
624 == 5.3 Storage & Operation Temperature ==
625
626 -20°C to +60°C
627
628
629 == 5.4 Pin Mapping ==
630
631 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
632
633
634 == 5.5 Mechanical ==
635
636 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
637
638
639
640
641 == 5.6 Connect to RS485 Sensors ==
642
643 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
644
645
646 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
647
648
649 Hardware Design for the Converter Board please see:
650
651 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
652
653
654
655
656
657 = 6. Weather Sensors =
658
659 == 6.1 Rain Gauge ~-~- WSS-01 ==
660
661 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
662
663
664 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
665
666 shape to make sure it works smoothly and is easy to clean.
667
668
669 WSS-01 is designed to support the Dragino Weather station solution.
670
671 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
672
673 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
674
675
676 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
677
678 to screw up and adjust the bottom horizontally.
679
680
681 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
682
683
684
685 === 6.1.1 Feature ===
686
687 * RS485 Rain Gauge
688 * Small dimension, easy to install
689 * Vents under funnel, avoid leaf or other things to avoid rain flow.
690 * ABS enclosure.
691 * Horizontal adjustable.
692
693 === 6.1.2 Specification ===
694
695 * Resolution: 0.2mm
696 * Accuracy: ±3%
697 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
698 * Input Power: DC 5~~24v
699 * Interface: RS485
700 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
701 * Working Humidity: <100% (no dewing)
702 * Power Consumption: 4mA @ 12v.
703
704 === 6.1.3 Dimension ===
705
706 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
707
708
709 === 6.1.4 Pin Mapping ===
710
711 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
712
713
714
715
716 === 6.1.5 Installation Notice ===
717
718 Do not power on while connect the cables. Double check the wiring before power on.
719
720 Installation Photo as reference:
721
722
723 (% style="color:#4472c4" %)** Install on Ground:**
724
725 WSS-01 Rain Gauge include screws so can install in ground directly .
726
727
728 (% style="color:#4472c4" %)** Install on pole:**
729
730 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
731
732 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
733
734
735 WS-K2: Bracket Kit for Pole installation:
736
737 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
738
739 WSSC-K2 dimension document, please see:
740
741 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
742
743
744
745 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
746
747 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
748
749 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
750
751
752 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
753
754
755 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
756
757 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
758
759
760 === 6.2.1 Feature ===
761
762 * RS485 wind speed / direction sensor
763 * PC enclosure, resist corrosion
764
765 === 6.2.2 Specification ===
766
767 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
768 * Wind direction range: 0 ~~ 360°
769 * Start wind speed: ≤0.3m/s
770 * Accuracy: ±(0.3+0.03V)m/s , ±1°
771 * Input Power: DC 5~~24v
772 * Interface: RS485
773 * Working Temperature: -30℃~70℃
774 * Working Humidity: <100% (no dewing)
775 * Power Consumption: 13mA ~~ 12v.
776 * Cable Length: 2 meters
777
778 === 6.2.3 Dimension ===
779
780 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
781
782
783 === 6.2.4 Pin Mapping ===
784
785 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
786
787
788 === 6.2.4 Angle Mapping ===
789
790 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
791
792
793 === 6.2.5 Installation Notice ===
794
795 Do not power on while connect the cables. Double check the wiring before power on.
796
797
798 The sensor must be installed with below direction, towards North.
799
800
801 |(((
802 North
803 )))
804
805 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
806
807
808
809
810
811
812
813
814 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
815
816 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
817
818
819 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
820
821
822 WSS-03 is designed to support the Dragino Weather station solution.
823
824 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
825
826 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
827
828
829 === 6.3.1 Feature ===
830
831 * RS485 CO2, PM2.5, PM10 sensor
832 * NDIR to measure CO2 with Internal Temperature Compensation
833 * Laser Beam Scattering to PM2.5 and PM10
834
835 === 6.3.2 Specification ===
836
837 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
838 * CO2 resolution: 1ppm
839 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
840 * PM2.5/PM10 resolution: 1μg/m3
841 * Input Power: DC 7 ~~ 24v
842 * Preheat time: 3min
843 * Interface: RS485
844 * Working Temperature:
845 ** CO2: 0℃~50℃;
846 ** PM2.5/PM10: -30 ~~ 50℃
847 * Working Humidity:
848 ** PM2.5/PM10: 15~80%RH (no dewing)
849 ** CO2: 0~95%RH
850 * Power Consumption: 50mA@ 12v.
851
852 === 6.3.3 Dimension ===
853
854 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
855
856
857 === 6.3.4 Pin Mapping ===
858
859 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
860
861
862 === 6.3.5 Installation Notice ===
863
864 Do not power on while connect the cables. Double check the wiring before power on.
865
866 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
867
868 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
869
870
871
872
873
874
875 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
876
877 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
878
879
880 WSS-04 has auto heating feature, this ensures measurement more reliable.
881
882
883 WSS-04 is designed to support the Dragino Weather station solution.
884
885 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
886
887 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
888
889
890
891 === 6.4.1 Feature ===
892
893 * RS485 Rain/Snow detect sensor
894 * Surface heating to dry
895 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
896
897 === 6.4.2 Specification ===
898
899 * Detect if there is rain or snow
900 * Input Power: DC 12 ~~ 24v
901 * Interface: RS485
902 * Working Temperature: -30℃~70℃
903 * Working Humidity: 10~90%RH
904 * Power Consumption:
905 ** No heating: 12mA @ 12v,
906 ** heating: 94ma @ 12v.
907
908 === 6.4.3 Dimension ===
909
910 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
911
912
913 === 6.4.4 Pin Mapping ===
914
915 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
916
917
918 === 6.4.5 Installation Notice ===
919
920 Do not power on while connect the cables. Double check the wiring before power on.
921
922
923 Install with 15°degree.
924
925 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
926
927 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
928
929
930
931
932 === 6.4.6 Heating ===
933
934
935 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
936
937
938
939
940
941 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
942
943 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
944
945
946 WSS-05 is designed to support the Dragino Weather station solution.
947
948 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
949
950 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
951
952
953 === 6.5.1 Feature ===
954
955 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
956
957 === 6.5.2 Specification ===
958
959 * Input Power: DC 12 ~~ 24v
960 * Interface: RS485
961 * Temperature Sensor Spec:
962 ** Range: -30 ~~ 70℃
963 ** resolution 0.1℃
964 ** Accuracy: ±0.5℃
965 * Humidity Sensor Spec:
966 ** Range: 0 ~~ 100% RH
967 ** resolution 0.1 %RH
968 ** Accuracy: 3% RH
969 * Pressure Sensor Spec:
970 ** Range: 10~1100hPa
971 ** Resolution: 0.1hPa
972 ** Accuracy: ±0.1hPa
973 * Illuminate sensor:
974 ** Range: 0~2/20/200kLux
975 ** Resolution: 10 Lux
976 ** Accuracy: ±3%FS
977 * Working Temperature: -30℃~70℃
978 * Working Humidity: 10~90%RH
979 * Power Consumption: 4mA @ 12v
980
981 === 6.5.3 Dimension ===
982
983 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
984
985
986 === 6.5.4 Pin Mapping ===
987
988 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
989
990
991 === 6.5.5 Installation Notice ===
992
993 Do not power on while connect the cables. Double check the wiring before power on.
994
995
996
997 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
998
999
1000 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1001
1002
1003 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1004
1005 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1006
1007
1008 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1009
1010
1011 WSS-06 is designed to support the Dragino Weather station solution.
1012
1013
1014 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1015
1016 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1017
1018
1019
1020 === 6.6.1 Feature ===
1021
1022 * RS485 Total Solar Radiation sensor
1023 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1024 * Measure Reflected Radiation if sense area towards ground.
1025
1026 === 6.6.2 Specification ===
1027
1028 * Input Power: DC 5 ~~ 24v
1029 * Interface: RS485
1030 * Detect spectrum: 0.3~3μm(300~3000nm)
1031 * Measure strength range: 0~2000W/m2
1032 * Resolution: 0.1W/m2
1033 * Accuracy: ±3%
1034 * Yearly Stability: ≤±2%
1035 * Cosine response: ≤7% (@ Sun angle 10°)
1036 * Temperature Effect: ±2%(-10℃~40℃)
1037 * Working Temperature: -40℃~70℃
1038 * Working Humidity: 10~90%RH
1039 * Power Consumption: 4mA @ 12v
1040
1041 === 6.6.3 Dimension ===
1042
1043 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1044
1045
1046 === 6.6.4 Pin Mapping ===
1047
1048 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1049
1050
1051 === 6.6.5 Installation Notice ===
1052
1053 Do not power on while connect the cables. Double check the wiring before power on.
1054
1055 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1056
1057 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1058
1059
1060 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1061
1062 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1063
1064
1065 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1066
1067
1068
1069 WSS-07 is designed to support the Dragino Weather station solution.
1070
1071
1072 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1073
1074 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1075
1076
1077 === 6.7.1 Feature ===
1078
1079 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1080
1081
1082 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1083
1084
1085 === 6.7.2 Specification ===
1086
1087 * Input Power: DC 5 ~~ 24v
1088 * Interface: RS485
1089 * Response Spectrum: 400~700nm
1090 * Measure range: 0~2500μmol/m2•s
1091 * Resolution: 1μmol/m2•s
1092 * Accuracy: ±2%
1093 * Yearly Stability: ≤±2%
1094 * Working Temperature: -30℃~75℃
1095 * Working Humidity: 10~90%RH
1096 * Power Consumption: 3mA @ 12v
1097
1098 === 6.7.3 Dimension ===
1099
1100 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1101
1102
1103 === 6.7.4 Pin Mapping ===
1104
1105 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1106
1107
1108 === 6.7.5 Installation Notice ===
1109
1110 Do not power on while connect the cables. Double check the wiring before power on.
1111
1112
1113 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1114
1115 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1116
1117
1118 = 7. FAQ =
1119
1120 == 7.1 What else do I need to purchase to build Weather Station? ==
1121
1122 Below is the installation photo and structure:
1123
1124 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1125
1126
1127 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1128
1129
1130
1131
1132 == 7.2 How to upgrade firmware for WSC1-L? ==
1133
1134 Firmware Location & Change log:
1135
1136 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1137
1138
1139 Firmware Upgrade instruction:
1140
1141 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1142
1143
1144 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1145
1146 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1147
1148
1149
1150 == 7.4 Can I add my weather sensors? ==
1151
1152 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1153
1154
1155 = 8. Trouble Shooting =
1156
1157
1158
1159
1160
1161
1162 = 9. Order Info =
1163
1164
1165 == 9.1 Main Process Unit ==
1166
1167 Part Number: **WSC1-L-XX**
1168
1169 **XX**: The default frequency band
1170
1171 * **AS923**: LoRaWAN AS923 band
1172 * **AU915**: LoRaWAN AU915 band
1173 * **EU433**: LoRaWAN EU433 band
1174 * **EU868**: LoRaWAN EU868 band
1175 * **KR920**: LoRaWAN KR920 band
1176 * **US915**: LoRaWAN US915 band
1177 * **IN865**: LoRaWAN IN865 band
1178 * **CN470**: LoRaWAN CN470 band
1179
1180 == 9.2 Sensors ==
1181
1182 |**Sensor Model**|**Part Number**
1183 |**Rain Gauge**|WSS-01
1184 |**Rain Gauge installation Bracket for Pole**|WS-K2
1185 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1186 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1187 |**Rain/Snow Detect Sensor**|WSS-04
1188 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1189 |**Total Solar Radiation Sensor**|WSS-06
1190 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1191
1192 = 10. Support =
1193
1194 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1195 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1196
1197 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1198
1199
1200
1201
1202
1203 = 11. Appendix I: Field Installation Photo =
1204
1205
1206 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1207
1208
1209 **Storage Battery**: 12v,12AH li battery
1210
1211
1212 Wind Speed/Direction.
1213
1214 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1215
1216
1217 Total Solar Radiation sensor
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1220
1221
1222
1223 PAR Sensor
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1226
1227
1228 CO2/PM2.5/PM10 3 in 1 sensor
1229
1230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1231
1232
1233 Rain / Snow Detect:
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1236
1237
1238 Rain Gauge.
1239
1240 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]