Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153 === 2.4.1 Uplink FPORT~=5, Device Status ===
154
155 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
156
157
158 (((
159 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
160 )))
161
162 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
163 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
164 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
165
166 [[image:1656043061044-343.png]]
167
168
169 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
170
171
172
173 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
174
175 For WSC1-L, this value is 0x0D.
176
177
178
179 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
180
181 0x0100, Means: v1.0.0 version.
182
183
184
185 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
186
187 *0x01: EU868
188
189 *0x02: US915
190
191 *0x03: IN865
192
193 *0x04: AU915
194
195 *0x05: KZ865
196
197 *0x06: RU864
198
199 *0x07: AS923
200
201 *0x08: AS923-1
202
203 *0x09: AS923-2
204
205 *0x0a: AS923-3
206
207
208
209 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
210
211 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
212
213
214
215 ==== (% style="color:#037691" %)**BAT:**(%%) ====
216
217 shows the battery voltage for WSC1-L MCU.
218
219 Ex1: 0x0BD6/1000 = 3.03 V
220
221
222
223 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
224
225 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
226 |Byte3|Byte2|Byte1
227
228 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
229
230 [[image:image-20220624134713-1.png]]
231
232
233 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
234
235 External sensors detected by WSC1-L include :
236
237 custom sensor A1,
238
239 PAR sensor (WSS-07),
240
241 Total Solar Radiation sensor (WSS-06),
242
243 CO2/PM2.5/PM10 (WSS-03),
244
245 Wind Speed/Direction (WSS-02)
246
247
248 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
249
250 (% style="color:#037691" %)**Downlink:0x26 01**
251
252 [[image:1656049673488-415.png]]
253
254
255
256 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
257
258 (((
259 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
260 )))
261
262 (((
263 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
264 )))
265
266
267 (((
268 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
269 )))
270
271
272 (% style="color:#4472c4" %)** Uplink Payload**:
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
275 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
276
277 (% style="color:#4472c4" %)** Sensor Segment Define**:
278
279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
280 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
281
282 (% style="color:#4472c4" %)**Sensor Type Table:**
283
284 [[image:image-20220624140352-2.png]]
285
286
287 Below is an example payload:  [[image:image-20220624140615-3.png]]
288
289
290 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
291
292 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
293
294 Uplink 1:  [[image:image-20220624140735-4.png]]
295
296 Uplink 2:  [[image:image-20220624140842-5.png]]
297
298
299 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
300
301 Uplink 1:  [[image:image-20220624141025-6.png]]
302
303 Uplink 2:  [[image:image-20220624141100-7.png]]
304
305
306
307
308 === 2.4.3 Decoder in TTN V3 ===
309
310 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
311
312
313 Download decoder for suitable platform from:
314
315 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
316
317 and put as below:
318
319 [[image:1656051152438-578.png]]
320
321
322
323 == 2.5 Show data on Application Server ==
324
325 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
326
327
328 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
329
330 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
331
332 [[image:1656051197172-131.png]]
333
334
335 **Add TagoIO:**
336
337 [[image:1656051223585-631.png]]
338
339
340 **Authorization:**
341
342 [[image:1656051248318-368.png]]
343
344
345 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
346
347 [[image:1656051277767-168.png]]
348
349
350
351 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
352
353 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
354
355 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
356 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
357
358 There are two kinds of commands to configure WSC1-L, they are:
359
360 * (% style="color:#4472c4" %)**General Commands**.
361
362 These commands are to configure:
363
364 * General system settings like: uplink interval.
365 * LoRaWAN protocol & radio related command.
366
367 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
368
369 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
370
371
372 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
373
374 These commands only valid for WSC1-L, as below:
375
376
377 == 3.1 Set Transmit Interval Time ==
378
379 Feature: Change LoRaWAN End Node Transmit Interval.
380
381 (% style="color:#037691" %)**AT Command: AT+TDC**
382
383 [[image:image-20220624142619-8.png]]
384
385
386 (% style="color:#037691" %)**Downlink Command: 0x01**
387
388 Format: Command Code (0x01) followed by 3 bytes time value.
389
390 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
391
392 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
393 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
394
395
396
397 == 3.2 Set Emergency Mode ==
398
399 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
400
401 (% style="color:#037691" %)**AT Command:**
402
403 [[image:image-20220624142956-9.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command:**
407
408 * 0xE101     Same as: AT+ALARMMOD=1
409 * 0xE100     Same as: AT+ALARMMOD=0
410
411
412
413 == 3.3 Add or Delete RS485 Sensor ==
414
415 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
416
417 (% style="color:#037691" %)**AT Command: **
418
419 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
420
421 * Type_Code range:  A1 ~~ A4
422 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
423 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
424 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
425 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
426 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
427 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
428
429
430 **Example:**
431
432 User need to change external sensor use the type code as address code.
433
434 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
435
436 [[image:image-20220624143553-10.png]]
437
438
439 The response frame of the sensor is as follows:
440
441 [[image:image-20220624143618-11.png]]
442
443
444 **Then the following parameters should be:**
445
446 * Address_Code range: A1
447 * Query_Length: 8
448 * Query_Command: A103000000019CAA
449 * Read_Length: 8
450 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
451 * has_CRC: 1
452 * timeout: 1500 (Fill in the test according to the actual situation)
453
454
455 **So the input command is:**
456
457 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
458
459
460 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
461
462 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
463 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
464 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
465
466 **Related commands:**
467
468 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
469
470 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
471
472
473 (% style="color:#037691" %)**Downlink Command:  **
474
475 **delete custom sensor A1:**
476
477 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
478
479 **Remove all custom sensors**
480
481 * 0xE5FF  
482
483
484
485 == 3.4 RS485 Test Command ==
486
487 (% style="color:#037691" %)**AT Command:**
488
489 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
490 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
491 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
492 Send command to 485 sensor
493
494 Range : no more than 10 bytes
495 )))|(% style="width:85px" %)OK
496
497 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
498
499 AT+RSWRITE=0103000001840A
500
501
502 (% style="color:#037691" %)**Downlink Command:**
503
504 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
505
506
507
508 == 3.5 RS485 response timeout ==
509
510 Feature: Set or get extended time to receive 485 sensor data.
511
512 (% style="color:#037691" %)**AT Command:**
513
514 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
515 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
516 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
517 Set response timeout to:
518
519 Range : 0~~10000
520 )))|(% style="width:85px" %)OK
521
522
523 (% style="color:#037691" %)**Downlink Command:**
524
525 Format: Command Code (0xE0) followed by 3 bytes time value.
526
527 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
528
529 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
530 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
531
532
533
534 == 3.6 Set Sensor Type ==
535
536 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
537
538 See [[definition>>||anchor="H"]] for the sensor type.
539
540
541 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
542 | |A4|A3|A2|A1| | |
543 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
544 | | |Solar Radiation|PAR|PM10|PM2.5|(((
545 Rain
546
547 Gauge
548 )))|(((
549 Air
550
551 Pressure
552 )))
553 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
554 |Humidity|Temperature|CO2|(((
555 Rain/Snow
556
557 Detect
558 )))|illuminance|(((
559 Wind
560
561 Direction
562 )))|Wind Speed|BAT
563
564 (% style="color:#037691" %)**AT Command:**
565
566 |**Command Example**|**Function**|**Response**
567 |AT+STYPE=80221|Set sensor types|OK
568
569 Eg: The setting command **AT+STYPE=802212** means:
570
571 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
572 |0|0|0|0|1|0|0|0
573 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
574 |0|0|0|0|0|0|1|0
575 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
576 |0|0|1|0|0|0|0|1
577
578 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
579
580
581 (% style="color:#037691" %)**Downlink Command:**
582
583 * 0xE400802212     Same as: AT+STYPE=80221
584
585 (% style="color:red" %)**Note:**
586
587 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
588
589
590
591
592
593 = 4. Power consumption and battery =
594
595 == 4.1 Total Power Consumption ==
596
597 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
598
599
600 == 4.2 Reduce power consumption ==
601
602 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
603
604
605
606 == 4.3 Battery ==
607
608 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
609
610
611 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
612
613
614
615 = 5. Main Process Unit WSC1-L =
616
617 == 5.1 Features ==
618
619 * Wall Attachable.
620 * LoRaWAN v1.0.3 Class A protocol.
621 * RS485 / Modbus protocol
622 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
623 * AT Commands to change parameters
624 * Remote configure parameters via LoRaWAN Downlink
625 * Firmware upgradable via program port
626 * Powered by external 12v battery
627 * Back up rechargeable 1000mAh battery
628 * IP Rating: IP65
629 * Support default sensors or 3rd party RS485 sensors
630
631 == 5.2 Power Consumption ==
632
633 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
634
635
636
637 == 5.3 Storage & Operation Temperature ==
638
639 -20°C to +60°C
640
641
642 == 5.4 Pin Mapping ==
643
644 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
645
646
647 == 5.5 Mechanical ==
648
649 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
650
651
652
653
654 == 5.6 Connect to RS485 Sensors ==
655
656 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
657
658
659 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
660
661
662 Hardware Design for the Converter Board please see:
663
664 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
665
666
667
668
669
670 = 6. Weather Sensors =
671
672 == 6.1 Rain Gauge ~-~- WSS-01 ==
673
674 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
675
676
677 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
678
679 shape to make sure it works smoothly and is easy to clean.
680
681
682 WSS-01 is designed to support the Dragino Weather station solution.
683
684 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
685
686 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
687
688
689 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
690
691 to screw up and adjust the bottom horizontally.
692
693
694 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
695
696
697
698 === 6.1.1 Feature ===
699
700 * RS485 Rain Gauge
701 * Small dimension, easy to install
702 * Vents under funnel, avoid leaf or other things to avoid rain flow.
703 * ABS enclosure.
704 * Horizontal adjustable.
705
706 === 6.1.2 Specification ===
707
708 * Resolution: 0.2mm
709 * Accuracy: ±3%
710 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
711 * Input Power: DC 5~~24v
712 * Interface: RS485
713 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
714 * Working Humidity: <100% (no dewing)
715 * Power Consumption: 4mA @ 12v.
716
717 === 6.1.3 Dimension ===
718
719 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
720
721
722 === 6.1.4 Pin Mapping ===
723
724 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
725
726
727
728
729 === 6.1.5 Installation Notice ===
730
731 Do not power on while connect the cables. Double check the wiring before power on.
732
733 Installation Photo as reference:
734
735
736 (% style="color:#4472c4" %)** Install on Ground:**
737
738 WSS-01 Rain Gauge include screws so can install in ground directly .
739
740
741 (% style="color:#4472c4" %)** Install on pole:**
742
743 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
744
745 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
746
747
748 WS-K2: Bracket Kit for Pole installation:
749
750 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
751
752 WSSC-K2 dimension document, please see:
753
754 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
755
756
757
758 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
759
760 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
761
762 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
763
764
765 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
766
767
768 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
769
770 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
771
772
773 === 6.2.1 Feature ===
774
775 * RS485 wind speed / direction sensor
776 * PC enclosure, resist corrosion
777
778 === 6.2.2 Specification ===
779
780 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
781 * Wind direction range: 0 ~~ 360°
782 * Start wind speed: ≤0.3m/s
783 * Accuracy: ±(0.3+0.03V)m/s , ±1°
784 * Input Power: DC 5~~24v
785 * Interface: RS485
786 * Working Temperature: -30℃~70℃
787 * Working Humidity: <100% (no dewing)
788 * Power Consumption: 13mA ~~ 12v.
789 * Cable Length: 2 meters
790
791 === 6.2.3 Dimension ===
792
793 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
794
795
796 === 6.2.4 Pin Mapping ===
797
798 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
799
800
801 === 6.2.4 Angle Mapping ===
802
803 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
804
805
806 === 6.2.5 Installation Notice ===
807
808 Do not power on while connect the cables. Double check the wiring before power on.
809
810
811 The sensor must be installed with below direction, towards North.
812
813
814 |(((
815 North
816 )))
817
818 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
819
820
821
822
823
824
825
826
827 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
828
829 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
830
831
832 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
833
834
835 WSS-03 is designed to support the Dragino Weather station solution.
836
837 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
838
839 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
840
841
842 === 6.3.1 Feature ===
843
844 * RS485 CO2, PM2.5, PM10 sensor
845 * NDIR to measure CO2 with Internal Temperature Compensation
846 * Laser Beam Scattering to PM2.5 and PM10
847
848 === 6.3.2 Specification ===
849
850 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
851 * CO2 resolution: 1ppm
852 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
853 * PM2.5/PM10 resolution: 1μg/m3
854 * Input Power: DC 7 ~~ 24v
855 * Preheat time: 3min
856 * Interface: RS485
857 * Working Temperature:
858 ** CO2: 0℃~50℃;
859 ** PM2.5/PM10: -30 ~~ 50℃
860 * Working Humidity:
861 ** PM2.5/PM10: 15~80%RH (no dewing)
862 ** CO2: 0~95%RH
863 * Power Consumption: 50mA@ 12v.
864
865 === 6.3.3 Dimension ===
866
867 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
868
869
870 === 6.3.4 Pin Mapping ===
871
872 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
873
874
875 === 6.3.5 Installation Notice ===
876
877 Do not power on while connect the cables. Double check the wiring before power on.
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
880
881 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
882
883
884
885
886
887
888 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
889
890 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
891
892
893 WSS-04 has auto heating feature, this ensures measurement more reliable.
894
895
896 WSS-04 is designed to support the Dragino Weather station solution.
897
898 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
899
900 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
901
902
903
904 === 6.4.1 Feature ===
905
906 * RS485 Rain/Snow detect sensor
907 * Surface heating to dry
908 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
909
910 === 6.4.2 Specification ===
911
912 * Detect if there is rain or snow
913 * Input Power: DC 12 ~~ 24v
914 * Interface: RS485
915 * Working Temperature: -30℃~70℃
916 * Working Humidity: 10~90%RH
917 * Power Consumption:
918 ** No heating: 12mA @ 12v,
919 ** heating: 94ma @ 12v.
920
921 === 6.4.3 Dimension ===
922
923 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
924
925
926 === 6.4.4 Pin Mapping ===
927
928 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
929
930
931 === 6.4.5 Installation Notice ===
932
933 Do not power on while connect the cables. Double check the wiring before power on.
934
935
936 Install with 15°degree.
937
938 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
939
940 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
941
942
943
944
945 === 6.4.6 Heating ===
946
947
948 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
949
950
951
952
953
954 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
955
956 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
957
958
959 WSS-05 is designed to support the Dragino Weather station solution.
960
961 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
962
963 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
964
965
966 === 6.5.1 Feature ===
967
968 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
969
970 === 6.5.2 Specification ===
971
972 * Input Power: DC 12 ~~ 24v
973 * Interface: RS485
974 * Temperature Sensor Spec:
975 ** Range: -30 ~~ 70℃
976 ** resolution 0.1℃
977 ** Accuracy: ±0.5℃
978 * Humidity Sensor Spec:
979 ** Range: 0 ~~ 100% RH
980 ** resolution 0.1 %RH
981 ** Accuracy: 3% RH
982 * Pressure Sensor Spec:
983 ** Range: 10~1100hPa
984 ** Resolution: 0.1hPa
985 ** Accuracy: ±0.1hPa
986 * Illuminate sensor:
987 ** Range: 0~2/20/200kLux
988 ** Resolution: 10 Lux
989 ** Accuracy: ±3%FS
990 * Working Temperature: -30℃~70℃
991 * Working Humidity: 10~90%RH
992 * Power Consumption: 4mA @ 12v
993
994 === 6.5.3 Dimension ===
995
996 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
997
998
999 === 6.5.4 Pin Mapping ===
1000
1001 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1002
1003
1004 === 6.5.5 Installation Notice ===
1005
1006 Do not power on while connect the cables. Double check the wiring before power on.
1007
1008
1009
1010 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1011
1012
1013 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1014
1015
1016 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1017
1018 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1019
1020
1021 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1022
1023
1024 WSS-06 is designed to support the Dragino Weather station solution.
1025
1026
1027 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1028
1029 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1030
1031
1032
1033 === 6.6.1 Feature ===
1034
1035 * RS485 Total Solar Radiation sensor
1036 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1037 * Measure Reflected Radiation if sense area towards ground.
1038
1039 === 6.6.2 Specification ===
1040
1041 * Input Power: DC 5 ~~ 24v
1042 * Interface: RS485
1043 * Detect spectrum: 0.3~3μm(300~3000nm)
1044 * Measure strength range: 0~2000W/m2
1045 * Resolution: 0.1W/m2
1046 * Accuracy: ±3%
1047 * Yearly Stability: ≤±2%
1048 * Cosine response: ≤7% (@ Sun angle 10°)
1049 * Temperature Effect: ±2%(-10℃~40℃)
1050 * Working Temperature: -40℃~70℃
1051 * Working Humidity: 10~90%RH
1052 * Power Consumption: 4mA @ 12v
1053
1054 === 6.6.3 Dimension ===
1055
1056 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1057
1058
1059 === 6.6.4 Pin Mapping ===
1060
1061 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1062
1063
1064 === 6.6.5 Installation Notice ===
1065
1066 Do not power on while connect the cables. Double check the wiring before power on.
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1069
1070 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1071
1072
1073 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1074
1075 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1076
1077
1078 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1079
1080
1081
1082 WSS-07 is designed to support the Dragino Weather station solution.
1083
1084
1085 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1086
1087 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1088
1089
1090 === 6.7.1 Feature ===
1091
1092 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1093
1094
1095 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1096
1097
1098 === 6.7.2 Specification ===
1099
1100 * Input Power: DC 5 ~~ 24v
1101 * Interface: RS485
1102 * Response Spectrum: 400~700nm
1103 * Measure range: 0~2500μmol/m2•s
1104 * Resolution: 1μmol/m2•s
1105 * Accuracy: ±2%
1106 * Yearly Stability: ≤±2%
1107 * Working Temperature: -30℃~75℃
1108 * Working Humidity: 10~90%RH
1109 * Power Consumption: 3mA @ 12v
1110
1111 === 6.7.3 Dimension ===
1112
1113 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1114
1115
1116 === 6.7.4 Pin Mapping ===
1117
1118 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1119
1120
1121 === 6.7.5 Installation Notice ===
1122
1123 Do not power on while connect the cables. Double check the wiring before power on.
1124
1125
1126 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1127
1128 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1129
1130
1131 = 7. FAQ =
1132
1133 == 7.1 What else do I need to purchase to build Weather Station? ==
1134
1135 Below is the installation photo and structure:
1136
1137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1138
1139
1140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1141
1142
1143
1144
1145 == 7.2 How to upgrade firmware for WSC1-L? ==
1146
1147 Firmware Location & Change log:
1148
1149 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1150
1151
1152 Firmware Upgrade instruction:
1153
1154 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1155
1156
1157 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1158
1159 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1160
1161
1162
1163 == 7.4 Can I add my weather sensors? ==
1164
1165 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1166
1167
1168 = 8. Trouble Shooting =
1169
1170
1171
1172
1173
1174
1175 = 9. Order Info =
1176
1177
1178 == 9.1 Main Process Unit ==
1179
1180 Part Number: **WSC1-L-XX**
1181
1182 **XX**: The default frequency band
1183
1184 * **AS923**: LoRaWAN AS923 band
1185 * **AU915**: LoRaWAN AU915 band
1186 * **EU433**: LoRaWAN EU433 band
1187 * **EU868**: LoRaWAN EU868 band
1188 * **KR920**: LoRaWAN KR920 band
1189 * **US915**: LoRaWAN US915 band
1190 * **IN865**: LoRaWAN IN865 band
1191 * **CN470**: LoRaWAN CN470 band
1192
1193 == 9.2 Sensors ==
1194
1195 |**Sensor Model**|**Part Number**
1196 |**Rain Gauge**|WSS-01
1197 |**Rain Gauge installation Bracket for Pole**|WS-K2
1198 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1199 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1200 |**Rain/Snow Detect Sensor**|WSS-04
1201 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1202 |**Total Solar Radiation Sensor**|WSS-06
1203 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1204
1205 = 10. Support =
1206
1207 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1208 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1209
1210 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1211
1212
1213
1214
1215
1216 = 11. Appendix I: Field Installation Photo =
1217
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1220
1221
1222 **Storage Battery**: 12v,12AH li battery
1223
1224
1225 Wind Speed/Direction.
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1228
1229
1230 Total Solar Radiation sensor
1231
1232 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1233
1234
1235
1236 PAR Sensor
1237
1238 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1239
1240
1241 CO2/PM2.5/PM10 3 in 1 sensor
1242
1243 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1244
1245
1246 Rain / Snow Detect:
1247
1248 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1249
1250
1251 Rain Gauge.
1252
1253 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0