Version 32.3 by Xiaoling on 2022/06/24 14:49

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153 === 2.4.1 Uplink FPORT~=5, Device Status ===
154
155 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
156
157
158 (((
159 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
160 )))
161
162 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
163 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
164 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
165
166 [[image:1656043061044-343.png]]
167
168
169 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
170
171
172
173 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
174
175 For WSC1-L, this value is 0x0D.
176
177
178
179 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
180
181 0x0100, Means: v1.0.0 version.
182
183
184
185 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
186
187 *0x01: EU868
188
189 *0x02: US915
190
191 *0x03: IN865
192
193 *0x04: AU915
194
195 *0x05: KZ865
196
197 *0x06: RU864
198
199 *0x07: AS923
200
201 *0x08: AS923-1
202
203 *0x09: AS923-2
204
205 *0x0a: AS923-3
206
207
208
209 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
210
211 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
212
213
214
215 ==== (% style="color:#037691" %)**BAT:**(%%) ====
216
217 shows the battery voltage for WSC1-L MCU.
218
219 Ex1: 0x0BD6/1000 = 3.03 V
220
221
222
223 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
224
225 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
226 |Byte3|Byte2|Byte1
227
228 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
229
230 [[image:image-20220624134713-1.png]]
231
232
233 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
234
235 External sensors detected by WSC1-L include :
236
237 custom sensor A1,
238
239 PAR sensor (WSS-07),
240
241 Total Solar Radiation sensor (WSS-06),
242
243 CO2/PM2.5/PM10 (WSS-03),
244
245 Wind Speed/Direction (WSS-02)
246
247
248 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
249
250 (% style="color:#037691" %)**Downlink:0x26 01**
251
252 [[image:1656049673488-415.png]]
253
254
255
256 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
257
258 (((
259 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
260 )))
261
262 (((
263 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
264 )))
265
266
267 (((
268 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
269 )))
270
271
272 (% style="color:#4472c4" %)** Uplink Payload**:
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
275 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
276
277 (% style="color:#4472c4" %)** Sensor Segment Define**:
278
279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
280 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
281
282 (% style="color:#4472c4" %)**Sensor Type Table:**
283
284 [[image:image-20220624140352-2.png]]
285
286
287 Below is an example payload:  [[image:image-20220624140615-3.png]]
288
289
290 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
291
292 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
293
294 Uplink 1:  [[image:image-20220624140735-4.png]]
295
296 Uplink 2:  [[image:image-20220624140842-5.png]]
297
298
299 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
300
301 Uplink 1:  [[image:image-20220624141025-6.png]]
302
303 Uplink 2:  [[image:image-20220624141100-7.png]]
304
305
306
307
308 === 2.4.3 Decoder in TTN V3 ===
309
310 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
311
312
313 Download decoder for suitable platform from:
314
315 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
316
317 and put as below:
318
319 [[image:1656051152438-578.png]]
320
321
322
323 == 2.5 Show data on Application Server ==
324
325 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
326
327
328 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
329
330 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
331
332 [[image:1656051197172-131.png]]
333
334
335 **Add TagoIO:**
336
337 [[image:1656051223585-631.png]]
338
339
340 **Authorization:**
341
342 [[image:1656051248318-368.png]]
343
344
345 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
346
347 [[image:1656051277767-168.png]]
348
349
350
351 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
352
353 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
354
355 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
356 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
357
358 There are two kinds of commands to configure WSC1-L, they are:
359
360 * (% style="color:#4472c4" %)**General Commands**.
361
362 These commands are to configure:
363
364 * General system settings like: uplink interval.
365 * LoRaWAN protocol & radio related command.
366
367 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
368
369 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
370
371
372 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
373
374 These commands only valid for WSC1-L, as below:
375
376
377 == 3.1 Set Transmit Interval Time ==
378
379 Feature: Change LoRaWAN End Node Transmit Interval.
380
381 (% style="color:#037691" %)**AT Command: AT+TDC**
382
383 [[image:image-20220624142619-8.png]]
384
385
386 (% style="color:#037691" %)**Downlink Command: 0x01**
387
388 Format: Command Code (0x01) followed by 3 bytes time value.
389
390 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
391
392 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
393 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
394
395
396
397 == 3.2 Set Emergency Mode ==
398
399 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
400
401 (% style="color:#037691" %)**AT Command:**
402
403 [[image:image-20220624142956-9.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command:**
407
408 * 0xE101     Same as: AT+ALARMMOD=1
409 * 0xE100     Same as: AT+ALARMMOD=0
410
411
412
413 == 3.3 Add or Delete RS485 Sensor ==
414
415 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
416
417 (% style="color:#037691" %)**AT Command: **
418
419 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
420
421 * Type_Code range:  A1 ~~ A4
422 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
423 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
424 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
425 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
426 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
427 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
428
429
430 **Example:**
431
432 User need to change external sensor use the type code as address code.
433
434 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
435
436 [[image:image-20220624143553-10.png]]
437
438
439 The response frame of the sensor is as follows:
440
441 [[image:image-20220624143618-11.png]]
442
443
444 **Then the following parameters should be:**
445
446 * Address_Code range: A1
447 * Query_Length: 8
448 * Query_Command: A103000000019CAA
449 * Read_Length: 8
450 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
451 * has_CRC: 1
452 * timeout: 1500 (Fill in the test according to the actual situation)
453
454
455 **So the input command is:**
456
457 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
458
459
460 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
461
462 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
463 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
464 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
465
466 **Related commands:**
467
468 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
469
470 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
471
472
473 (% style="color:#037691" %)**Downlink Command:  **
474
475 **delete custom sensor A1:**
476
477 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
478
479 **Remove all custom sensors**
480
481 * 0xE5FF  
482
483
484
485 == 3.4 RS485 Test Command ==
486
487 (% style="color:#037691" %)**AT Command:**
488
489 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
490 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
491 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
492 Send command to 485 sensor
493
494 Range : no more than 10 bytes
495 )))|(% style="width:85px" %)OK
496
497 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
498
499 AT+RSWRITE=0103000001840A
500
501
502 (% style="color:#037691" %)**Downlink Command:**
503
504 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
505
506
507
508 == 3.5 RS485 response timeout ==
509
510 Feature: Set or get extended time to receive 485 sensor data.
511
512 (% style="color:#037691" %)**AT Command:**
513
514 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
515 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
516 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
517 Set response timeout to:
518
519 Range : 0~~10000
520 )))|(% style="width:85px" %)OK
521
522
523 (% style="color:#037691" %)**Downlink Command:**
524
525 Format: Command Code (0xE0) followed by 3 bytes time value.
526
527 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
528
529 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
530 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
531
532
533
534 == 3.6 Set Sensor Type ==
535
536 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
537
538 See [[definition>>||anchor="H"]] for the sensor type.
539
540 [[image:image-20220624144904-12.png]]
541
542
543
544 (% style="color:#037691" %)**AT Command:**
545
546 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
547 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
548 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
549
550 Eg: The setting command **AT+STYPE=802212** means:
551
552 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
553 |0|0|0|0|1|0|0|0
554 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
555 |0|0|0|0|0|0|1|0
556 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
557 |0|0|1|0|0|0|0|1
558
559 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
560
561
562 (% style="color:#037691" %)**Downlink Command:**
563
564 * 0xE400802212     Same as: AT+STYPE=80221
565
566 (% style="color:red" %)**Note:**
567
568 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
569
570
571
572
573
574 = 4. Power consumption and battery =
575
576 == 4.1 Total Power Consumption ==
577
578 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
579
580
581 == 4.2 Reduce power consumption ==
582
583 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
584
585
586
587 == 4.3 Battery ==
588
589 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
590
591
592 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
593
594
595
596 = 5. Main Process Unit WSC1-L =
597
598 == 5.1 Features ==
599
600 * Wall Attachable.
601 * LoRaWAN v1.0.3 Class A protocol.
602 * RS485 / Modbus protocol
603 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
604 * AT Commands to change parameters
605 * Remote configure parameters via LoRaWAN Downlink
606 * Firmware upgradable via program port
607 * Powered by external 12v battery
608 * Back up rechargeable 1000mAh battery
609 * IP Rating: IP65
610 * Support default sensors or 3rd party RS485 sensors
611
612 == 5.2 Power Consumption ==
613
614 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
615
616
617
618 == 5.3 Storage & Operation Temperature ==
619
620 -20°C to +60°C
621
622
623 == 5.4 Pin Mapping ==
624
625 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
626
627
628 == 5.5 Mechanical ==
629
630 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
631
632
633
634
635 == 5.6 Connect to RS485 Sensors ==
636
637 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
638
639
640 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
641
642
643 Hardware Design for the Converter Board please see:
644
645 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
646
647
648
649
650
651 = 6. Weather Sensors =
652
653 == 6.1 Rain Gauge ~-~- WSS-01 ==
654
655 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
656
657
658 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
659
660 shape to make sure it works smoothly and is easy to clean.
661
662
663 WSS-01 is designed to support the Dragino Weather station solution.
664
665 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
666
667 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
668
669
670 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
671
672 to screw up and adjust the bottom horizontally.
673
674
675 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
676
677
678
679 === 6.1.1 Feature ===
680
681 * RS485 Rain Gauge
682 * Small dimension, easy to install
683 * Vents under funnel, avoid leaf or other things to avoid rain flow.
684 * ABS enclosure.
685 * Horizontal adjustable.
686
687 === 6.1.2 Specification ===
688
689 * Resolution: 0.2mm
690 * Accuracy: ±3%
691 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
692 * Input Power: DC 5~~24v
693 * Interface: RS485
694 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
695 * Working Humidity: <100% (no dewing)
696 * Power Consumption: 4mA @ 12v.
697
698 === 6.1.3 Dimension ===
699
700 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
701
702
703 === 6.1.4 Pin Mapping ===
704
705 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
706
707
708
709
710 === 6.1.5 Installation Notice ===
711
712 Do not power on while connect the cables. Double check the wiring before power on.
713
714 Installation Photo as reference:
715
716
717 (% style="color:#4472c4" %)** Install on Ground:**
718
719 WSS-01 Rain Gauge include screws so can install in ground directly .
720
721
722 (% style="color:#4472c4" %)** Install on pole:**
723
724 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
725
726 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
727
728
729 WS-K2: Bracket Kit for Pole installation:
730
731 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
732
733 WSSC-K2 dimension document, please see:
734
735 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
736
737
738
739 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
740
741 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
742
743 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
744
745
746 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
747
748
749 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
750
751 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
752
753
754 === 6.2.1 Feature ===
755
756 * RS485 wind speed / direction sensor
757 * PC enclosure, resist corrosion
758
759 === 6.2.2 Specification ===
760
761 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
762 * Wind direction range: 0 ~~ 360°
763 * Start wind speed: ≤0.3m/s
764 * Accuracy: ±(0.3+0.03V)m/s , ±1°
765 * Input Power: DC 5~~24v
766 * Interface: RS485
767 * Working Temperature: -30℃~70℃
768 * Working Humidity: <100% (no dewing)
769 * Power Consumption: 13mA ~~ 12v.
770 * Cable Length: 2 meters
771
772 === 6.2.3 Dimension ===
773
774 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
775
776
777 === 6.2.4 Pin Mapping ===
778
779 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
780
781
782 === 6.2.4 Angle Mapping ===
783
784 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
785
786
787 === 6.2.5 Installation Notice ===
788
789 Do not power on while connect the cables. Double check the wiring before power on.
790
791
792 The sensor must be installed with below direction, towards North.
793
794
795 |(((
796 North
797 )))
798
799 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
800
801
802
803
804
805
806
807
808 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
809
810 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
811
812
813 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
814
815
816 WSS-03 is designed to support the Dragino Weather station solution.
817
818 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
819
820 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
821
822
823 === 6.3.1 Feature ===
824
825 * RS485 CO2, PM2.5, PM10 sensor
826 * NDIR to measure CO2 with Internal Temperature Compensation
827 * Laser Beam Scattering to PM2.5 and PM10
828
829 === 6.3.2 Specification ===
830
831 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
832 * CO2 resolution: 1ppm
833 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
834 * PM2.5/PM10 resolution: 1μg/m3
835 * Input Power: DC 7 ~~ 24v
836 * Preheat time: 3min
837 * Interface: RS485
838 * Working Temperature:
839 ** CO2: 0℃~50℃;
840 ** PM2.5/PM10: -30 ~~ 50℃
841 * Working Humidity:
842 ** PM2.5/PM10: 15~80%RH (no dewing)
843 ** CO2: 0~95%RH
844 * Power Consumption: 50mA@ 12v.
845
846 === 6.3.3 Dimension ===
847
848 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
849
850
851 === 6.3.4 Pin Mapping ===
852
853 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
854
855
856 === 6.3.5 Installation Notice ===
857
858 Do not power on while connect the cables. Double check the wiring before power on.
859
860 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
861
862 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
863
864
865
866
867
868
869 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
870
871 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
872
873
874 WSS-04 has auto heating feature, this ensures measurement more reliable.
875
876
877 WSS-04 is designed to support the Dragino Weather station solution.
878
879 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
880
881 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
882
883
884
885 === 6.4.1 Feature ===
886
887 * RS485 Rain/Snow detect sensor
888 * Surface heating to dry
889 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
890
891 === 6.4.2 Specification ===
892
893 * Detect if there is rain or snow
894 * Input Power: DC 12 ~~ 24v
895 * Interface: RS485
896 * Working Temperature: -30℃~70℃
897 * Working Humidity: 10~90%RH
898 * Power Consumption:
899 ** No heating: 12mA @ 12v,
900 ** heating: 94ma @ 12v.
901
902 === 6.4.3 Dimension ===
903
904 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
905
906
907 === 6.4.4 Pin Mapping ===
908
909 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
910
911
912 === 6.4.5 Installation Notice ===
913
914 Do not power on while connect the cables. Double check the wiring before power on.
915
916
917 Install with 15°degree.
918
919 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
920
921 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
922
923
924
925
926 === 6.4.6 Heating ===
927
928
929 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
930
931
932
933
934
935 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
936
937 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
938
939
940 WSS-05 is designed to support the Dragino Weather station solution.
941
942 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
943
944 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
945
946
947 === 6.5.1 Feature ===
948
949 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
950
951 === 6.5.2 Specification ===
952
953 * Input Power: DC 12 ~~ 24v
954 * Interface: RS485
955 * Temperature Sensor Spec:
956 ** Range: -30 ~~ 70℃
957 ** resolution 0.1℃
958 ** Accuracy: ±0.5℃
959 * Humidity Sensor Spec:
960 ** Range: 0 ~~ 100% RH
961 ** resolution 0.1 %RH
962 ** Accuracy: 3% RH
963 * Pressure Sensor Spec:
964 ** Range: 10~1100hPa
965 ** Resolution: 0.1hPa
966 ** Accuracy: ±0.1hPa
967 * Illuminate sensor:
968 ** Range: 0~2/20/200kLux
969 ** Resolution: 10 Lux
970 ** Accuracy: ±3%FS
971 * Working Temperature: -30℃~70℃
972 * Working Humidity: 10~90%RH
973 * Power Consumption: 4mA @ 12v
974
975 === 6.5.3 Dimension ===
976
977 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
978
979
980 === 6.5.4 Pin Mapping ===
981
982 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
983
984
985 === 6.5.5 Installation Notice ===
986
987 Do not power on while connect the cables. Double check the wiring before power on.
988
989
990
991 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
992
993
994 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
995
996
997 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
998
999 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1000
1001
1002 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1003
1004
1005 WSS-06 is designed to support the Dragino Weather station solution.
1006
1007
1008 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1009
1010 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1011
1012
1013
1014 === 6.6.1 Feature ===
1015
1016 * RS485 Total Solar Radiation sensor
1017 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1018 * Measure Reflected Radiation if sense area towards ground.
1019
1020 === 6.6.2 Specification ===
1021
1022 * Input Power: DC 5 ~~ 24v
1023 * Interface: RS485
1024 * Detect spectrum: 0.3~3μm(300~3000nm)
1025 * Measure strength range: 0~2000W/m2
1026 * Resolution: 0.1W/m2
1027 * Accuracy: ±3%
1028 * Yearly Stability: ≤±2%
1029 * Cosine response: ≤7% (@ Sun angle 10°)
1030 * Temperature Effect: ±2%(-10℃~40℃)
1031 * Working Temperature: -40℃~70℃
1032 * Working Humidity: 10~90%RH
1033 * Power Consumption: 4mA @ 12v
1034
1035 === 6.6.3 Dimension ===
1036
1037 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1038
1039
1040 === 6.6.4 Pin Mapping ===
1041
1042 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1043
1044
1045 === 6.6.5 Installation Notice ===
1046
1047 Do not power on while connect the cables. Double check the wiring before power on.
1048
1049 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1050
1051 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1052
1053
1054 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1055
1056 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1057
1058
1059 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1060
1061
1062
1063 WSS-07 is designed to support the Dragino Weather station solution.
1064
1065
1066 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1067
1068 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1069
1070
1071 === 6.7.1 Feature ===
1072
1073 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1074
1075
1076 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1077
1078
1079 === 6.7.2 Specification ===
1080
1081 * Input Power: DC 5 ~~ 24v
1082 * Interface: RS485
1083 * Response Spectrum: 400~700nm
1084 * Measure range: 0~2500μmol/m2•s
1085 * Resolution: 1μmol/m2•s
1086 * Accuracy: ±2%
1087 * Yearly Stability: ≤±2%
1088 * Working Temperature: -30℃~75℃
1089 * Working Humidity: 10~90%RH
1090 * Power Consumption: 3mA @ 12v
1091
1092 === 6.7.3 Dimension ===
1093
1094 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1095
1096
1097 === 6.7.4 Pin Mapping ===
1098
1099 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1100
1101
1102 === 6.7.5 Installation Notice ===
1103
1104 Do not power on while connect the cables. Double check the wiring before power on.
1105
1106
1107 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1108
1109 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1110
1111
1112 = 7. FAQ =
1113
1114 == 7.1 What else do I need to purchase to build Weather Station? ==
1115
1116 Below is the installation photo and structure:
1117
1118 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1119
1120
1121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1122
1123
1124
1125
1126 == 7.2 How to upgrade firmware for WSC1-L? ==
1127
1128 Firmware Location & Change log:
1129
1130 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1131
1132
1133 Firmware Upgrade instruction:
1134
1135 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1136
1137
1138 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1139
1140 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1141
1142
1143
1144 == 7.4 Can I add my weather sensors? ==
1145
1146 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1147
1148
1149 = 8. Trouble Shooting =
1150
1151
1152
1153
1154
1155
1156 = 9. Order Info =
1157
1158
1159 == 9.1 Main Process Unit ==
1160
1161 Part Number: **WSC1-L-XX**
1162
1163 **XX**: The default frequency band
1164
1165 * **AS923**: LoRaWAN AS923 band
1166 * **AU915**: LoRaWAN AU915 band
1167 * **EU433**: LoRaWAN EU433 band
1168 * **EU868**: LoRaWAN EU868 band
1169 * **KR920**: LoRaWAN KR920 band
1170 * **US915**: LoRaWAN US915 band
1171 * **IN865**: LoRaWAN IN865 band
1172 * **CN470**: LoRaWAN CN470 band
1173
1174 == 9.2 Sensors ==
1175
1176 |**Sensor Model**|**Part Number**
1177 |**Rain Gauge**|WSS-01
1178 |**Rain Gauge installation Bracket for Pole**|WS-K2
1179 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1180 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1181 |**Rain/Snow Detect Sensor**|WSS-04
1182 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1183 |**Total Solar Radiation Sensor**|WSS-06
1184 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1185
1186 = 10. Support =
1187
1188 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1189 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1190
1191 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1192
1193
1194
1195
1196
1197 = 11. Appendix I: Field Installation Photo =
1198
1199
1200 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1201
1202
1203 **Storage Battery**: 12v,12AH li battery
1204
1205
1206 Wind Speed/Direction.
1207
1208 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1209
1210
1211 Total Solar Radiation sensor
1212
1213 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1214
1215
1216
1217 PAR Sensor
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1220
1221
1222 CO2/PM2.5/PM10 3 in 1 sensor
1223
1224 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1225
1226
1227 Rain / Snow Detect:
1228
1229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1230
1231
1232 Rain Gauge.
1233
1234 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]