Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
144
145
146 [[image:1656042745346-283.png]]
147
148
149
150 == 2.4 Uplink Payload ==
151
152 Uplink payloads include two types: Valid Sensor Value and other status / control command.
153
154 * Valid Sensor Value: Use FPORT=2
155 * Other control command: Use FPORT other than 2.
156
157
158 === 2.4.1 Uplink FPORT~=5, Device Status ===
159
160 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
161
162
163 (((
164 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
165 )))
166
167 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
168 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
169 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
170
171 [[image:1656043061044-343.png]]
172
173
174 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
175
176
177
178 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
179
180 For WSC1-L, this value is 0x0D.
181
182
183
184 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
185
186 0x0100, Means: v1.0.0 version.
187
188
189
190 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
191
192 *0x01: EU868
193
194 *0x02: US915
195
196 *0x03: IN865
197
198 *0x04: AU915
199
200 *0x05: KZ865
201
202 *0x06: RU864
203
204 *0x07: AS923
205
206 *0x08: AS923-1
207
208 *0x09: AS923-2
209
210 *0x0a: AS923-3
211
212
213
214 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
215
216 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
217
218
219
220 ==== (% style="color:#037691" %)**BAT:**(%%) ====
221
222 shows the battery voltage for WSC1-L MCU.
223
224 Ex1: 0x0BD6/1000 = 3.03 V
225
226
227
228 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
229
230 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
231 |Byte3|Byte2|Byte1
232
233 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
234
235 [[image:image-20220624134713-1.png]]
236
237
238 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
239
240 External sensors detected by WSC1-L include :
241
242 custom sensor A1,
243
244 PAR sensor (WSS-07),
245
246 Total Solar Radiation sensor (WSS-06),
247
248 CO2/PM2.5/PM10 (WSS-03),
249
250 Wind Speed/Direction (WSS-02)
251
252
253 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
254
255 (% style="color:#037691" %)**Downlink:0x26 01**
256
257 [[image:1656049673488-415.png]]
258
259
260
261 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
262
263 (((
264 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
265 )))
266
267 (((
268 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
269 )))
270
271
272 (((
273 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
274 )))
275
276
277 (% style="color:#4472c4" %)** Uplink Payload**:
278
279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
280 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
281
282 (% style="color:#4472c4" %)** Sensor Segment Define**:
283
284 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
285 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
286
287 (% style="color:#4472c4" %)**Sensor Type Table:**
288
289 [[image:image-20220624140352-2.png]]
290
291
292 Below is an example payload:  [[image:image-20220624140615-3.png]]
293
294
295 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
296
297 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
298
299 Uplink 1:  [[image:image-20220624140735-4.png]]
300
301 Uplink 2:  [[image:image-20220624140842-5.png]]
302
303
304 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
305
306 Uplink 1:  [[image:image-20220624141025-6.png]]
307
308 Uplink 2:  [[image:image-20220624141100-7.png]]
309
310
311
312
313 === 2.4.3 Decoder in TTN V3 ===
314
315 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
316
317
318 Download decoder for suitable platform from:
319
320 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
321
322 and put as below:
323
324 [[image:1656051152438-578.png]]
325
326
327
328 == 2.5 Show data on Application Server ==
329
330 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
331
332
333 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
334
335 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
336
337 [[image:1656051197172-131.png]]
338
339
340 **Add TagoIO:**
341
342 [[image:1656051223585-631.png]]
343
344
345 **Authorization:**
346
347 [[image:1656051248318-368.png]]
348
349
350 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
351
352 [[image:1656051277767-168.png]]
353
354
355
356 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
357
358 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
359
360 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
361 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
362
363 There are two kinds of commands to configure WSC1-L, they are:
364
365 * (% style="color:#4472c4" %)**General Commands**.
366
367 These commands are to configure:
368
369 * General system settings like: uplink interval.
370 * LoRaWAN protocol & radio related command.
371
372 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
373
374 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
375
376
377 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
378
379 These commands only valid for WSC1-L, as below:
380
381
382
383 == 3.1 Set Transmit Interval Time ==
384
385 Feature: Change LoRaWAN End Node Transmit Interval.
386
387 (% style="color:#037691" %)**AT Command: AT+TDC**
388
389 [[image:image-20220624142619-8.png]]
390
391
392 (% style="color:#037691" %)**Downlink Command: 0x01**
393
394 Format: Command Code (0x01) followed by 3 bytes time value.
395
396 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
397
398 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
399 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
400
401
402
403
404 == 3.2 Set Emergency Mode ==
405
406 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
407
408 (% style="color:#037691" %)**AT Command:**
409
410 [[image:image-20220624142956-9.png]]
411
412
413 (% style="color:#037691" %)**Downlink Command:**
414
415 * 0xE101     Same as: AT+ALARMMOD=1
416 * 0xE100     Same as: AT+ALARMMOD=0
417
418
419
420
421 == 3.3 Add or Delete RS485 Sensor ==
422
423 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
424
425 (% style="color:#037691" %)**AT Command: **
426
427 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
428
429 * Type_Code range:  A1 ~~ A4
430 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
431 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
432 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
433 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
434 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
435 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
436
437
438
439 **Example:**
440
441 User need to change external sensor use the type code as address code.
442
443 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
444
445 [[image:image-20220624143553-10.png]]
446
447
448 The response frame of the sensor is as follows:
449
450 [[image:image-20220624143618-11.png]]
451
452
453 **Then the following parameters should be:**
454
455 * Address_Code range: A1
456 * Query_Length: 8
457 * Query_Command: A103000000019CAA
458 * Read_Length: 8
459 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
460 * has_CRC: 1
461 * timeout: 1500 (Fill in the test according to the actual situation)
462
463
464 **So the input command is:**
465
466 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
467
468
469 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
470
471 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
472 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
473 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
474
475 **Related commands:**
476
477 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
478
479 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
480
481
482 (% style="color:#037691" %)**Downlink Command:  **
483
484 **delete custom sensor A1:**
485
486 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
487
488 **Remove all custom sensors**
489
490 * 0xE5FF  
491
492
493
494
495 == 3.4 RS485 Test Command ==
496
497 (% style="color:#037691" %)**AT Command:**
498
499 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
500 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
501 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
502 Send command to 485 sensor
503
504 Range : no more than 10 bytes
505 )))|(% style="width:85px" %)OK
506
507 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
508
509 AT+RSWRITE=0103000001840A
510
511
512 (% style="color:#037691" %)**Downlink Command:**
513
514 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
515
516
517
518
519 == 3.5 RS485 response timeout ==
520
521 Feature: Set or get extended time to receive 485 sensor data.
522
523 (% style="color:#037691" %)**AT Command:**
524
525 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
526 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
527 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
528 Set response timeout to:
529
530 Range : 0~~10000
531 )))|(% style="width:85px" %)OK
532
533
534 (% style="color:#037691" %)**Downlink Command:**
535
536 Format: Command Code (0xE0) followed by 3 bytes time value.
537
538 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
539
540 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
541 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
542
543
544
545
546 == 3.6 Set Sensor Type ==
547
548 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
549
550 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
551
552 [[image:image-20220624144904-12.png]]
553
554
555 (% style="color:#037691" %)**AT Command:**
556
557 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
558 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
559 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
560
561 Eg: The setting command **AT+STYPE=802212** means:
562
563 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
564 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
565 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
566 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
567 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
568 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
569 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
570
571 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
572
573
574 (% style="color:#037691" %)**Downlink Command:**
575
576 * 0xE400802212     Same as: AT+STYPE=80221
577
578 (% style="color:red" %)**Note:**
579
580 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
581
582
583
584
585 = 4. Power consumption and battery =
586
587 == 4.1 Total Power Consumption ==
588
589 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
590
591
592 == 4.2 Reduce power consumption ==
593
594 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
595
596
597 == 4.3 Battery ==
598
599 (((
600 All sensors are only power by external power source. If external power source is off. All sensor won't work.
601 )))
602
603 (((
604 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
605 )))
606
607
608
609 = 5. Main Process Unit WSC1-L =
610
611 == 5.1 Features ==
612
613 * Wall Attachable.
614 * LoRaWAN v1.0.3 Class A protocol.
615 * RS485 / Modbus protocol
616 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
617 * AT Commands to change parameters
618 * Remote configure parameters via LoRaWAN Downlink
619 * Firmware upgradable via program port
620 * Powered by external 12v battery
621 * Back up rechargeable 1000mAh battery
622 * IP Rating: IP65
623 * Support default sensors or 3rd party RS485 sensors
624
625
626
627
628 == 5.2 Power Consumption ==
629
630 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
631
632
633
634 == 5.3 Storage & Operation Temperature ==
635
636 -20°C to +60°C
637
638
639 == 5.4 Pin Mapping ==
640
641 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
642
643
644 == 5.5 Mechanical ==
645
646 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
647
648
649
650
651 == 5.6 Connect to RS485 Sensors ==
652
653 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
654
655
656 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
657
658
659 Hardware Design for the Converter Board please see:
660
661 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
662
663
664
665
666
667 = 6. Weather Sensors =
668
669 == 6.1 Rain Gauge ~-~- WSS-01 ==
670
671 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
672
673
674 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
675
676 shape to make sure it works smoothly and is easy to clean.
677
678
679 WSS-01 is designed to support the Dragino Weather station solution.
680
681 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
682
683 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
684
685
686 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
687
688 to screw up and adjust the bottom horizontally.
689
690
691 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
692
693
694
695 === 6.1.1 Feature ===
696
697 * RS485 Rain Gauge
698 * Small dimension, easy to install
699 * Vents under funnel, avoid leaf or other things to avoid rain flow.
700 * ABS enclosure.
701 * Horizontal adjustable.
702
703 === 6.1.2 Specification ===
704
705 * Resolution: 0.2mm
706 * Accuracy: ±3%
707 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
708 * Input Power: DC 5~~24v
709 * Interface: RS485
710 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
711 * Working Humidity: <100% (no dewing)
712 * Power Consumption: 4mA @ 12v.
713
714 === 6.1.3 Dimension ===
715
716 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
717
718
719 === 6.1.4 Pin Mapping ===
720
721 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
722
723
724
725
726 === 6.1.5 Installation Notice ===
727
728 Do not power on while connect the cables. Double check the wiring before power on.
729
730 Installation Photo as reference:
731
732
733 (% style="color:#4472c4" %)** Install on Ground:**
734
735 WSS-01 Rain Gauge include screws so can install in ground directly .
736
737
738 (% style="color:#4472c4" %)** Install on pole:**
739
740 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
741
742 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
743
744
745 WS-K2: Bracket Kit for Pole installation:
746
747 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
748
749 WSSC-K2 dimension document, please see:
750
751 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
752
753
754
755 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
756
757 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
758
759 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
760
761
762 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
763
764
765 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
766
767 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
768
769
770 === 6.2.1 Feature ===
771
772 * RS485 wind speed / direction sensor
773 * PC enclosure, resist corrosion
774
775 === 6.2.2 Specification ===
776
777 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
778 * Wind direction range: 0 ~~ 360°
779 * Start wind speed: ≤0.3m/s
780 * Accuracy: ±(0.3+0.03V)m/s , ±1°
781 * Input Power: DC 5~~24v
782 * Interface: RS485
783 * Working Temperature: -30℃~70℃
784 * Working Humidity: <100% (no dewing)
785 * Power Consumption: 13mA ~~ 12v.
786 * Cable Length: 2 meters
787
788 === 6.2.3 Dimension ===
789
790 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
791
792
793 === 6.2.4 Pin Mapping ===
794
795 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
796
797
798 === 6.2.4 Angle Mapping ===
799
800 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
801
802
803 === 6.2.5 Installation Notice ===
804
805 Do not power on while connect the cables. Double check the wiring before power on.
806
807
808 The sensor must be installed with below direction, towards North.
809
810
811 |(((
812 North
813 )))
814
815 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
816
817
818
819
820
821
822
823
824 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
825
826 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
827
828
829 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
830
831
832 WSS-03 is designed to support the Dragino Weather station solution.
833
834 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
835
836 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
837
838
839 === 6.3.1 Feature ===
840
841 * RS485 CO2, PM2.5, PM10 sensor
842 * NDIR to measure CO2 with Internal Temperature Compensation
843 * Laser Beam Scattering to PM2.5 and PM10
844
845 === 6.3.2 Specification ===
846
847 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
848 * CO2 resolution: 1ppm
849 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
850 * PM2.5/PM10 resolution: 1μg/m3
851 * Input Power: DC 7 ~~ 24v
852 * Preheat time: 3min
853 * Interface: RS485
854 * Working Temperature:
855 ** CO2: 0℃~50℃;
856 ** PM2.5/PM10: -30 ~~ 50℃
857 * Working Humidity:
858 ** PM2.5/PM10: 15~80%RH (no dewing)
859 ** CO2: 0~95%RH
860 * Power Consumption: 50mA@ 12v.
861
862 === 6.3.3 Dimension ===
863
864 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
865
866
867 === 6.3.4 Pin Mapping ===
868
869 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
870
871
872 === 6.3.5 Installation Notice ===
873
874 Do not power on while connect the cables. Double check the wiring before power on.
875
876 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
877
878 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
879
880
881
882
883
884
885 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
886
887 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
888
889
890 WSS-04 has auto heating feature, this ensures measurement more reliable.
891
892
893 WSS-04 is designed to support the Dragino Weather station solution.
894
895 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
896
897 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
898
899
900
901 === 6.4.1 Feature ===
902
903 * RS485 Rain/Snow detect sensor
904 * Surface heating to dry
905 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
906
907 === 6.4.2 Specification ===
908
909 * Detect if there is rain or snow
910 * Input Power: DC 12 ~~ 24v
911 * Interface: RS485
912 * Working Temperature: -30℃~70℃
913 * Working Humidity: 10~90%RH
914 * Power Consumption:
915 ** No heating: 12mA @ 12v,
916 ** heating: 94ma @ 12v.
917
918 === 6.4.3 Dimension ===
919
920 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
921
922
923 === 6.4.4 Pin Mapping ===
924
925 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
926
927
928 === 6.4.5 Installation Notice ===
929
930 Do not power on while connect the cables. Double check the wiring before power on.
931
932
933 Install with 15°degree.
934
935 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
936
937 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
938
939
940
941
942 === 6.4.6 Heating ===
943
944
945 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
946
947
948
949
950
951 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
952
953 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
954
955
956 WSS-05 is designed to support the Dragino Weather station solution.
957
958 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
959
960 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
961
962
963 === 6.5.1 Feature ===
964
965 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
966
967 === 6.5.2 Specification ===
968
969 * Input Power: DC 12 ~~ 24v
970 * Interface: RS485
971 * Temperature Sensor Spec:
972 ** Range: -30 ~~ 70℃
973 ** resolution 0.1℃
974 ** Accuracy: ±0.5℃
975 * Humidity Sensor Spec:
976 ** Range: 0 ~~ 100% RH
977 ** resolution 0.1 %RH
978 ** Accuracy: 3% RH
979 * Pressure Sensor Spec:
980 ** Range: 10~1100hPa
981 ** Resolution: 0.1hPa
982 ** Accuracy: ±0.1hPa
983 * Illuminate sensor:
984 ** Range: 0~2/20/200kLux
985 ** Resolution: 10 Lux
986 ** Accuracy: ±3%FS
987 * Working Temperature: -30℃~70℃
988 * Working Humidity: 10~90%RH
989 * Power Consumption: 4mA @ 12v
990
991 === 6.5.3 Dimension ===
992
993 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
994
995
996 === 6.5.4 Pin Mapping ===
997
998 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
999
1000
1001 === 6.5.5 Installation Notice ===
1002
1003 Do not power on while connect the cables. Double check the wiring before power on.
1004
1005
1006
1007 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1008
1009
1010 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1011
1012
1013 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1014
1015 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1016
1017
1018 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1019
1020
1021 WSS-06 is designed to support the Dragino Weather station solution.
1022
1023
1024 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1025
1026 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1027
1028
1029
1030 === 6.6.1 Feature ===
1031
1032 * RS485 Total Solar Radiation sensor
1033 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1034 * Measure Reflected Radiation if sense area towards ground.
1035
1036 === 6.6.2 Specification ===
1037
1038 * Input Power: DC 5 ~~ 24v
1039 * Interface: RS485
1040 * Detect spectrum: 0.3~3μm(300~3000nm)
1041 * Measure strength range: 0~2000W/m2
1042 * Resolution: 0.1W/m2
1043 * Accuracy: ±3%
1044 * Yearly Stability: ≤±2%
1045 * Cosine response: ≤7% (@ Sun angle 10°)
1046 * Temperature Effect: ±2%(-10℃~40℃)
1047 * Working Temperature: -40℃~70℃
1048 * Working Humidity: 10~90%RH
1049 * Power Consumption: 4mA @ 12v
1050
1051 === 6.6.3 Dimension ===
1052
1053 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1054
1055
1056 === 6.6.4 Pin Mapping ===
1057
1058 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1059
1060
1061 === 6.6.5 Installation Notice ===
1062
1063 Do not power on while connect the cables. Double check the wiring before power on.
1064
1065 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1066
1067 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1068
1069
1070 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1071
1072 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1073
1074
1075 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1076
1077
1078
1079 WSS-07 is designed to support the Dragino Weather station solution.
1080
1081
1082 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1083
1084 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1085
1086
1087 === 6.7.1 Feature ===
1088
1089 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1090
1091
1092 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1093
1094
1095 === 6.7.2 Specification ===
1096
1097 * Input Power: DC 5 ~~ 24v
1098 * Interface: RS485
1099 * Response Spectrum: 400~700nm
1100 * Measure range: 0~2500μmol/m2•s
1101 * Resolution: 1μmol/m2•s
1102 * Accuracy: ±2%
1103 * Yearly Stability: ≤±2%
1104 * Working Temperature: -30℃~75℃
1105 * Working Humidity: 10~90%RH
1106 * Power Consumption: 3mA @ 12v
1107
1108 === 6.7.3 Dimension ===
1109
1110 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1111
1112
1113 === 6.7.4 Pin Mapping ===
1114
1115 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1116
1117
1118 === 6.7.5 Installation Notice ===
1119
1120 Do not power on while connect the cables. Double check the wiring before power on.
1121
1122
1123 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1124
1125 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1126
1127
1128 = 7. FAQ =
1129
1130 == 7.1 What else do I need to purchase to build Weather Station? ==
1131
1132 Below is the installation photo and structure:
1133
1134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1135
1136
1137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1138
1139
1140
1141
1142 == 7.2 How to upgrade firmware for WSC1-L? ==
1143
1144 Firmware Location & Change log:
1145
1146 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1147
1148
1149 Firmware Upgrade instruction:
1150
1151 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1152
1153
1154 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1155
1156 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1157
1158
1159
1160 == 7.4 Can I add my weather sensors? ==
1161
1162 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1163
1164
1165 = 8. Trouble Shooting =
1166
1167
1168
1169
1170
1171
1172 = 9. Order Info =
1173
1174
1175 == 9.1 Main Process Unit ==
1176
1177 Part Number: **WSC1-L-XX**
1178
1179 **XX**: The default frequency band
1180
1181 * **AS923**: LoRaWAN AS923 band
1182 * **AU915**: LoRaWAN AU915 band
1183 * **EU433**: LoRaWAN EU433 band
1184 * **EU868**: LoRaWAN EU868 band
1185 * **KR920**: LoRaWAN KR920 band
1186 * **US915**: LoRaWAN US915 band
1187 * **IN865**: LoRaWAN IN865 band
1188 * **CN470**: LoRaWAN CN470 band
1189
1190 == 9.2 Sensors ==
1191
1192 |**Sensor Model**|**Part Number**
1193 |**Rain Gauge**|WSS-01
1194 |**Rain Gauge installation Bracket for Pole**|WS-K2
1195 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1196 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1197 |**Rain/Snow Detect Sensor**|WSS-04
1198 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1199 |**Total Solar Radiation Sensor**|WSS-06
1200 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1201
1202 = 10. Support =
1203
1204 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1205 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1206
1207 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1208
1209
1210
1211
1212
1213 = 11. Appendix I: Field Installation Photo =
1214
1215
1216 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1217
1218
1219 **Storage Battery**: 12v,12AH li battery
1220
1221
1222 Wind Speed/Direction.
1223
1224 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1225
1226
1227 Total Solar Radiation sensor
1228
1229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1230
1231
1232
1233 PAR Sensor
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1236
1237
1238 CO2/PM2.5/PM10 3 in 1 sensor
1239
1240 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1241
1242
1243 Rain / Snow Detect:
1244
1245 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1246
1247
1248 Rain Gauge.
1249
1250 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0