Version 32.6 by Xiaoling on 2022/06/24 14:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161
162
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
167
168
169 (((
170 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
171 )))
172
173 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
174 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
175 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
176
177 [[image:1656043061044-343.png]]
178
179
180 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
181
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195
196 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
197
198 *0x01: EU868
199
200 *0x02: US915
201
202 *0x03: IN865
203
204 *0x04: AU915
205
206 *0x05: KZ865
207
208 *0x06: RU864
209
210 *0x07: AS923
211
212 *0x08: AS923-1
213
214 *0x09: AS923-2
215
216 *0x0a: AS923-3
217
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225
226 ==== (% style="color:#037691" %)**BAT:**(%%) ====
227
228 shows the battery voltage for WSC1-L MCU.
229
230 Ex1: 0x0BD6/1000 = 3.03 V
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220624140352-2.png]]
296
297
298 Below is an example payload:  [[image:image-20220624140615-3.png]]
299
300
301 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
302
303 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
304
305 Uplink 1:  [[image:image-20220624140735-4.png]]
306
307 Uplink 2:  [[image:image-20220624140842-5.png]]
308
309
310 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
311
312 Uplink 1:  [[image:image-20220624141025-6.png]]
313
314 Uplink 2:  [[image:image-20220624141100-7.png]]
315
316
317
318
319 === 2.4.3 Decoder in TTN V3 ===
320
321 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
322
323
324 Download decoder for suitable platform from:
325
326 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
327
328 and put as below:
329
330 [[image:1656051152438-578.png]]
331
332
333
334 == 2.5 Show data on Application Server ==
335
336 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
337
338
339 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
340
341 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
342
343 [[image:1656051197172-131.png]]
344
345
346 **Add TagoIO:**
347
348 [[image:1656051223585-631.png]]
349
350
351 **Authorization:**
352
353 [[image:1656051248318-368.png]]
354
355
356 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
357
358 [[image:1656051277767-168.png]]
359
360
361
362 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
363
364 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
365
366 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
367 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
368
369 There are two kinds of commands to configure WSC1-L, they are:
370
371 * (% style="color:#4472c4" %)**General Commands**.
372
373 These commands are to configure:
374
375 * General system settings like: uplink interval.
376 * LoRaWAN protocol & radio related command.
377
378 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
379
380 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
381
382
383 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
384
385 These commands only valid for WSC1-L, as below:
386
387
388 == 3.1 Set Transmit Interval Time ==
389
390 Feature: Change LoRaWAN End Node Transmit Interval.
391
392 (% style="color:#037691" %)**AT Command: AT+TDC**
393
394 [[image:image-20220624142619-8.png]]
395
396
397 (% style="color:#037691" %)**Downlink Command: 0x01**
398
399 Format: Command Code (0x01) followed by 3 bytes time value.
400
401 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
402
403 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
404 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
405
406
407
408 == 3.2 Set Emergency Mode ==
409
410 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
411
412 (% style="color:#037691" %)**AT Command:**
413
414 [[image:image-20220624142956-9.png]]
415
416
417 (% style="color:#037691" %)**Downlink Command:**
418
419 * 0xE101     Same as: AT+ALARMMOD=1
420 * 0xE100     Same as: AT+ALARMMOD=0
421
422
423
424 == 3.3 Add or Delete RS485 Sensor ==
425
426 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
427
428 (% style="color:#037691" %)**AT Command: **
429
430 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
431
432 * Type_Code range:  A1 ~~ A4
433 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
434 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
435 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
436 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
437 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
438 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
439
440
441 **Example:**
442
443 User need to change external sensor use the type code as address code.
444
445 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
446
447 [[image:image-20220624143553-10.png]]
448
449
450 The response frame of the sensor is as follows:
451
452 [[image:image-20220624143618-11.png]]
453
454
455 **Then the following parameters should be:**
456
457 * Address_Code range: A1
458 * Query_Length: 8
459 * Query_Command: A103000000019CAA
460 * Read_Length: 8
461 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
462 * has_CRC: 1
463 * timeout: 1500 (Fill in the test according to the actual situation)
464
465
466 **So the input command is:**
467
468 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
469
470
471 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
472
473 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
474 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
475 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
476
477 **Related commands:**
478
479 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
480
481 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
482
483
484 (% style="color:#037691" %)**Downlink Command:  **
485
486 **delete custom sensor A1:**
487
488 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
489
490 **Remove all custom sensors**
491
492 * 0xE5FF  
493
494
495
496 == 3.4 RS485 Test Command ==
497
498 (% style="color:#037691" %)**AT Command:**
499
500 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
501 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
502 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
503 Send command to 485 sensor
504
505 Range : no more than 10 bytes
506 )))|(% style="width:85px" %)OK
507
508 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
509
510 AT+RSWRITE=0103000001840A
511
512
513 (% style="color:#037691" %)**Downlink Command:**
514
515 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
516
517
518
519 == 3.5 RS485 response timeout ==
520
521 Feature: Set or get extended time to receive 485 sensor data.
522
523 (% style="color:#037691" %)**AT Command:**
524
525 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
526 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
527 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
528 Set response timeout to:
529
530 Range : 0~~10000
531 )))|(% style="width:85px" %)OK
532
533
534 (% style="color:#037691" %)**Downlink Command:**
535
536 Format: Command Code (0xE0) followed by 3 bytes time value.
537
538 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
539
540 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
541 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
542
543
544
545 == 3.6 Set Sensor Type ==
546
547 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
548
549 See [[definition>>||anchor="H"]] for the sensor type.
550
551 [[image:image-20220624144904-12.png]]
552
553
554
555 (% style="color:#037691" %)**AT Command:**
556
557 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
558 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
559 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
560
561
562 Eg: The setting command **AT+STYPE=802212** means:
563
564 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
565 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
566 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
567 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
568 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
569 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
570 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
571
572 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
573
574
575 (% style="color:#037691" %)**Downlink Command:**
576
577 * 0xE400802212     Same as: AT+STYPE=80221
578
579 (% style="color:red" %)**Note:**
580
581 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
582
583
584
585
586 = 4. Power consumption and battery =
587
588 == 4.1 Total Power Consumption ==
589
590 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
591
592
593 == 4.2 Reduce power consumption ==
594
595 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
596
597
598
599 == 4.3 Battery ==
600
601 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
602
603
604 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
605
606
607
608 = 5. Main Process Unit WSC1-L =
609
610 == 5.1 Features ==
611
612 * Wall Attachable.
613 * LoRaWAN v1.0.3 Class A protocol.
614 * RS485 / Modbus protocol
615 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
616 * AT Commands to change parameters
617 * Remote configure parameters via LoRaWAN Downlink
618 * Firmware upgradable via program port
619 * Powered by external 12v battery
620 * Back up rechargeable 1000mAh battery
621 * IP Rating: IP65
622 * Support default sensors or 3rd party RS485 sensors
623
624 == 5.2 Power Consumption ==
625
626 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
627
628
629
630 == 5.3 Storage & Operation Temperature ==
631
632 -20°C to +60°C
633
634
635 == 5.4 Pin Mapping ==
636
637 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
638
639
640 == 5.5 Mechanical ==
641
642 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
643
644
645
646
647 == 5.6 Connect to RS485 Sensors ==
648
649 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
650
651
652 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
653
654
655 Hardware Design for the Converter Board please see:
656
657 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
658
659
660
661
662
663 = 6. Weather Sensors =
664
665 == 6.1 Rain Gauge ~-~- WSS-01 ==
666
667 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
668
669
670 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
671
672 shape to make sure it works smoothly and is easy to clean.
673
674
675 WSS-01 is designed to support the Dragino Weather station solution.
676
677 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
678
679 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
680
681
682 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
683
684 to screw up and adjust the bottom horizontally.
685
686
687 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
688
689
690
691 === 6.1.1 Feature ===
692
693 * RS485 Rain Gauge
694 * Small dimension, easy to install
695 * Vents under funnel, avoid leaf or other things to avoid rain flow.
696 * ABS enclosure.
697 * Horizontal adjustable.
698
699 === 6.1.2 Specification ===
700
701 * Resolution: 0.2mm
702 * Accuracy: ±3%
703 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
704 * Input Power: DC 5~~24v
705 * Interface: RS485
706 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
707 * Working Humidity: <100% (no dewing)
708 * Power Consumption: 4mA @ 12v.
709
710 === 6.1.3 Dimension ===
711
712 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
713
714
715 === 6.1.4 Pin Mapping ===
716
717 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
718
719
720
721
722 === 6.1.5 Installation Notice ===
723
724 Do not power on while connect the cables. Double check the wiring before power on.
725
726 Installation Photo as reference:
727
728
729 (% style="color:#4472c4" %)** Install on Ground:**
730
731 WSS-01 Rain Gauge include screws so can install in ground directly .
732
733
734 (% style="color:#4472c4" %)** Install on pole:**
735
736 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
737
738 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
739
740
741 WS-K2: Bracket Kit for Pole installation:
742
743 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
744
745 WSSC-K2 dimension document, please see:
746
747 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
748
749
750
751 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
752
753 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
754
755 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
756
757
758 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
759
760
761 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
762
763 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
764
765
766 === 6.2.1 Feature ===
767
768 * RS485 wind speed / direction sensor
769 * PC enclosure, resist corrosion
770
771 === 6.2.2 Specification ===
772
773 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
774 * Wind direction range: 0 ~~ 360°
775 * Start wind speed: ≤0.3m/s
776 * Accuracy: ±(0.3+0.03V)m/s , ±1°
777 * Input Power: DC 5~~24v
778 * Interface: RS485
779 * Working Temperature: -30℃~70℃
780 * Working Humidity: <100% (no dewing)
781 * Power Consumption: 13mA ~~ 12v.
782 * Cable Length: 2 meters
783
784 === 6.2.3 Dimension ===
785
786 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
787
788
789 === 6.2.4 Pin Mapping ===
790
791 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
792
793
794 === 6.2.4 Angle Mapping ===
795
796 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
797
798
799 === 6.2.5 Installation Notice ===
800
801 Do not power on while connect the cables. Double check the wiring before power on.
802
803
804 The sensor must be installed with below direction, towards North.
805
806
807 |(((
808 North
809 )))
810
811 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
812
813
814
815
816
817
818
819
820 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
821
822 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
823
824
825 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
826
827
828 WSS-03 is designed to support the Dragino Weather station solution.
829
830 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
831
832 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
833
834
835 === 6.3.1 Feature ===
836
837 * RS485 CO2, PM2.5, PM10 sensor
838 * NDIR to measure CO2 with Internal Temperature Compensation
839 * Laser Beam Scattering to PM2.5 and PM10
840
841 === 6.3.2 Specification ===
842
843 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
844 * CO2 resolution: 1ppm
845 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
846 * PM2.5/PM10 resolution: 1μg/m3
847 * Input Power: DC 7 ~~ 24v
848 * Preheat time: 3min
849 * Interface: RS485
850 * Working Temperature:
851 ** CO2: 0℃~50℃;
852 ** PM2.5/PM10: -30 ~~ 50℃
853 * Working Humidity:
854 ** PM2.5/PM10: 15~80%RH (no dewing)
855 ** CO2: 0~95%RH
856 * Power Consumption: 50mA@ 12v.
857
858 === 6.3.3 Dimension ===
859
860 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
861
862
863 === 6.3.4 Pin Mapping ===
864
865 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
866
867
868 === 6.3.5 Installation Notice ===
869
870 Do not power on while connect the cables. Double check the wiring before power on.
871
872 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
873
874 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
875
876
877
878
879
880
881 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
882
883 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
884
885
886 WSS-04 has auto heating feature, this ensures measurement more reliable.
887
888
889 WSS-04 is designed to support the Dragino Weather station solution.
890
891 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
892
893 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
894
895
896
897 === 6.4.1 Feature ===
898
899 * RS485 Rain/Snow detect sensor
900 * Surface heating to dry
901 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
902
903 === 6.4.2 Specification ===
904
905 * Detect if there is rain or snow
906 * Input Power: DC 12 ~~ 24v
907 * Interface: RS485
908 * Working Temperature: -30℃~70℃
909 * Working Humidity: 10~90%RH
910 * Power Consumption:
911 ** No heating: 12mA @ 12v,
912 ** heating: 94ma @ 12v.
913
914 === 6.4.3 Dimension ===
915
916 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
917
918
919 === 6.4.4 Pin Mapping ===
920
921 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
922
923
924 === 6.4.5 Installation Notice ===
925
926 Do not power on while connect the cables. Double check the wiring before power on.
927
928
929 Install with 15°degree.
930
931 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
932
933 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
934
935
936
937
938 === 6.4.6 Heating ===
939
940
941 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
942
943
944
945
946
947 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
948
949 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
950
951
952 WSS-05 is designed to support the Dragino Weather station solution.
953
954 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
955
956 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
957
958
959 === 6.5.1 Feature ===
960
961 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
962
963 === 6.5.2 Specification ===
964
965 * Input Power: DC 12 ~~ 24v
966 * Interface: RS485
967 * Temperature Sensor Spec:
968 ** Range: -30 ~~ 70℃
969 ** resolution 0.1℃
970 ** Accuracy: ±0.5℃
971 * Humidity Sensor Spec:
972 ** Range: 0 ~~ 100% RH
973 ** resolution 0.1 %RH
974 ** Accuracy: 3% RH
975 * Pressure Sensor Spec:
976 ** Range: 10~1100hPa
977 ** Resolution: 0.1hPa
978 ** Accuracy: ±0.1hPa
979 * Illuminate sensor:
980 ** Range: 0~2/20/200kLux
981 ** Resolution: 10 Lux
982 ** Accuracy: ±3%FS
983 * Working Temperature: -30℃~70℃
984 * Working Humidity: 10~90%RH
985 * Power Consumption: 4mA @ 12v
986
987 === 6.5.3 Dimension ===
988
989 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
990
991
992 === 6.5.4 Pin Mapping ===
993
994 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
995
996
997 === 6.5.5 Installation Notice ===
998
999 Do not power on while connect the cables. Double check the wiring before power on.
1000
1001
1002
1003 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1004
1005
1006 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1007
1008
1009 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1010
1011 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1012
1013
1014 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1015
1016
1017 WSS-06 is designed to support the Dragino Weather station solution.
1018
1019
1020 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1021
1022 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1023
1024
1025
1026 === 6.6.1 Feature ===
1027
1028 * RS485 Total Solar Radiation sensor
1029 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1030 * Measure Reflected Radiation if sense area towards ground.
1031
1032 === 6.6.2 Specification ===
1033
1034 * Input Power: DC 5 ~~ 24v
1035 * Interface: RS485
1036 * Detect spectrum: 0.3~3μm(300~3000nm)
1037 * Measure strength range: 0~2000W/m2
1038 * Resolution: 0.1W/m2
1039 * Accuracy: ±3%
1040 * Yearly Stability: ≤±2%
1041 * Cosine response: ≤7% (@ Sun angle 10°)
1042 * Temperature Effect: ±2%(-10℃~40℃)
1043 * Working Temperature: -40℃~70℃
1044 * Working Humidity: 10~90%RH
1045 * Power Consumption: 4mA @ 12v
1046
1047 === 6.6.3 Dimension ===
1048
1049 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1050
1051
1052 === 6.6.4 Pin Mapping ===
1053
1054 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1055
1056
1057 === 6.6.5 Installation Notice ===
1058
1059 Do not power on while connect the cables. Double check the wiring before power on.
1060
1061 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1062
1063 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1064
1065
1066 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1067
1068 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1069
1070
1071 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1072
1073
1074
1075 WSS-07 is designed to support the Dragino Weather station solution.
1076
1077
1078 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1079
1080 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1081
1082
1083 === 6.7.1 Feature ===
1084
1085 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1086
1087
1088 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1089
1090
1091 === 6.7.2 Specification ===
1092
1093 * Input Power: DC 5 ~~ 24v
1094 * Interface: RS485
1095 * Response Spectrum: 400~700nm
1096 * Measure range: 0~2500μmol/m2•s
1097 * Resolution: 1μmol/m2•s
1098 * Accuracy: ±2%
1099 * Yearly Stability: ≤±2%
1100 * Working Temperature: -30℃~75℃
1101 * Working Humidity: 10~90%RH
1102 * Power Consumption: 3mA @ 12v
1103
1104 === 6.7.3 Dimension ===
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1107
1108
1109 === 6.7.4 Pin Mapping ===
1110
1111 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1112
1113
1114 === 6.7.5 Installation Notice ===
1115
1116 Do not power on while connect the cables. Double check the wiring before power on.
1117
1118
1119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1120
1121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1122
1123
1124 = 7. FAQ =
1125
1126 == 7.1 What else do I need to purchase to build Weather Station? ==
1127
1128 Below is the installation photo and structure:
1129
1130 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1131
1132
1133 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1134
1135
1136
1137
1138 == 7.2 How to upgrade firmware for WSC1-L? ==
1139
1140 Firmware Location & Change log:
1141
1142 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1143
1144
1145 Firmware Upgrade instruction:
1146
1147 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1148
1149
1150 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1151
1152 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1153
1154
1155
1156 == 7.4 Can I add my weather sensors? ==
1157
1158 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1159
1160
1161 = 8. Trouble Shooting =
1162
1163
1164
1165
1166
1167
1168 = 9. Order Info =
1169
1170
1171 == 9.1 Main Process Unit ==
1172
1173 Part Number: **WSC1-L-XX**
1174
1175 **XX**: The default frequency band
1176
1177 * **AS923**: LoRaWAN AS923 band
1178 * **AU915**: LoRaWAN AU915 band
1179 * **EU433**: LoRaWAN EU433 band
1180 * **EU868**: LoRaWAN EU868 band
1181 * **KR920**: LoRaWAN KR920 band
1182 * **US915**: LoRaWAN US915 band
1183 * **IN865**: LoRaWAN IN865 band
1184 * **CN470**: LoRaWAN CN470 band
1185
1186 == 9.2 Sensors ==
1187
1188 |**Sensor Model**|**Part Number**
1189 |**Rain Gauge**|WSS-01
1190 |**Rain Gauge installation Bracket for Pole**|WS-K2
1191 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1192 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1193 |**Rain/Snow Detect Sensor**|WSS-04
1194 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1195 |**Total Solar Radiation Sensor**|WSS-06
1196 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1197
1198 = 10. Support =
1199
1200 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1201 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1202
1203 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1204
1205
1206
1207
1208
1209 = 11. Appendix I: Field Installation Photo =
1210
1211
1212 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1213
1214
1215 **Storage Battery**: 12v,12AH li battery
1216
1217
1218 Wind Speed/Direction.
1219
1220 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1221
1222
1223 Total Solar Radiation sensor
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1226
1227
1228
1229 PAR Sensor
1230
1231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1232
1233
1234 CO2/PM2.5/PM10 3 in 1 sensor
1235
1236 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1237
1238
1239 Rain / Snow Detect:
1240
1241 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1242
1243
1244 Rain Gauge.
1245
1246 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]