Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
88
89 [[image:1656042192857-709.png]]
90
91
92 (% style="color:red" %)**Notice:**
93
94 1. WSC1-L will auto scan available weather sensors when power on or reboot.
95 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
96
97 == 2.3 Example to use for LoRaWAN network ==
98
99 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
100
101
102 [[image:1656042612899-422.png]]
103
104
105
106 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
107
108
109 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
110
111 Each WSC1-L is shipped with a sticker with the default device EUI as below:
112
113 [[image:image-20220624115043-1.jpeg]]
114
115
116 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
117
118 **Add APP EUI in the application.**
119
120 [[image:1656042662694-311.png]]
121
122 [[image:1656042673910-429.png]]
123
124
125
126
127 **Choose Manually to add WSC1-L**
128
129 [[image:1656042695755-103.png]]
130
131
132
133 **Add APP KEY and DEV EUI**
134
135 [[image:1656042723199-746.png]]
136
137
138
139 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
140
141
142 [[image:1656042745346-283.png]]
143
144
145
146 == 2.4 Uplink Payload ==
147
148 Uplink payloads include two types: Valid Sensor Value and other status / control command.
149
150 * Valid Sensor Value: Use FPORT=2
151 * Other control command: Use FPORT other than 2.
152
153 === 2.4.1 Uplink FPORT~=5, Device Status ===
154
155 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
156
157
158 (((
159 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
160 )))
161
162 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
163 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
164 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
165
166 [[image:1656043061044-343.png]]
167
168
169 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
170
171
172
173 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
174
175 For WSC1-L, this value is 0x0D.
176
177
178
179 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
180
181 0x0100, Means: v1.0.0 version.
182
183
184
185 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
186
187 *0x01: EU868
188
189 *0x02: US915
190
191 *0x03: IN865
192
193 *0x04: AU915
194
195 *0x05: KZ865
196
197 *0x06: RU864
198
199 *0x07: AS923
200
201 *0x08: AS923-1
202
203 *0x09: AS923-2
204
205 *0x0a: AS923-3
206
207
208
209 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
210
211 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
212
213
214
215 ==== (% style="color:#037691" %)**BAT:**(%%) ====
216
217 shows the battery voltage for WSC1-L MCU.
218
219 Ex1: 0x0BD6/1000 = 3.03 V
220
221
222
223 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
224
225 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
226 |Byte3|Byte2|Byte1
227
228 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
229
230 [[image:image-20220624134713-1.png]]
231
232
233 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
234
235 External sensors detected by WSC1-L include :
236
237 custom sensor A1,
238
239 PAR sensor (WSS-07),
240
241 Total Solar Radiation sensor (WSS-06),
242
243 CO2/PM2.5/PM10 (WSS-03),
244
245 Wind Speed/Direction (WSS-02)
246
247
248 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
249
250 (% style="color:#037691" %)**Downlink:0x26 01**
251
252 [[image:1656049673488-415.png]]
253
254
255
256 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
257
258 (((
259 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
260 )))
261
262 (((
263 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
264 )))
265
266
267 (((
268 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
269 )))
270
271
272 (% style="color:#4472c4" %)** Uplink Payload**:
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
275 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
276
277 (% style="color:#4472c4" %)** Sensor Segment Define**:
278
279 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
280 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
281
282 (% style="color:#4472c4" %)**Sensor Type Table:**
283
284 [[image:image-20220624140352-2.png]]
285
286
287 Below is an example payload:  [[image:image-20220624140615-3.png]]
288
289
290 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
291
292 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
293
294 Uplink 1:  [[image:image-20220624140735-4.png]]
295
296 Uplink 2:  [[image:image-20220624140842-5.png]]
297
298
299 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
300
301 Uplink 1:  [[image:image-20220624141025-6.png]]
302
303 Uplink 2:  [[image:image-20220624141100-7.png]]
304
305
306
307
308 === 2.4.3 Decoder in TTN V3 ===
309
310 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
311
312
313 Download decoder for suitable platform from:
314
315 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
316
317 and put as below:
318
319 [[image:1656051152438-578.png]]
320
321
322
323 == 2.5 Show data on Application Server ==
324
325 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
326
327
328 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
329
330 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
331
332 [[image:1656051197172-131.png]]
333
334
335 **Add TagoIO:**
336
337 [[image:1656051223585-631.png]]
338
339
340 **Authorization:**
341
342 [[image:1656051248318-368.png]]
343
344
345 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
346
347 [[image:1656051277767-168.png]]
348
349
350
351 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
352
353 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
354
355 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
356 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
357
358 There are two kinds of commands to configure WSC1-L, they are:
359
360 * (% style="color:#4472c4" %)**General Commands**.
361
362 These commands are to configure:
363
364 * General system settings like: uplink interval.
365 * LoRaWAN protocol & radio related command.
366
367 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
368
369 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
370
371
372 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
373
374 These commands only valid for WSC1-L, as below:
375
376
377 == 3.1 Set Transmit Interval Time ==
378
379 Feature: Change LoRaWAN End Node Transmit Interval.
380
381 (% style="color:#037691" %)**AT Command: AT+TDC**
382
383 [[image:image-20220624142619-8.png]]
384
385
386 (% style="color:#037691" %)**Downlink Command: 0x01**
387
388 Format: Command Code (0x01) followed by 3 bytes time value.
389
390 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
391
392 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
393 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
394
395
396
397 == 3.2 Set Emergency Mode ==
398
399 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
400
401 (% style="color:#037691" %)**AT Command:**
402
403 [[image:image-20220624142956-9.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command:**
407
408 * 0xE101     Same as: AT+ALARMMOD=1
409 * 0xE100     Same as: AT+ALARMMOD=0
410
411
412
413 == 3.3 Add or Delete RS485 Sensor ==
414
415 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
416
417 (% style="color:#037691" %)**AT Command: **
418
419 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
420
421 * Type_Code range:  A1 ~~ A4
422 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
423 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
424 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
425 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
426 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
427 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
428
429
430 **Example:**
431
432 User need to change external sensor use the type code as address code.
433
434 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
435
436 [[image:image-20220624143553-10.png]]
437
438
439 The response frame of the sensor is as follows:
440
441 [[image:image-20220624143618-11.png]]
442
443
444 Then the following parameters should be:
445
446 * Address_Code range: A1
447 * Query_Length: 8
448 * Query_Command: A103000000019CAA
449 * Read_Length: 8
450 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
451 * has_CRC: 1
452 * timeout: 1500 (Fill in the test according to the actual situation)
453
454 So the input command is:
455
456 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
457
458
459 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
460
461 |Type Code|Length (Bytes)|Measured Value
462 |A1|2|0x000A
463
464 Related commands:
465
466 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
467
468 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
469
470
471 (% style="color:#037691" %)**Downlink Command:  **
472
473 **delete custom sensor A1:**
474
475 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
476
477 **Remove all custom sensors**
478
479 * 0xE5FF  
480
481
482
483 == 3.4 RS485 Test Command ==
484
485 (% style="color:#037691" %)**AT Command:**
486
487 |**Command Example**|**Function**|**Response**
488 |AT+RSWRITE=xxxxxx|(((
489 Send command to 485 sensor
490
491 Range : no more than 10 bytes
492 )))|OK
493
494 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
495
496 AT+RSWRITE=0103000001840A
497
498
499 (% style="color:#037691" %)**Downlink Command:**
500
501 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
502
503
504
505 == 3.5 RS485 response timeout ==
506
507 Feature: Set or get extended time to receive 485 sensor data.
508
509 (% style="color:#037691" %)**AT Command:**
510
511 |**Command Example**|**Function**|**Response**
512 |AT+DTR=1000|(((
513 Set response timeout to:
514
515 Range : 0~~10000
516 )))|OK
517
518 (% style="color:#037691" %)**Downlink Command:**
519
520 Format: Command Code (0xE0) followed by 3 bytes time value.
521
522 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
523
524 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
525 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
526
527
528
529 == 3.6 Set Sensor Type ==
530
531 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
532
533 See [[definition>>||anchor="H"]] for the sensor type.
534
535
536 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
537 | |A4|A3|A2|A1| | |
538 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
539 | | |Solar Radiation|PAR|PM10|PM2.5|(((
540 Rain
541
542 Gauge
543 )))|(((
544 Air
545
546 Pressure
547 )))
548 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
549 |Humidity|Temperature|CO2|(((
550 Rain/Snow
551
552 Detect
553 )))|illuminance|(((
554 Wind
555
556 Direction
557 )))|Wind Speed|BAT
558
559 (% style="color:#037691" %)**AT Command:**
560
561 |**Command Example**|**Function**|**Response**
562 |AT+STYPE=80221|Set sensor types|OK
563
564 Eg: The setting command **AT+STYPE=802212** means:
565
566 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
567 |0|0|0|0|1|0|0|0
568 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
569 |0|0|0|0|0|0|1|0
570 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
571 |0|0|1|0|0|0|0|1
572
573 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
574
575
576 (% style="color:#037691" %)**Downlink Command:**
577
578 * 0xE400802212     Same as: AT+STYPE=80221
579
580 (% style="color:red" %)**Note:**
581
582 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
583
584
585
586
587
588 = 4. Power consumption and battery =
589
590 == 4.1 Total Power Consumption ==
591
592 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
593
594
595 == 4.2 Reduce power consumption ==
596
597 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
598
599
600
601 == 4.3 Battery ==
602
603 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
604
605
606 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
607
608
609
610 = 5. Main Process Unit WSC1-L =
611
612 == 5.1 Features ==
613
614 * Wall Attachable.
615 * LoRaWAN v1.0.3 Class A protocol.
616 * RS485 / Modbus protocol
617 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
618 * AT Commands to change parameters
619 * Remote configure parameters via LoRaWAN Downlink
620 * Firmware upgradable via program port
621 * Powered by external 12v battery
622 * Back up rechargeable 1000mAh battery
623 * IP Rating: IP65
624 * Support default sensors or 3rd party RS485 sensors
625
626 == 5.2 Power Consumption ==
627
628 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
629
630
631
632 == 5.3 Storage & Operation Temperature ==
633
634 -20°C to +60°C
635
636
637 == 5.4 Pin Mapping ==
638
639 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
640
641
642 == 5.5 Mechanical ==
643
644 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
645
646
647
648
649 == 5.6 Connect to RS485 Sensors ==
650
651 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
652
653
654 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
655
656
657 Hardware Design for the Converter Board please see:
658
659 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
660
661
662
663
664
665 = 6. Weather Sensors =
666
667 == 6.1 Rain Gauge ~-~- WSS-01 ==
668
669 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
670
671
672 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
673
674 shape to make sure it works smoothly and is easy to clean.
675
676
677 WSS-01 is designed to support the Dragino Weather station solution.
678
679 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
680
681 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
682
683
684 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
685
686 to screw up and adjust the bottom horizontally.
687
688
689 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
690
691
692
693 === 6.1.1 Feature ===
694
695 * RS485 Rain Gauge
696 * Small dimension, easy to install
697 * Vents under funnel, avoid leaf or other things to avoid rain flow.
698 * ABS enclosure.
699 * Horizontal adjustable.
700
701 === 6.1.2 Specification ===
702
703 * Resolution: 0.2mm
704 * Accuracy: ±3%
705 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
706 * Input Power: DC 5~~24v
707 * Interface: RS485
708 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
709 * Working Humidity: <100% (no dewing)
710 * Power Consumption: 4mA @ 12v.
711
712 === 6.1.3 Dimension ===
713
714 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
715
716
717 === 6.1.4 Pin Mapping ===
718
719 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
720
721
722
723
724 === 6.1.5 Installation Notice ===
725
726 Do not power on while connect the cables. Double check the wiring before power on.
727
728 Installation Photo as reference:
729
730
731 (% style="color:#4472c4" %)** Install on Ground:**
732
733 WSS-01 Rain Gauge include screws so can install in ground directly .
734
735
736 (% style="color:#4472c4" %)** Install on pole:**
737
738 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
739
740 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
741
742
743 WS-K2: Bracket Kit for Pole installation:
744
745 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
746
747 WSSC-K2 dimension document, please see:
748
749 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
750
751
752
753 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
754
755 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
756
757 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
758
759
760 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
761
762
763 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
764
765 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
766
767
768 === 6.2.1 Feature ===
769
770 * RS485 wind speed / direction sensor
771 * PC enclosure, resist corrosion
772
773 === 6.2.2 Specification ===
774
775 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
776 * Wind direction range: 0 ~~ 360°
777 * Start wind speed: ≤0.3m/s
778 * Accuracy: ±(0.3+0.03V)m/s , ±1°
779 * Input Power: DC 5~~24v
780 * Interface: RS485
781 * Working Temperature: -30℃~70℃
782 * Working Humidity: <100% (no dewing)
783 * Power Consumption: 13mA ~~ 12v.
784 * Cable Length: 2 meters
785
786 === 6.2.3 Dimension ===
787
788 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
789
790
791 === 6.2.4 Pin Mapping ===
792
793 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
794
795
796 === 6.2.4 Angle Mapping ===
797
798 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
799
800
801 === 6.2.5 Installation Notice ===
802
803 Do not power on while connect the cables. Double check the wiring before power on.
804
805
806 The sensor must be installed with below direction, towards North.
807
808
809 |(((
810 North
811 )))
812
813 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
814
815
816
817
818
819
820
821
822 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
823
824 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
825
826
827 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
828
829
830 WSS-03 is designed to support the Dragino Weather station solution.
831
832 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
833
834 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
835
836
837 === 6.3.1 Feature ===
838
839 * RS485 CO2, PM2.5, PM10 sensor
840 * NDIR to measure CO2 with Internal Temperature Compensation
841 * Laser Beam Scattering to PM2.5 and PM10
842
843 === 6.3.2 Specification ===
844
845 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
846 * CO2 resolution: 1ppm
847 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
848 * PM2.5/PM10 resolution: 1μg/m3
849 * Input Power: DC 7 ~~ 24v
850 * Preheat time: 3min
851 * Interface: RS485
852 * Working Temperature:
853 ** CO2: 0℃~50℃;
854 ** PM2.5/PM10: -30 ~~ 50℃
855 * Working Humidity:
856 ** PM2.5/PM10: 15~80%RH (no dewing)
857 ** CO2: 0~95%RH
858 * Power Consumption: 50mA@ 12v.
859
860 === 6.3.3 Dimension ===
861
862 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
863
864
865 === 6.3.4 Pin Mapping ===
866
867 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
868
869
870 === 6.3.5 Installation Notice ===
871
872 Do not power on while connect the cables. Double check the wiring before power on.
873
874 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
875
876 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
877
878
879
880
881
882
883 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
884
885 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
886
887
888 WSS-04 has auto heating feature, this ensures measurement more reliable.
889
890
891 WSS-04 is designed to support the Dragino Weather station solution.
892
893 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
894
895 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
896
897
898
899 === 6.4.1 Feature ===
900
901 * RS485 Rain/Snow detect sensor
902 * Surface heating to dry
903 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
904
905 === 6.4.2 Specification ===
906
907 * Detect if there is rain or snow
908 * Input Power: DC 12 ~~ 24v
909 * Interface: RS485
910 * Working Temperature: -30℃~70℃
911 * Working Humidity: 10~90%RH
912 * Power Consumption:
913 ** No heating: 12mA @ 12v,
914 ** heating: 94ma @ 12v.
915
916 === 6.4.3 Dimension ===
917
918 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
919
920
921 === 6.4.4 Pin Mapping ===
922
923 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
924
925
926 === 6.4.5 Installation Notice ===
927
928 Do not power on while connect the cables. Double check the wiring before power on.
929
930
931 Install with 15°degree.
932
933 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
934
935 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
936
937
938
939
940 === 6.4.6 Heating ===
941
942
943 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
944
945
946
947
948
949 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
950
951 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
952
953
954 WSS-05 is designed to support the Dragino Weather station solution.
955
956 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
957
958 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
959
960
961 === 6.5.1 Feature ===
962
963 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
964
965 === 6.5.2 Specification ===
966
967 * Input Power: DC 12 ~~ 24v
968 * Interface: RS485
969 * Temperature Sensor Spec:
970 ** Range: -30 ~~ 70℃
971 ** resolution 0.1℃
972 ** Accuracy: ±0.5℃
973 * Humidity Sensor Spec:
974 ** Range: 0 ~~ 100% RH
975 ** resolution 0.1 %RH
976 ** Accuracy: 3% RH
977 * Pressure Sensor Spec:
978 ** Range: 10~1100hPa
979 ** Resolution: 0.1hPa
980 ** Accuracy: ±0.1hPa
981 * Illuminate sensor:
982 ** Range: 0~2/20/200kLux
983 ** Resolution: 10 Lux
984 ** Accuracy: ±3%FS
985 * Working Temperature: -30℃~70℃
986 * Working Humidity: 10~90%RH
987 * Power Consumption: 4mA @ 12v
988
989 === 6.5.3 Dimension ===
990
991 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
992
993
994 === 6.5.4 Pin Mapping ===
995
996 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
997
998
999 === 6.5.5 Installation Notice ===
1000
1001 Do not power on while connect the cables. Double check the wiring before power on.
1002
1003
1004
1005 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1006
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1009
1010
1011 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1012
1013 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1014
1015
1016 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1017
1018
1019 WSS-06 is designed to support the Dragino Weather station solution.
1020
1021
1022 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1023
1024 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1025
1026
1027
1028 === 6.6.1 Feature ===
1029
1030 * RS485 Total Solar Radiation sensor
1031 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1032 * Measure Reflected Radiation if sense area towards ground.
1033
1034 === 6.6.2 Specification ===
1035
1036 * Input Power: DC 5 ~~ 24v
1037 * Interface: RS485
1038 * Detect spectrum: 0.3~3μm(300~3000nm)
1039 * Measure strength range: 0~2000W/m2
1040 * Resolution: 0.1W/m2
1041 * Accuracy: ±3%
1042 * Yearly Stability: ≤±2%
1043 * Cosine response: ≤7% (@ Sun angle 10°)
1044 * Temperature Effect: ±2%(-10℃~40℃)
1045 * Working Temperature: -40℃~70℃
1046 * Working Humidity: 10~90%RH
1047 * Power Consumption: 4mA @ 12v
1048
1049 === 6.6.3 Dimension ===
1050
1051 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1052
1053
1054 === 6.6.4 Pin Mapping ===
1055
1056 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1057
1058
1059 === 6.6.5 Installation Notice ===
1060
1061 Do not power on while connect the cables. Double check the wiring before power on.
1062
1063 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1064
1065 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1066
1067
1068 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1069
1070 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1071
1072
1073 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1074
1075
1076
1077 WSS-07 is designed to support the Dragino Weather station solution.
1078
1079
1080 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1081
1082 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1083
1084
1085 === 6.7.1 Feature ===
1086
1087 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1088
1089
1090 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1091
1092
1093 === 6.7.2 Specification ===
1094
1095 * Input Power: DC 5 ~~ 24v
1096 * Interface: RS485
1097 * Response Spectrum: 400~700nm
1098 * Measure range: 0~2500μmol/m2•s
1099 * Resolution: 1μmol/m2•s
1100 * Accuracy: ±2%
1101 * Yearly Stability: ≤±2%
1102 * Working Temperature: -30℃~75℃
1103 * Working Humidity: 10~90%RH
1104 * Power Consumption: 3mA @ 12v
1105
1106 === 6.7.3 Dimension ===
1107
1108 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1109
1110
1111 === 6.7.4 Pin Mapping ===
1112
1113 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1114
1115
1116 === 6.7.5 Installation Notice ===
1117
1118 Do not power on while connect the cables. Double check the wiring before power on.
1119
1120
1121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1122
1123 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1124
1125
1126 = 7. FAQ =
1127
1128 == 7.1 What else do I need to purchase to build Weather Station? ==
1129
1130 Below is the installation photo and structure:
1131
1132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1133
1134
1135 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1136
1137
1138
1139
1140 == 7.2 How to upgrade firmware for WSC1-L? ==
1141
1142 Firmware Location & Change log:
1143
1144 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1145
1146
1147 Firmware Upgrade instruction:
1148
1149 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1150
1151
1152 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1153
1154 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1155
1156
1157
1158 == 7.4 Can I add my weather sensors? ==
1159
1160 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1161
1162
1163 = 8. Trouble Shooting =
1164
1165
1166
1167
1168
1169
1170 = 9. Order Info =
1171
1172
1173 == 9.1 Main Process Unit ==
1174
1175 Part Number: **WSC1-L-XX**
1176
1177 **XX**: The default frequency band
1178
1179 * **AS923**: LoRaWAN AS923 band
1180 * **AU915**: LoRaWAN AU915 band
1181 * **EU433**: LoRaWAN EU433 band
1182 * **EU868**: LoRaWAN EU868 band
1183 * **KR920**: LoRaWAN KR920 band
1184 * **US915**: LoRaWAN US915 band
1185 * **IN865**: LoRaWAN IN865 band
1186 * **CN470**: LoRaWAN CN470 band
1187
1188 == 9.2 Sensors ==
1189
1190 |**Sensor Model**|**Part Number**
1191 |**Rain Gauge**|WSS-01
1192 |**Rain Gauge installation Bracket for Pole**|WS-K2
1193 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1194 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1195 |**Rain/Snow Detect Sensor**|WSS-04
1196 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1197 |**Total Solar Radiation Sensor**|WSS-06
1198 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1199
1200 = 10. Support =
1201
1202 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1203 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1204
1205 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1206
1207
1208
1209
1210
1211 = 11. Appendix I: Field Installation Photo =
1212
1213
1214 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1215
1216
1217 **Storage Battery**: 12v,12AH li battery
1218
1219
1220 Wind Speed/Direction.
1221
1222 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1223
1224
1225 Total Solar Radiation sensor
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1228
1229
1230
1231 PAR Sensor
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1234
1235
1236 CO2/PM2.5/PM10 3 in 1 sensor
1237
1238 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1239
1240
1241 Rain / Snow Detect:
1242
1243 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1244
1245
1246 Rain Gauge.
1247
1248 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0