Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153 === 2.4.1 Uplink FPORT~=5, Device Status ===
154
155 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
156
157
158 (((
159 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
160 )))
161
162 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
163 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
164 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
165
166 [[image:1656043061044-343.png]]
167
168
169 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
170
171
172
173 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
174
175 For WSC1-L, this value is 0x0D.
176
177
178
179 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
180
181 0x0100, Means: v1.0.0 version.
182
183
184
185 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
186
187 *0x01: EU868
188
189 *0x02: US915
190
191 *0x03: IN865
192
193 *0x04: AU915
194
195 *0x05: KZ865
196
197 *0x06: RU864
198
199 *0x07: AS923
200
201 *0x08: AS923-1
202
203 *0x09: AS923-2
204
205 *0x0a: AS923-3
206
207
208
209 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
210
211 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
212
213
214
215 ==== (% style="color:#037691" %)**BAT:**(%%) ====
216
217 shows the battery voltage for WSC1-L MCU.
218
219 Ex1: 0x0BD6/1000 = 3.03 V
220
221
222
223 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
224
225 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
226 |Byte3|Byte2|Byte1
227
228 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
229
230 [[image:image-20220624134713-1.png]]
231
232
233 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
234
235 External sensors detected by WSC1-L include :
236
237 custom sensor A1,
238
239 PAR sensor (WSS-07),
240
241 Total Solar Radiation sensor (WSS-06),
242
243 CO2/PM2.5/PM10 (WSS-03),
244
245 Wind Speed/Direction (WSS-02)
246
247
248 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
249
250 (% style="color:#037691" %)**Downlink:0x26 01**
251
252 [[image:1656049673488-415.png]]
253
254
255
256 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
257
258 (((
259 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
260 )))
261
262 (((
263 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
264 )))
265
266
267 (((
268 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
269 )))
270
271
272 (% style="color:#4472c4" %)** Uplink Payload**:
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
275 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
276
277 (% style="color:#4472c4" %)** Sensor Segment Define**:
278
279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
280 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
281
282 (% style="color:#4472c4" %)**Sensor Type Table:**
283
284 [[image:image-20220624140352-2.png]]
285
286
287 Below is an example payload:  [[image:image-20220624140615-3.png]]
288
289
290 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
291
292 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
293
294 Uplink 1:  [[image:image-20220624140735-4.png]]
295
296 Uplink 2:  [[image:image-20220624140842-5.png]]
297
298
299 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
300
301 Uplink 1:  [[image:image-20220624141025-6.png]]
302
303 Uplink 2:  [[image:image-20220624141100-7.png]]
304
305
306
307
308 === 2.4.3 Decoder in TTN V3 ===
309
310 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
311
312
313 Download decoder for suitable platform from:
314
315 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
316
317 and put as below:
318
319 [[image:1656051152438-578.png]]
320
321
322
323 == 2.5 Show data on Application Server ==
324
325 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
326
327
328 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
329
330 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
331
332 [[image:1656051197172-131.png]]
333
334
335 **Add TagoIO:**
336
337 [[image:1656051223585-631.png]]
338
339
340 **Authorization:**
341
342 [[image:1656051248318-368.png]]
343
344
345 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
346
347 [[image:1656051277767-168.png]]
348
349
350
351 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
352
353 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
354
355 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
356 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
357
358 There are two kinds of commands to configure WSC1-L, they are:
359
360 * (% style="color:#4472c4" %)**General Commands**.
361
362 These commands are to configure:
363
364 * General system settings like: uplink interval.
365 * LoRaWAN protocol & radio related command.
366
367 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
368
369 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
370
371
372 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
373
374 These commands only valid for WSC1-L, as below:
375
376
377 == 3.1 Set Transmit Interval Time ==
378
379 Feature: Change LoRaWAN End Node Transmit Interval.
380
381 (% style="color:#037691" %)**AT Command: AT+TDC**
382
383 [[image:image-20220624142619-8.png]]
384
385
386 (% style="color:#037691" %)**Downlink Command: 0x01**
387
388 Format: Command Code (0x01) followed by 3 bytes time value.
389
390 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
391
392 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
393 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
394
395
396
397 == 3.2 Set Emergency Mode ==
398
399 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
400
401 (% style="color:#037691" %)**AT Command:**
402
403 [[image:image-20220624142956-9.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command:**
407
408 * 0xE101     Same as: AT+ALARMMOD=1
409 * 0xE100     Same as: AT+ALARMMOD=0
410
411
412
413 == 3.3 Add or Delete RS485 Sensor ==
414
415 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
416
417 (% style="color:#037691" %)**AT Command: **
418
419 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
420
421 * Type_Code range:  A1 ~~ A4
422 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
423 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
424 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
425 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
426 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
427 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
428
429
430 **Example:**
431
432 User need to change external sensor use the type code as address code.
433
434 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
435
436 [[image:image-20220624143553-10.png]]
437
438
439 The response frame of the sensor is as follows:
440
441 [[image:image-20220624143618-11.png]]
442
443
444 **Then the following parameters should be:**
445
446 * Address_Code range: A1
447 * Query_Length: 8
448 * Query_Command: A103000000019CAA
449 * Read_Length: 8
450 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
451 * has_CRC: 1
452 * timeout: 1500 (Fill in the test according to the actual situation)
453
454
455 **So the input command is:**
456
457 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
458
459
460 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
461
462 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
463 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
464 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
465
466 **Related commands:**
467
468 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
469
470 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
471
472
473 (% style="color:#037691" %)**Downlink Command:  **
474
475 **delete custom sensor A1:**
476
477 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
478
479 **Remove all custom sensors**
480
481 * 0xE5FF  
482
483
484
485 == 3.4 RS485 Test Command ==
486
487 (% style="color:#037691" %)**AT Command:**
488
489 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
490 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
491 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
492 Send command to 485 sensor
493
494 Range : no more than 10 bytes
495 )))|(% style="width:85px" %)OK
496
497 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
498
499 AT+RSWRITE=0103000001840A
500
501
502 (% style="color:#037691" %)**Downlink Command:**
503
504 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
505
506
507
508 == 3.5 RS485 response timeout ==
509
510 Feature: Set or get extended time to receive 485 sensor data.
511
512 (% style="color:#037691" %)**AT Command:**
513
514 |**Command Example**|**Function**|**Response**
515 |AT+DTR=1000|(((
516 Set response timeout to:
517
518 Range : 0~~10000
519 )))|OK
520
521 (% style="color:#037691" %)**Downlink Command:**
522
523 Format: Command Code (0xE0) followed by 3 bytes time value.
524
525 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
526
527 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
528 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
529
530
531
532 == 3.6 Set Sensor Type ==
533
534 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
535
536 See [[definition>>||anchor="H"]] for the sensor type.
537
538
539 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
540 | |A4|A3|A2|A1| | |
541 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
542 | | |Solar Radiation|PAR|PM10|PM2.5|(((
543 Rain
544
545 Gauge
546 )))|(((
547 Air
548
549 Pressure
550 )))
551 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
552 |Humidity|Temperature|CO2|(((
553 Rain/Snow
554
555 Detect
556 )))|illuminance|(((
557 Wind
558
559 Direction
560 )))|Wind Speed|BAT
561
562 (% style="color:#037691" %)**AT Command:**
563
564 |**Command Example**|**Function**|**Response**
565 |AT+STYPE=80221|Set sensor types|OK
566
567 Eg: The setting command **AT+STYPE=802212** means:
568
569 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
570 |0|0|0|0|1|0|0|0
571 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
572 |0|0|0|0|0|0|1|0
573 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
574 |0|0|1|0|0|0|0|1
575
576 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
577
578
579 (% style="color:#037691" %)**Downlink Command:**
580
581 * 0xE400802212     Same as: AT+STYPE=80221
582
583 (% style="color:red" %)**Note:**
584
585 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
586
587
588
589
590
591 = 4. Power consumption and battery =
592
593 == 4.1 Total Power Consumption ==
594
595 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
596
597
598 == 4.2 Reduce power consumption ==
599
600 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
601
602
603
604 == 4.3 Battery ==
605
606 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
607
608
609 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
610
611
612
613 = 5. Main Process Unit WSC1-L =
614
615 == 5.1 Features ==
616
617 * Wall Attachable.
618 * LoRaWAN v1.0.3 Class A protocol.
619 * RS485 / Modbus protocol
620 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
621 * AT Commands to change parameters
622 * Remote configure parameters via LoRaWAN Downlink
623 * Firmware upgradable via program port
624 * Powered by external 12v battery
625 * Back up rechargeable 1000mAh battery
626 * IP Rating: IP65
627 * Support default sensors or 3rd party RS485 sensors
628
629 == 5.2 Power Consumption ==
630
631 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
632
633
634
635 == 5.3 Storage & Operation Temperature ==
636
637 -20°C to +60°C
638
639
640 == 5.4 Pin Mapping ==
641
642 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
643
644
645 == 5.5 Mechanical ==
646
647 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
648
649
650
651
652 == 5.6 Connect to RS485 Sensors ==
653
654 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
655
656
657 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
658
659
660 Hardware Design for the Converter Board please see:
661
662 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
663
664
665
666
667
668 = 6. Weather Sensors =
669
670 == 6.1 Rain Gauge ~-~- WSS-01 ==
671
672 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
673
674
675 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
676
677 shape to make sure it works smoothly and is easy to clean.
678
679
680 WSS-01 is designed to support the Dragino Weather station solution.
681
682 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
683
684 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
685
686
687 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
688
689 to screw up and adjust the bottom horizontally.
690
691
692 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
693
694
695
696 === 6.1.1 Feature ===
697
698 * RS485 Rain Gauge
699 * Small dimension, easy to install
700 * Vents under funnel, avoid leaf or other things to avoid rain flow.
701 * ABS enclosure.
702 * Horizontal adjustable.
703
704 === 6.1.2 Specification ===
705
706 * Resolution: 0.2mm
707 * Accuracy: ±3%
708 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
709 * Input Power: DC 5~~24v
710 * Interface: RS485
711 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
712 * Working Humidity: <100% (no dewing)
713 * Power Consumption: 4mA @ 12v.
714
715 === 6.1.3 Dimension ===
716
717 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
718
719
720 === 6.1.4 Pin Mapping ===
721
722 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
723
724
725
726
727 === 6.1.5 Installation Notice ===
728
729 Do not power on while connect the cables. Double check the wiring before power on.
730
731 Installation Photo as reference:
732
733
734 (% style="color:#4472c4" %)** Install on Ground:**
735
736 WSS-01 Rain Gauge include screws so can install in ground directly .
737
738
739 (% style="color:#4472c4" %)** Install on pole:**
740
741 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
742
743 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
744
745
746 WS-K2: Bracket Kit for Pole installation:
747
748 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
749
750 WSSC-K2 dimension document, please see:
751
752 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
753
754
755
756 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
757
758 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
759
760 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
761
762
763 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
764
765
766 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
767
768 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
769
770
771 === 6.2.1 Feature ===
772
773 * RS485 wind speed / direction sensor
774 * PC enclosure, resist corrosion
775
776 === 6.2.2 Specification ===
777
778 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
779 * Wind direction range: 0 ~~ 360°
780 * Start wind speed: ≤0.3m/s
781 * Accuracy: ±(0.3+0.03V)m/s , ±1°
782 * Input Power: DC 5~~24v
783 * Interface: RS485
784 * Working Temperature: -30℃~70℃
785 * Working Humidity: <100% (no dewing)
786 * Power Consumption: 13mA ~~ 12v.
787 * Cable Length: 2 meters
788
789 === 6.2.3 Dimension ===
790
791 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
792
793
794 === 6.2.4 Pin Mapping ===
795
796 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
797
798
799 === 6.2.4 Angle Mapping ===
800
801 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
802
803
804 === 6.2.5 Installation Notice ===
805
806 Do not power on while connect the cables. Double check the wiring before power on.
807
808
809 The sensor must be installed with below direction, towards North.
810
811
812 |(((
813 North
814 )))
815
816 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
817
818
819
820
821
822
823
824
825 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
826
827 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
828
829
830 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
831
832
833 WSS-03 is designed to support the Dragino Weather station solution.
834
835 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
836
837 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
838
839
840 === 6.3.1 Feature ===
841
842 * RS485 CO2, PM2.5, PM10 sensor
843 * NDIR to measure CO2 with Internal Temperature Compensation
844 * Laser Beam Scattering to PM2.5 and PM10
845
846 === 6.3.2 Specification ===
847
848 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
849 * CO2 resolution: 1ppm
850 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
851 * PM2.5/PM10 resolution: 1μg/m3
852 * Input Power: DC 7 ~~ 24v
853 * Preheat time: 3min
854 * Interface: RS485
855 * Working Temperature:
856 ** CO2: 0℃~50℃;
857 ** PM2.5/PM10: -30 ~~ 50℃
858 * Working Humidity:
859 ** PM2.5/PM10: 15~80%RH (no dewing)
860 ** CO2: 0~95%RH
861 * Power Consumption: 50mA@ 12v.
862
863 === 6.3.3 Dimension ===
864
865 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
866
867
868 === 6.3.4 Pin Mapping ===
869
870 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
871
872
873 === 6.3.5 Installation Notice ===
874
875 Do not power on while connect the cables. Double check the wiring before power on.
876
877 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
880
881
882
883
884
885
886 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
887
888 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
889
890
891 WSS-04 has auto heating feature, this ensures measurement more reliable.
892
893
894 WSS-04 is designed to support the Dragino Weather station solution.
895
896 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
897
898 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
899
900
901
902 === 6.4.1 Feature ===
903
904 * RS485 Rain/Snow detect sensor
905 * Surface heating to dry
906 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
907
908 === 6.4.2 Specification ===
909
910 * Detect if there is rain or snow
911 * Input Power: DC 12 ~~ 24v
912 * Interface: RS485
913 * Working Temperature: -30℃~70℃
914 * Working Humidity: 10~90%RH
915 * Power Consumption:
916 ** No heating: 12mA @ 12v,
917 ** heating: 94ma @ 12v.
918
919 === 6.4.3 Dimension ===
920
921 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
922
923
924 === 6.4.4 Pin Mapping ===
925
926 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
927
928
929 === 6.4.5 Installation Notice ===
930
931 Do not power on while connect the cables. Double check the wiring before power on.
932
933
934 Install with 15°degree.
935
936 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
937
938 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
939
940
941
942
943 === 6.4.6 Heating ===
944
945
946 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
947
948
949
950
951
952 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
953
954 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
955
956
957 WSS-05 is designed to support the Dragino Weather station solution.
958
959 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
960
961 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
962
963
964 === 6.5.1 Feature ===
965
966 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
967
968 === 6.5.2 Specification ===
969
970 * Input Power: DC 12 ~~ 24v
971 * Interface: RS485
972 * Temperature Sensor Spec:
973 ** Range: -30 ~~ 70℃
974 ** resolution 0.1℃
975 ** Accuracy: ±0.5℃
976 * Humidity Sensor Spec:
977 ** Range: 0 ~~ 100% RH
978 ** resolution 0.1 %RH
979 ** Accuracy: 3% RH
980 * Pressure Sensor Spec:
981 ** Range: 10~1100hPa
982 ** Resolution: 0.1hPa
983 ** Accuracy: ±0.1hPa
984 * Illuminate sensor:
985 ** Range: 0~2/20/200kLux
986 ** Resolution: 10 Lux
987 ** Accuracy: ±3%FS
988 * Working Temperature: -30℃~70℃
989 * Working Humidity: 10~90%RH
990 * Power Consumption: 4mA @ 12v
991
992 === 6.5.3 Dimension ===
993
994 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
995
996
997 === 6.5.4 Pin Mapping ===
998
999 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1000
1001
1002 === 6.5.5 Installation Notice ===
1003
1004 Do not power on while connect the cables. Double check the wiring before power on.
1005
1006
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1009
1010
1011 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1012
1013
1014 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1015
1016 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1017
1018
1019 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1020
1021
1022 WSS-06 is designed to support the Dragino Weather station solution.
1023
1024
1025 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1026
1027 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1028
1029
1030
1031 === 6.6.1 Feature ===
1032
1033 * RS485 Total Solar Radiation sensor
1034 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1035 * Measure Reflected Radiation if sense area towards ground.
1036
1037 === 6.6.2 Specification ===
1038
1039 * Input Power: DC 5 ~~ 24v
1040 * Interface: RS485
1041 * Detect spectrum: 0.3~3μm(300~3000nm)
1042 * Measure strength range: 0~2000W/m2
1043 * Resolution: 0.1W/m2
1044 * Accuracy: ±3%
1045 * Yearly Stability: ≤±2%
1046 * Cosine response: ≤7% (@ Sun angle 10°)
1047 * Temperature Effect: ±2%(-10℃~40℃)
1048 * Working Temperature: -40℃~70℃
1049 * Working Humidity: 10~90%RH
1050 * Power Consumption: 4mA @ 12v
1051
1052 === 6.6.3 Dimension ===
1053
1054 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1055
1056
1057 === 6.6.4 Pin Mapping ===
1058
1059 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1060
1061
1062 === 6.6.5 Installation Notice ===
1063
1064 Do not power on while connect the cables. Double check the wiring before power on.
1065
1066 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1069
1070
1071 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1072
1073 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1074
1075
1076 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1077
1078
1079
1080 WSS-07 is designed to support the Dragino Weather station solution.
1081
1082
1083 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1084
1085 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1086
1087
1088 === 6.7.1 Feature ===
1089
1090 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1091
1092
1093 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1094
1095
1096 === 6.7.2 Specification ===
1097
1098 * Input Power: DC 5 ~~ 24v
1099 * Interface: RS485
1100 * Response Spectrum: 400~700nm
1101 * Measure range: 0~2500μmol/m2•s
1102 * Resolution: 1μmol/m2•s
1103 * Accuracy: ±2%
1104 * Yearly Stability: ≤±2%
1105 * Working Temperature: -30℃~75℃
1106 * Working Humidity: 10~90%RH
1107 * Power Consumption: 3mA @ 12v
1108
1109 === 6.7.3 Dimension ===
1110
1111 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1112
1113
1114 === 6.7.4 Pin Mapping ===
1115
1116 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1117
1118
1119 === 6.7.5 Installation Notice ===
1120
1121 Do not power on while connect the cables. Double check the wiring before power on.
1122
1123
1124 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1125
1126 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1127
1128
1129 = 7. FAQ =
1130
1131 == 7.1 What else do I need to purchase to build Weather Station? ==
1132
1133 Below is the installation photo and structure:
1134
1135 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1136
1137
1138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1139
1140
1141
1142
1143 == 7.2 How to upgrade firmware for WSC1-L? ==
1144
1145 Firmware Location & Change log:
1146
1147 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1148
1149
1150 Firmware Upgrade instruction:
1151
1152 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1153
1154
1155 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1156
1157 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1158
1159
1160
1161 == 7.4 Can I add my weather sensors? ==
1162
1163 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1164
1165
1166 = 8. Trouble Shooting =
1167
1168
1169
1170
1171
1172
1173 = 9. Order Info =
1174
1175
1176 == 9.1 Main Process Unit ==
1177
1178 Part Number: **WSC1-L-XX**
1179
1180 **XX**: The default frequency band
1181
1182 * **AS923**: LoRaWAN AS923 band
1183 * **AU915**: LoRaWAN AU915 band
1184 * **EU433**: LoRaWAN EU433 band
1185 * **EU868**: LoRaWAN EU868 band
1186 * **KR920**: LoRaWAN KR920 band
1187 * **US915**: LoRaWAN US915 band
1188 * **IN865**: LoRaWAN IN865 band
1189 * **CN470**: LoRaWAN CN470 band
1190
1191 == 9.2 Sensors ==
1192
1193 |**Sensor Model**|**Part Number**
1194 |**Rain Gauge**|WSS-01
1195 |**Rain Gauge installation Bracket for Pole**|WS-K2
1196 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1197 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1198 |**Rain/Snow Detect Sensor**|WSS-04
1199 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1200 |**Total Solar Radiation Sensor**|WSS-06
1201 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1202
1203 = 10. Support =
1204
1205 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1206 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1207
1208 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1209
1210
1211
1212
1213
1214 = 11. Appendix I: Field Installation Photo =
1215
1216
1217 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1218
1219
1220 **Storage Battery**: 12v,12AH li battery
1221
1222
1223 Wind Speed/Direction.
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1226
1227
1228 Total Solar Radiation sensor
1229
1230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1231
1232
1233
1234 PAR Sensor
1235
1236 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1237
1238
1239 CO2/PM2.5/PM10 3 in 1 sensor
1240
1241 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1242
1243
1244 Rain / Snow Detect:
1245
1246 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1247
1248
1249 Rain Gauge.
1250
1251 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0