Version 3.5 by Xiaoling on 2022/06/24 10:34

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
7
8
9
10
11
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 Overview ==
20
21
22 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. They consist of a main process device (WSC1-L) and various sensors.
23
24
25 The sensors include various type such as: Rain Gauge, Temperature/Humidity/Pressure sensor, Wind Speed/direction sensor, Illumination sensor, CO2 sensor, Rain/Snow sensor, PM2.5/10 sensor, PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor and so on.
26
27
28 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in li-on backup battery. WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
29
30
31 WSC1-L is full compatible with LoRaWAN Class C protocol, it can work with standard LoRaWAN gateway.
32
33
34
35
36 = 2. How to use =
37
38 == 2.1 Installation ==
39
40 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>path:#Installation_Photo]] 
41
42 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
43
44 **Wiring:**
45
46 ~1. WSC1-L and sensors all powered by solar power via MPPT
47
48 2. WSC1-L and sensors connect to each other via RS485/Modbus.
49
50 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
51
52
53 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
54
55 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
56
57
58
59
60 Notice 1:
61
62 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
63 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
64 * Weather sensors won’t work if solar panel and storage battery fails.
65
66 Notice 2:
67
68 Due to shipment and importation limitation, user is better to purchase below parts locally:
69
70 * Solar Panel
71 * Storage Battery
72 * MPPT Solar Recharger
73 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
74 * Cabinet.
75
76
77
78
79 == 2.2 How it works? ==
80
81 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
82
83
84 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
85
86 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
87
88
89 Notice:
90
91 1. WSC1-L will auto scan available weather sensors when power on or reboot.
92 1. User can send a downlink command( 增加下发命令的连接) to WSC1-L to do a re-scan on the available sensors.
93
94
95
96 == 2.3 Example to use for LoRaWAN network ==
97
98 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
99
100
101 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
102
103
104
105 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
106
107
108 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
109
110 Each WSC1-L is shipped with a sticker with the default device EUI as below:
111
112 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
113
114
115 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
116
117 Add APP EUI in the application.
118
119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
120
121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
122
123
124
125
126
127
128
129
130
131 Choose Manually to add WSC1-L
132
133
134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
135
136 Add APP KEY and DEV EUI
137
138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
139
140
141
142
143 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
144
145
146 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
147
148
149
150
151 == 2.4 Uplink Payload ==
152
153 Uplink payloads include two types: Valid Sensor Value and other status / control command.
154
155 * Valid Sensor Value: Use FPORT=2
156 * Other control command: Use FPORT other than 2.
157
158
159
160
161
162 === 2.4.1 Uplink FPORT ===
163
164 5, Device Status ===
165
166 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
167
168
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170
171 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
172 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:** ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186 ==== (% style="color:#037691" %)**Firmware Version:** ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:** ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214 ==== (% style="color:#037691" %)**Sub-Band:** ====
215
216 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
217
218
219 ==== (% style="color:#037691" %)**BAT:** ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226 ==== (% style="color:#037691" %)**Weather Sensor Types:** ====
227
228 |Byte3|Byte2|Byte1
229
230 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
231
232
233 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
234 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
235 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
236 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
237 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
238 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
239
240 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
241
242 External sensors detected by WSC1-L include :
243
244 custom sensor A1,
245
246 PAR sensor (WSS-07),
247
248 Total Solar Radiation sensor (WSS-06),
249
250 CO2/PM2.5/PM10 (WSS-03),
251
252 Wind Speed/Direction (WSS-02)
253
254
255
256
257 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
258
259 (% style="color:#037691" %)**Downlink:0x26 01**
260
261 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
262
263
264
265
266 === 2.4.2 Uplink FPORT=2, Real time sensor value ===
267
268 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
269
270 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
271
272
273 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
274
275 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
276
277 **(% style="color:#4472C4" %) Uplink Payload**:
278
279 |Type Code|Length (Bytes)|Measured Value
280
281 **(% style="color:#4472C4" %) Sensor Segment Define**:
282
283
284
285 Sensor Type Table:
286
287 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
288 |**Wind Speed**|0x01|(((
289 Speed: 0~60m/s
290
291 Level: 0~17
292 )))|0x03 |(((
293 0x0024/10=3.6m/s
294
295 (0x02FE: No Sensor, 0x02FF: Value Error)
296
297 0x02=2
298
299 (0x14: No Sensor, 0x15: Value Error)
300 )))
301 |**Wind Direction**|0x02|(((
302 Angel: 0~360°
303
304 Direction: 16 positions
305 )))|0x03|(((
306 0x029A/10=66.6°
307
308 (0x0EFE: No Sensor,0x0EFF: Value Error)
309
310 0X03=3(ENE)
311
312 (0x14: No Sensor,0x15: Value Error)
313 )))
314 |**Illumination**|0x03|0~200000Lux|0x02|(((
315 0x04D2 *10=12340Lux
316
317 (0x4EFE: No Sensor,0x4EFF: Value Error)
318 )))
319 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
320 0x00 (00) No Rain or snow detected
321
322 (0x02: No Sensor,0x03: Value Error)
323 )))
324 |**CO2**|0x05|0~5000ppm|0x02|(((
325 0x0378=888ppm
326
327 (0x14FE: No Sensor,0x14FF: Value Error)
328 )))
329 |**Temperature**|0x06|-30℃~70℃|0x02|(((
330 0xFFDD/10=-3.5℃
331
332 (0x02FE: No Sensor,0x02FF: Value Error)
333 )))
334 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
335 |**Pressure**|0x08|10~1100hPa|0x02|(((
336 0x2748/10=1005.6hPa
337
338 (0x00: No Sensor,0x01: Value Error)
339 )))
340 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
341 0x0000/10=0mm /min
342
343 (0x03FE: No Sensor,0x03FF: Value Error)
344 )))
345 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
346 0x0023=35μg/m^^3 ^^
347
348 (0x03FE: No Sensor,0x03FF: Value Error)
349 )))
350 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
351 0x002D=45μg/m^^3 ^^
352
353 (0x03FE: No Sensor,0x03FF: Value Error)
354 )))
355 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
356 0x00B3=179μmol/m^^2^^•s
357
358 (0x09FE: No Sensor,0x9FF: Value Error)
359 )))
360 |(((
361 **Total Solar**
362
363 **Radiation**
364 )))|0x0D|0~2000W/m^^2^^|0x02|(((
365 0x0073/10=11.5W/m^^2^^
366
367 (0x4EFE: No Sensor,0x4EFF: Value Error)
368 )))
369
370 Below is an example payload:
371
372 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
373
374
375 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
376
377 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
378
379 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
380
381
382 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
383
384 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
385
386 Uplink 2: 0D 02 00 73
387
388
389
390
391 === 2.4.3 Decoder in TTN V3 ===
392
393 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
394
395
396 Download decoder for suitable platform from:
397
398 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
399
400 and put as below:
401
402 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
403
404
405
406 == 2.5 Show data on Application Server ==
407
408 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
409
410
411 **(% style="color:blue" %)Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
412
413 **(% style="color:blue" %)Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
414
415 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
416
417
418 Add TagoIO:
419
420 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
421
422 Authorization:
423
424 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
425
426
427 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
428
429 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
430
431
432
433 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
434
435 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
436
437 * AT Command Connection: See [[FAQ>>||anchor="H"]].
438 * LoRaWAN Downlink instruction for different platforms:
439
440 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
441
442
443 There are two kinds of commands to configure WSC1-L, they are:
444
445 * **(% style="color:#4472C4" %)General Commands**.
446
447 These commands are to configure:
448
449 * General system settings like: uplink interval.
450 * LoRaWAN protocol & radio related command.
451
452 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
453
454 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
455
456 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
457
458
459 * **(% style="color:#4472C4" %)Commands special design for WSC1-L**
460
461 These commands only valid for WSC1-L, as below:
462
463
464 == 3.1 Set Transmit Interval Time ==
465
466 Feature: Change LoRaWAN End Node Transmit Interval.
467
468 **(% style="color:#037691" %)AT Command: AT+TDC**
469
470 |**Command Example**|**Function**|**Response**
471 |AT+TDC?|Show current transmit Interval|(((
472 30000
473
474 OK
475
476 the interval is 30000ms = 30s
477 )))
478 |AT+TDC=60000|Set Transmit Interval|(((
479 OK
480
481 Set transmit interval to 60000ms = 60 seconds
482 )))
483
484 **(% style="color:#037691" %)Downlink Command: 0x01**
485
486 Format: Command Code (0x01) followed by 3 bytes time value.
487
488 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
489
490 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
491 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
492
493
494
495
496
497 == 3.2 Set Emergency Mode ==
498
499 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
500
501
502 **(% style="color:#037691" %)AT Command:**
503
504 |**Command Example**|**Function**|**Response**
505 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
506 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
507
508 **(% style="color:#037691" %)Downlink Command:**
509
510 * 0xE101     Same as: AT+ALARMMOD=1
511 * 0xE100     Same as: AT+ALARMMOD=0
512
513
514
515
516
517 == 3.3 Add or Delete RS485 Sensor ==
518
519 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
520
521 **(% style="color:#037691" %)AT Command: **
522
523 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
524
525 * Type_Code range: A1 ~~ A4
526 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
527 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
528 * Read_Length: RS485 response frame length supposed to receive. Max can receive
529 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
530 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
531 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
532
533
534 Example:
535
536 User need to change external sensor use the type code as address code.
537
538 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
539
540 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
541 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
542 | | | | | | | |
543
544 The response frame of the sensor is as follows:
545
546 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
547 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
548 | | | | | | | |
549
550 Then the following parameters should be:
551
552 * Address_Code range: A1
553 * Query_Length: 8
554 * Query_Command: A103000000019CAA
555 * Read_Length: 8
556 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
557 * has_CRC: 1
558 * timeout: 1500 (Fill in the test according to the actual situation)
559
560 So the input command is:
561
562 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
563
564
565 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
566
567 |Type Code|Length (Bytes)|Measured Value
568 |A1|2|0x000A
569
570
571
572
573 Related commands:
574
575 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
576
577 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
578
579
580 **(% style="color:#037691" %)Downlink Command:  **
581
582 **delete custom sensor A1:**
583
584 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
585
586 **Remove all custom sensors**
587
588 * 0xE5FF  
589
590
591
592
593
594 == 3.4 RS485 Test Command ==
595
596 **(% style="color:#037691" %)AT Command:**
597
598 |**Command Example**|**Function**|**Response**
599 |AT+RSWRITE=xxxxxx|(((
600 Send command to 485 sensor
601
602 Range : no more than 10 bytes
603 )))|OK
604
605 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
606
607 AT+RSWRITE=0103000001840A
608
609
610 **(% style="color:#037691" %)Downlink Command:**
611
612 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
613
614
615
616 == 3.5 RS485 response timeout ==
617
618 Feature: Set or get extended time to receive 485 sensor data.
619
620 **(% style="color:#037691" %)AT Command:**
621
622 |**Command Example**|**Function**|**Response**
623 |AT+DTR=1000|(((
624 Set response timeout to:
625
626 Range : 0~~10000
627 )))|OK
628
629 **(% style="color:#037691" %)Downlink Command:**
630
631 Format: Command Code (0xE0) followed by 3 bytes time value.
632
633 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
634
635 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
636 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
637
638
639
640
641
642 == 3.6 Set Sensor Type ==
643
644 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
645
646 See [[definition>>||anchor="H"]] for the sensor type.
647
648
649 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
650 | |A4|A3|A2|A1| | |
651 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
652 | | |Solar Radiation|PAR|PM10|PM2.5|(((
653 Rain
654
655 Gauge
656 )))|(((
657 Air
658
659 Pressure
660 )))
661 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
662 |Humidity|Temperature|CO2|(((
663 Rain/Snow
664
665 Detect
666 )))|illuminance|(((
667 Wind
668
669 Direction
670 )))|Wind Speed|BAT
671
672 **(% style="color:#037691" %)AT Command:**
673
674 |**Command Example**|**Function**|**Response**
675 |AT+STYPE=80221|Set sensor types|OK
676
677 Eg: The setting command **AT+STYPE=802212** means:
678
679 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
680 |0|0|0|0|1|0|0|0
681 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
682 |0|0|0|0|0|0|1|0
683 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
684 |0|0|1|0|0|0|0|1
685
686 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
687
688
689 **(% style="color:#037691" %)Downlink Command:**
690
691 * 0xE400802212     Same as: AT+STYPE=80221
692
693 (% style="color:red" %)**Note:**
694
695 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
696
697
698
699
700
701 = 4. Power consumption and battery =
702
703 == 4.1 Total Power Consumption ==
704
705 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
706
707
708 == 4.2 Reduce power consumption ==
709
710 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
711
712
713
714 == 4.3 Battery ==
715
716 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
717
718
719 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
720
721
722
723 = 5. Main Process Unit WSC1-L =
724
725 == 5.1 Features ==
726
727 * Wall Attachable.
728 * LoRaWAN v1.0.3 Class A protocol.
729 * RS485 / Modbus protocol
730 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
731 * AT Commands to change parameters
732 * Remote configure parameters via LoRaWAN Downlink
733 * Firmware upgradable via program port
734 * Powered by external 12v battery
735 * Back up rechargeable 1000mAh battery
736 * IP Rating: IP65
737 * Support default sensors or 3rd party RS485 sensors
738
739
740
741
742
743 == 5.2 Power Consumption ==
744
745 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
746
747
748
749 == 5.3 Storage & Operation Temperature ==
750
751 -20°C to +60°C
752
753
754 == 5.4 Pin Mapping ==
755
756 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
757
758
759 == 5.5 Mechanical ==
760
761 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
762
763
764
765
766 == 5.6 Connect to RS485 Sensors ==
767
768 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
769
770
771 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
772
773
774 Hardware Design for the Converter Board please see:
775
776 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
777
778
779
780
781
782 1. Weather Sensors
783 11. Rain Gauge ~-~- WSS-01
784
785 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
786
787
788 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
789
790 shape to make sure it works smoothly and is easy to clean.
791
792
793 WSS-01 is designed to support the Dragino Weather station solution.
794
795 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
796
797 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
798
799
800 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
801
802 to screw up and adjust the bottom horizontally.
803
804
805 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
806
807
808
809 *
810 *1.
811 *11. Feature
812 * RS485 Rain Gauge
813 * Small dimension, easy to install
814 * Vents under funnel, avoid leaf or other things to avoid rain flow.
815 * ABS enclosure.
816 * Horizontal adjustable.
817
818 *
819 *1.
820 *11. Specification
821 * Resolution: 0.2mm
822 * Accuracy: ±3%
823 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
824 * Input Power: DC 5~~24v
825 * Interface: RS485
826 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
827 * Working Humidity: <100% (no dewing)
828 * Power Consumption: 4mA @ 12v.
829
830
831
832 1.
833 11.
834 111. Dimension
835
836 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
837
838 1.
839 11.
840 111. Pin Mapping
841
842 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
843
844
845
846
847 1.
848 11.
849 111. Installation Notice
850
851 Do not power on while connect the cables. Double check the wiring before power on.
852
853 Installation Photo as reference:
854
855
856 **Install on Ground:**
857
858 WSS-01 Rain Gauge include screws so can install in ground directly .
859
860
861 **Install on pole:**
862
863 If user want to install on pole, they can purchase the **WS-K2 :  Bracket Kit for Pole installation**, and install as below:
864
865 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
866
867
868 WS-K2: Bracket Kit for Pole installation:
869
870 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
871
872 WSSC-K2 dimension document, please see:
873
874 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
875
876
877
878 1.
879 11. Wind Speed/Direction ~-~- WSS-02
880
881 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
882
883 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
884
885
886 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
887
888
889 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
890
891 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
892
893
894 *
895 *1.
896 *11. Feature
897 * RS485 wind speed / direction sensor
898 * PC enclosure, resist corrosion
899
900 *
901 *1.
902 *11. Specification
903 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
904 * Wind direction range: 0 ~~ 360°
905 * Start wind speed: ≤0.3m/s
906 * Accuracy: ±(0.3+0.03V)m/s , ±1°
907 * Input Power: DC 5~~24v
908 * Interface: RS485
909 * Working Temperature: -30℃~70℃
910 * Working Humidity: <100% (no dewing)
911 * Power Consumption: 13mA ~~ 12v.
912 * Cable Length: 2 meters
913
914 1.
915 11.
916 111. Dimension
917
918 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
919
920
921 1.
922 11.
923 111. Pin Mapping
924
925 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
926
927
928 1.
929 11.
930 111. Angle Mapping
931
932 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
933
934
935 1.
936 11.
937 111. Installation Notice
938
939 Do not power on while connect the cables. Double check the wiring before power on.
940
941
942 The sensor must be installed with below direction, towards North.
943
944
945 |(((
946 North
947 )))
948
949 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
950
951
952
953
954
955
956
957
958 1.
959 11. CO2/PM2.5/PM10 ~-~- WSS-03
960
961 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
962
963
964 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
965
966
967 WSS-03 is designed to support the Dragino Weather station solution.
968
969 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
970
971 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
972
973
974 *
975 *1.
976 *11. Feature
977 * RS485 CO2, PM2.5, PM10 sensor
978 * NDIR to measure CO2 with Internal Temperature Compensation
979 * Laser Beam Scattering to PM2.5 and PM10
980
981 *
982 *1.
983 *11. Specification
984 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
985 * CO2 resolution: 1ppm
986 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
987 * PM2.5/PM10 resolution: 1μg/m3
988 * Input Power: DC 7 ~~ 24v
989 * Preheat time: 3min
990 * Interface: RS485
991 * Working Temperature:
992 ** CO2: 0℃~50℃;
993 ** PM2.5/PM10: -30 ~~ 50℃
994 * Working Humidity:
995 ** PM2.5/PM10: 15~80%RH (no dewing)
996 ** CO2: 0~95%RH
997 * Power Consumption: 50mA@ 12v.
998 *1.
999 *11. Dimension
1000
1001 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1002
1003
1004 1.
1005 11.
1006 111. Pin Mapping
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1009
1010
1011 1.
1012 11.
1013 111. Installation Notice
1014
1015 Do not power on while connect the cables. Double check the wiring before power on.
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1018
1019 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1020
1021
1022
1023
1024
1025
1026 1.
1027 11. Rain/Snow Detect ~-~- WSS-04
1028
1029 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1030
1031
1032 WSS-04 has auto heating feature, this ensures measurement more reliable.
1033
1034
1035 WSS-04 is designed to support the Dragino Weather station solution.
1036
1037 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
1038
1039 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1040
1041
1042
1043 *
1044 *1.
1045 *11. Feature
1046 * RS485 Rain/Snow detect sensor
1047 * Surface heating to dry
1048 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1049
1050 *
1051 *1.
1052 *11. Specification
1053 * Detect if there is rain or snow
1054 * Input Power: DC 12 ~~ 24v
1055 * Interface: RS485
1056 * Working Temperature: -30℃~70℃
1057 * Working Humidity: 10~90%RH
1058 * Power Consumption:
1059 ** No heating: 12mA @ 12v,
1060 ** heating: 94ma @ 12v.
1061
1062 1.
1063 11.
1064 111. Dimension
1065
1066 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1067
1068
1069 1.
1070 11.
1071 111. Pin Mapping
1072
1073 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1074
1075
1076 1.
1077 11.
1078 111. Installation Notice
1079
1080 Do not power on while connect the cables. Double check the wiring before power on.
1081
1082
1083 Install with 15°degree.
1084
1085 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1086
1087 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1088
1089
1090
1091
1092 1.
1093 11.
1094 111. Heating 
1095
1096 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1097
1098
1099
1100
1101
1102 1.
1103 11. Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05
1104
1105 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1106
1107
1108 WSS-05 is designed to support the Dragino Weather station solution.
1109
1110 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1111
1112 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1113
1114
1115 *
1116 *1.
1117 *11. Feature
1118 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1119
1120 *
1121 *1.
1122 *11. Specification
1123 * Input Power: DC 12 ~~ 24v
1124 * Interface: RS485
1125 * Temperature Sensor Spec:
1126 ** Range: -30 ~~ 70℃
1127 ** resolution 0.1℃
1128 ** Accuracy: ±0.5℃
1129 * Humidity Sensor Spec:
1130 ** Range: 0 ~~ 100% RH
1131 ** resolution 0.1 %RH
1132 ** Accuracy: 3% RH
1133 * Pressure Sensor Spec:
1134 ** Range: 10~1100hPa
1135 ** Resolution: 0.1hPa
1136 ** Accuracy: ±0.1hPa
1137 * Illuminate sensor:
1138 ** Range: 0~2/20/200kLux
1139 ** Resolution: 10 Lux
1140 ** Accuracy: ±3%FS
1141 * Working Temperature: -30℃~70℃
1142 * Working Humidity: 10~90%RH
1143 * Power Consumption: 4mA @ 12v
1144
1145
1146 1.
1147 11.
1148 111. Dimension
1149
1150 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1151
1152
1153 1.
1154 11.
1155 111. Pin Mapping
1156
1157 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1158
1159 1.
1160 11.
1161 111. Installation Notice
1162
1163 Do not power on while connect the cables. Double check the wiring before power on.
1164
1165
1166
1167 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1168
1169
1170 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1171
1172
1173 1.
1174 11. Total Solar Radiation sensor ~-~- WSS-06
1175
1176 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1177
1178
1179 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1180
1181
1182 WSS-06 is designed to support the Dragino Weather station solution.
1183
1184
1185 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1186
1187 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1188
1189
1190
1191 *
1192 *1.
1193 *11. Feature
1194 * RS485 Total Solar Radiation sensor
1195 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1196 * Measure Reflected Radiation if sense area towards ground.
1197
1198 *
1199 *1.
1200 *11. Specification
1201 * Input Power: DC 5 ~~ 24v
1202 * Interface: RS485
1203 * Detect spectrum: 0.3~3μm(300~3000nm)
1204 * Measure strength range: 0~2000W/m2
1205 * Resolution: 0.1W/m2
1206 * Accuracy: ±3%
1207 * Yearly Stability: ≤±2%
1208 * Cosine response: ≤7% (@ Sun angle 10°)
1209 * Temperature Effect: ±2%(-10℃~40℃)
1210 * Working Temperature: -40℃~70℃
1211 * Working Humidity: 10~90%RH
1212 * Power Consumption: 4mA @ 12v
1213
1214
1215 1.
1216 11.
1217 111. Dimension
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1220
1221
1222 1.
1223 11.
1224 111. Pin Mapping
1225
1226 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1227
1228
1229 1.
1230 11.
1231 111. Installation Notice
1232
1233 Do not power on while connect the cables. Double check the wiring before power on.
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1236
1237 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1238
1239 1.
1240 11. PAR (Photosynthetically Available Radiation) ~-~- WSS-07
1241
1242 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1243
1244
1245 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1246
1247
1248
1249 WSS-07 is designed to support the Dragino Weather station solution.
1250
1251
1252 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1253
1254 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1255
1256
1257 1.
1258 11.
1259 111. Feature
1260
1261 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1262
1263
1264 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1265
1266
1267 *
1268 *1.
1269 *11. Specification
1270 * Input Power: DC 5 ~~ 24v
1271 * Interface: RS485
1272 * Response Spectrum: 400~700nm
1273 * Measure range: 0~2500μmol/m2•s
1274 * Resolution: 1μmol/m2•s
1275 * Accuracy: ±2%
1276 * Yearly Stability: ≤±2%
1277 * Working Temperature: -30℃~75℃
1278 * Working Humidity: 10~90%RH
1279 * Power Consumption: 3mA @ 12v
1280
1281
1282 1.
1283 11.
1284 111. Dimension
1285
1286 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1287
1288 1.
1289 11.
1290 111. Pin Mapping
1291
1292 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1293
1294
1295 1.
1296 11.
1297 111. Installation Notice
1298
1299 Do not power on while connect the cables. Double check the wiring before power on.
1300
1301
1302 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1303
1304 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1305
1306
1307 = 7. FAQ =
1308
1309 == 7.1 What else do I need to purchase to build Weather Station? ==
1310
1311 Below is the installation photo and structure:
1312
1313 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1314
1315
1316 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1317
1318
1319
1320
1321 == 7.2 How to upgrade firmware for WSC1-L? ==
1322
1323 Firmware Location & Change log:
1324
1325 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1326
1327
1328 Firmware Upgrade instruction:
1329
1330 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1331
1332
1333 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1334
1335 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1336
1337
1338
1339 == 7.4 Can I add my weather sensors? ==
1340
1341 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1342
1343
1344 = 8. Trouble Shooting =
1345
1346
1347
1348
1349
1350
1351 = 9. Order Info =
1352
1353
1354 == 9.1 Main Process Unit ==
1355
1356 Part Number: **WSC1-L-XX**
1357
1358 **XX**: The default frequency band
1359
1360 * **AS923**: LoRaWAN AS923 band
1361 * **AU915**: LoRaWAN AU915 band
1362 * **EU433**: LoRaWAN EU433 band
1363 * **EU868**: LoRaWAN EU868 band
1364 * **KR920**: LoRaWAN KR920 band
1365 * **US915**: LoRaWAN US915 band
1366 * **IN865**: LoRaWAN IN865 band
1367 * **CN470**: LoRaWAN CN470 band
1368
1369 == 9.2 Sensors ==
1370
1371 |**Sensor Model**|**Part Number**
1372 |**Rain Gauge**|WSS-01
1373 |**Rain Gauge installation Bracket for Pole**|WS-K2
1374 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1375 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1376 |**Rain/Snow Detect Sensor**|WSS-04
1377 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1378 |**Total Solar Radiation Sensor**|WSS-06
1379 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1380
1381
1382 = 10. Support =
1383
1384 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1385 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1386
1387 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1388
1389
1390
1391
1392
1393 = 11. Appendix I: Field Installation Photo =
1394
1395
1396 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1397
1398
1399 **Storage Battery**: 12v,12AH li battery
1400
1401
1402 Wind Speed/Direction.
1403
1404 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1405
1406
1407 Total Solar Radiation sensor
1408
1409 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1410
1411
1412
1413 PAR Sensor
1414
1415 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1416
1417
1418 CO2/PM2.5/PM10 3 in 1 sensor
1419
1420 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1421
1422
1423 Rain / Snow Detect:
1424
1425 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1426
1427
1428 Rain Gauge.
1429
1430 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]