Version 3.2 by Xiaoling on 2022/06/24 10:10

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
7
8
9
10
11
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 Overview ==
20
21
22 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. They consist of a main process device (WSC1-L) and various sensors.
23
24
25 The sensors include various type such as: Rain Gauge, Temperature/Humidity/Pressure sensor, Wind Speed/direction sensor, Illumination sensor, CO2 sensor, Rain/Snow sensor, PM2.5/10 sensor, PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor and so on.
26
27
28 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in li-on backup battery. WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
29
30
31 WSC1-L is full compatible with LoRaWAN Class C protocol, it can work with standard LoRaWAN gateway.
32
33
34
35
36 = 2. How to use =
37
38 == 2.1 Installation ==
39
40 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>path:#Installation_Photo]] 
41
42 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
43
44 **Wiring:**
45
46 ~1. WSC1-L and sensors all powered by solar power via MPPT
47
48 2. WSC1-L and sensors connect to each other via RS485/Modbus.
49
50 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
51
52
53 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
54
55 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
56
57
58
59
60 Notice 1:
61
62 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
63 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
64 * Weather sensors won’t work if solar panel and storage battery fails.
65
66 Notice 2:
67
68 Due to shipment and importation limitation, user is better to purchase below parts locally:
69
70 * Solar Panel
71 * Storage Battery
72 * MPPT Solar Recharger
73 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
74 * Cabinet.
75
76
77
78
79 == 2.2 How it works? ==
80
81 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
82
83
84 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
85
86 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
87
88
89 Notice:
90
91 1. WSC1-L will auto scan available weather sensors when power on or reboot.
92 1. User can send a downlink command( 增加下发命令的连接) to WSC1-L to do a re-scan on the available sensors.
93
94
95
96 == 2.3 Example to use for LoRaWAN network ==
97
98 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
99
100
101 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
102
103
104
105 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
106
107
108 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
109
110 Each WSC1-L is shipped with a sticker with the default device EUI as below:
111
112 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
113
114
115 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
116
117 Add APP EUI in the application.
118
119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
120
121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
122
123
124
125
126
127
128
129
130
131 Choose Manually to add WSC1-L
132
133
134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
135
136 Add APP KEY and DEV EUI
137
138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
139
140
141
142
143 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
144
145
146 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
147
148
149
150
151 == 2.4 Uplink Payload ==
152
153 Uplink payloads include two types: Valid Sensor Value and other status / control command.
154
155 * Valid Sensor Value: Use FPORT=2
156 * Other control command: Use FPORT other than 2.
157
158
159
160
161
162 === 2.4.1 Uplink FPORT ===
163
164 5, Device Status ===
165
166 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
167
168
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170
171 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
172 |**Value**|[[Sensor Model>>path:#Sensor_model]]|[[Firmware Version>>path:#Firmware_version]]|[[Frequency Band>>path:#Fre_Band]]|[[Sub-band>>path:#Sub_band]]|[[BAT>>path:#Battery]]|[[Weather Sensor Types>>path:#Sensor_types]]
173
174 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model**(%%): ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186 ==== (% style="color:#037691" %)**Firmware Version**(%%): ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191 ==== (% style="color:#037691" %)**Frequency Band**:(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214 ==== (% style="color:#037691" %)**Sub-Band**(%%): ====
215
216 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
217
218
219 ==== (% style="color:#037691" %)**BAT**(%%): ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
227
228 |Byte3|Byte2|Byte1
229
230 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
231
232
233 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
234 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
235 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
236 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
237 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
238 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
239
240 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
241
242 External sensors detected by WSC1-L include :
243
244 custom sensor A1,
245
246 PAR sensor (WSS-07),
247
248 Total Solar Radiation sensor (WSS-06),
249
250 CO2/PM2.5/PM10 (WSS-03),
251
252 Wind Speed/Direction (WSS-02)
253
254
255
256
257 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
258
259 (% style="color:#037691" %)**Downlink:0x26 01**
260
261 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
262
263
264
265
266 1.
267 11.
268 111. Uplink FPORT=2, Real time sensor value
269
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>path:#Uplink_Interval]].
271
272 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
273
274
275 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
276
277 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
278
279 **Uplink Payload**:
280
281 |Type Code|Length (Bytes)|Measured Value
282
283 **Sensor Segment Define**:
284
285
286
287 Sensor Type Table:
288
289 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
290 |**Wind Speed**|0x01|(((
291 Speed: 0~60m/s
292
293 Level: 0~17
294 )))|0x03 |(((
295 0x0024/10=3.6m/s
296
297 (0x02FE: No Sensor, 0x02FF: Value Error)
298
299 0x02=2
300
301 (0x14: No Sensor, 0x15: Value Error)
302 )))
303 |**Wind Direction**|0x02|(((
304 Angel: 0~360°
305
306 Direction: 16 positions
307 )))|0x03|(((
308 0x029A/10=66.6°
309
310 (0x0EFE: No Sensor,0x0EFF: Value Error)
311
312 0X03=3(ENE)
313
314 (0x14: No Sensor,0x15: Value Error)
315 )))
316 |**Illumination**|0x03|0~200000Lux|0x02|(((
317 0x04D2 *10=12340Lux
318
319 (0x4EFE: No Sensor,0x4EFF: Value Error)
320 )))
321 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
322 0x00 (00) No Rain or snow detected
323
324 (0x02: No Sensor,0x03: Value Error)
325 )))
326 |**CO2**|0x05|0~5000ppm|0x02|(((
327 0x0378=888ppm
328
329 (0x14FE: No Sensor,0x14FF: Value Error)
330 )))
331 |**Temperature**|0x06|-30℃~70℃|0x02|(((
332 0xFFDD/10=-3.5℃
333
334 (0x02FE: No Sensor,0x02FF: Value Error)
335 )))
336 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
337 |**Pressure**|0x08|10~1100hPa|0x02|(((
338 0x2748/10=1005.6hPa
339
340 (0x00: No Sensor,0x01: Value Error)
341 )))
342 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
343 0x0000/10=0mm /min
344
345 (0x03FE: No Sensor,0x03FF: Value Error)
346 )))
347 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
348 0x0023=35μg/m^^3 ^^
349
350 (0x03FE: No Sensor,0x03FF: Value Error)
351 )))
352 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
353 0x002D=45μg/m^^3 ^^
354
355 (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
358 0x00B3=179μmol/m^^2^^•s
359
360 (0x09FE: No Sensor,0x9FF: Value Error)
361 )))
362 |(((
363 **Total Solar**
364
365 **Radiation**
366 )))|0x0D|0~2000W/m^^2^^|0x02|(((
367 0x0073/10=11.5W/m^^2^^
368
369 (0x4EFE: No Sensor,0x4EFF: Value Error)
370 )))
371
372 Below is an example payload:
373
374 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
375
376
377 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
378
379 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
380
381 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
382
383
384 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
385
386 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
387
388 Uplink 2: 0D 02 00 73
389
390
391
392
393 1.
394 11.
395 111. Decoder in TTN V3
396
397 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
398
399
400 Download decoder for suitable platform from:
401
402 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
403
404 and put as below:
405
406 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
407
408
409
410 1.
411 11. Show data on Application Server
412
413 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
414
415
416 **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
417
418 **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
419
420 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
421
422
423 Add TagoIO:
424
425 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
426
427 Authorization:
428
429 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
430
431
432 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
433
434 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
435
436 *
437
438 1. Configure WSC1-L via AT Command or LoRaWAN Downlink
439
440 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
441
442 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
443 * LoRaWAN Downlink instruction for different platforms:
444
445 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
446
447
448 There are two kinds of commands to configure WSC1-L, they are:
449
450 * **General Commands**.
451
452 These commands are to configure:
453
454 * General system settings like: uplink interval.
455 * LoRaWAN protocol & radio related command.
456
457 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki:
458
459 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
460
461 Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
462
463
464 * **Commands special design for WSC1-L**
465
466 These commands only valid for WSC1-L, as below:
467
468
469 1.
470 11. Set Transmit Interval Time
471
472 Feature: Change LoRaWAN End Node Transmit Interval.
473
474 **AT Command: AT+TDC**
475
476 |**Command Example**|**Function**|**Response**
477 |AT+TDC?|Show current transmit Interval|(((
478 30000
479
480 OK
481
482 the interval is 30000ms = 30s
483 )))
484 |AT+TDC=60000|Set Transmit Interval|(((
485 OK
486
487 Set transmit interval to 60000ms = 60 seconds
488 )))
489
490 **Downlink Command: 0x01**
491
492 Format: Command Code (0x01) followed by 3 bytes time value.
493
494 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
495
496 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
497 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
498
499
500
501 1.
502 11. Set Emergency Mode
503
504 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
505
506
507 **AT Command:**
508
509 |**Command Example**|**Function**|**Response**
510 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
511 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
512
513 **Downlink Command:**
514
515 * 0xE101     Same as: AT+ALARMMOD=1
516 * 0xE100     Same as: AT+ALARMMOD=0
517
518
519 1.
520 11. Add or Delete RS485 Sensor
521
522 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
523
524 **AT Command: **
525
526 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
527
528 * Type_Code range: A1 ~~ A4
529 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
530 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
531 * Read_Length: RS485 response frame length supposed to receive. Max can receive
532 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
533 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
534 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
535
536
537 Example:
538
539 User need to change external sensor use the type code as address code.
540
541 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
542
543 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
544 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
545 | | | | | | | |
546
547 The response frame of the sensor is as follows:
548
549 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
550 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
551 | | | | | | | |
552
553 Then the following parameters should be:
554
555 * Address_Code range: A1
556 * Query_Length: 8
557 * Query_Command: A103000000019CAA
558 * Read_Length: 8
559 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
560 * has_CRC: 1
561 * timeout: 1500 (Fill in the test according to the actual situation)
562
563 So the input command is:
564
565 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
566
567
568 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
569
570 |Type Code|Length (Bytes)|Measured Value
571 |A1|2|0x000A
572
573
574
575
576 Related commands:
577
578 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
579
580 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
581
582
583 **Downlink Command:  **
584
585 **delete custom sensor A1:**
586
587 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
588
589 **Remove all custom sensors**
590
591 * 0xE5FF  
592
593
594 1.
595 11. RS485 Test Command
596
597 **AT Command:**
598
599 |**Command Example**|**Function**|**Response**
600 |AT+RSWRITE=xxxxxx|(((
601 Send command to 485 sensor
602
603 Range : no more than 10 bytes
604 )))|OK
605
606 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
607
608 AT+RSWRITE=0103000001840A
609
610
611 **Downlink Command:**
612
613 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
614
615
616
617 1.
618 11. RS485 response timeout
619
620 Feature: Set or get extended time to receive 485 sensor data.
621
622 **AT Command:**
623
624 |**Command Example**|**Function**|**Response**
625 |AT+DTR=1000|(((
626 Set response timeout to:
627
628 Range : 0~~10000
629 )))|OK
630
631 **Downlink Command:**
632
633 Format: Command Code (0xE0) followed by 3 bytes time value.
634
635 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
636
637 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
638 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
639
640
641
642 1.
643 11. Set Sensor Type
644
645 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
646
647 See [[definition>>path:#Sensor_types]] for the sensor type.
648
649
650 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
651 | |A4|A3|A2|A1| | |
652 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
653 | | |Solar Radiation|PAR|PM10|PM2.5|(((
654 Rain
655
656 Gauge
657 )))|(((
658 Air
659
660 Pressure
661 )))
662 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
663 |Humidity|Temperature|CO2|(((
664 Rain/Snow
665
666 Detect
667 )))|illuminance|(((
668 Wind
669
670 Direction
671 )))|Wind Speed|BAT
672
673 **AT Command:**
674
675 |**Command Example**|**Function**|**Response**
676 |AT+STYPE=80221|Set sensor types|OK
677
678 Eg: The setting command **AT+STYPE=802212** means:
679
680 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
681 |0|0|0|0|1|0|0|0
682 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
683 |0|0|0|0|0|0|1|0
684 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
685 |0|0|1|0|0|0|0|1
686
687 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
688
689
690 **Downlink Command:**
691
692 * 0xE400802212     Same as: AT+STYPE=80221
693
694 Note:
695
696 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
697
698
699
700
701
702 1. Power consumption and battery
703 11. Total Power Consumption
704
705 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
706
707
708 1.
709 11. Reduce power consumption
710
711 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
712
713
714
715 1.
716 11. Battery
717
718 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
719
720
721 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
722
723
724
725
726
727
728
729 1. Main Process Unit WSC1-L
730 11. Features
731
732 * Wall Attachable.
733 * LoRaWAN v1.0.3 Class A protocol.
734 * RS485 / Modbus protocol
735 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
736 * AT Commands to change parameters
737 * Remote configure parameters via LoRaWAN Downlink
738 * Firmware upgradable via program port
739 * Powered by external 12v battery
740 * Back up rechargeable 1000mAh battery
741 * IP Rating: IP65
742 * Support default sensors or 3rd party RS485 sensors
743
744
745
746 1.
747 11. Power Consumption
748
749 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
750
751
752
753 1.
754 11. Storage & Operation Temperature
755
756 -20°C to +60°C
757
758
759 1.
760 11. Pin Mapping
761
762 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
763
764
765 1.
766 11. Mechanical
767
768 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
769
770
771
772
773 1.
774 11. Connect to RS485 Sensors
775
776 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
777
778
779 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
780
781
782 Hardware Design for the Converter Board please see:
783
784 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
785
786
787
788
789
790 1. Weather Sensors
791 11. Rain Gauge ~-~- WSS-01
792
793 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
794
795
796 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
797
798 shape to make sure it works smoothly and is easy to clean.
799
800
801 WSS-01 is designed to support the Dragino Weather station solution.
802
803 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
804
805 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
806
807
808 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
809
810 to screw up and adjust the bottom horizontally.
811
812
813 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
814
815
816
817 *
818 *1.
819 *11. Feature
820 * RS485 Rain Gauge
821 * Small dimension, easy to install
822 * Vents under funnel, avoid leaf or other things to avoid rain flow.
823 * ABS enclosure.
824 * Horizontal adjustable.
825
826 *
827 *1.
828 *11. Specification
829 * Resolution: 0.2mm
830 * Accuracy: ±3%
831 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
832 * Input Power: DC 5~~24v
833 * Interface: RS485
834 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
835 * Working Humidity: <100% (no dewing)
836 * Power Consumption: 4mA @ 12v.
837
838
839
840 1.
841 11.
842 111. Dimension
843
844 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
845
846 1.
847 11.
848 111. Pin Mapping
849
850 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
851
852
853
854
855 1.
856 11.
857 111. Installation Notice
858
859 Do not power on while connect the cables. Double check the wiring before power on.
860
861 Installation Photo as reference:
862
863
864 **Install on Ground:**
865
866 WSS-01 Rain Gauge include screws so can install in ground directly .
867
868
869 **Install on pole:**
870
871 If user want to install on pole, they can purchase the **WS-K2 :  Bracket Kit for Pole installation**, and install as below:
872
873 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
874
875
876 WS-K2: Bracket Kit for Pole installation:
877
878 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
879
880 WSSC-K2 dimension document, please see:
881
882 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
883
884
885
886 1.
887 11. Wind Speed/Direction ~-~- WSS-02
888
889 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
890
891 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
892
893
894 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
895
896
897 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
898
899 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
900
901
902 *
903 *1.
904 *11. Feature
905 * RS485 wind speed / direction sensor
906 * PC enclosure, resist corrosion
907
908 *
909 *1.
910 *11. Specification
911 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
912 * Wind direction range: 0 ~~ 360°
913 * Start wind speed: ≤0.3m/s
914 * Accuracy: ±(0.3+0.03V)m/s , ±1°
915 * Input Power: DC 5~~24v
916 * Interface: RS485
917 * Working Temperature: -30℃~70℃
918 * Working Humidity: <100% (no dewing)
919 * Power Consumption: 13mA ~~ 12v.
920 * Cable Length: 2 meters
921
922 1.
923 11.
924 111. Dimension
925
926 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
927
928
929 1.
930 11.
931 111. Pin Mapping
932
933 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
934
935
936 1.
937 11.
938 111. Angle Mapping
939
940 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
941
942
943 1.
944 11.
945 111. Installation Notice
946
947 Do not power on while connect the cables. Double check the wiring before power on.
948
949
950 The sensor must be installed with below direction, towards North.
951
952
953 |(((
954 North
955 )))
956
957 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
958
959
960
961
962
963
964
965
966 1.
967 11. CO2/PM2.5/PM10 ~-~- WSS-03
968
969 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
970
971
972 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
973
974
975 WSS-03 is designed to support the Dragino Weather station solution.
976
977 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
978
979 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
980
981
982 *
983 *1.
984 *11. Feature
985 * RS485 CO2, PM2.5, PM10 sensor
986 * NDIR to measure CO2 with Internal Temperature Compensation
987 * Laser Beam Scattering to PM2.5 and PM10
988
989 *
990 *1.
991 *11. Specification
992 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
993 * CO2 resolution: 1ppm
994 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
995 * PM2.5/PM10 resolution: 1μg/m3
996 * Input Power: DC 7 ~~ 24v
997 * Preheat time: 3min
998 * Interface: RS485
999 * Working Temperature:
1000 ** CO2: 0℃~50℃;
1001 ** PM2.5/PM10: -30 ~~ 50℃
1002 * Working Humidity:
1003 ** PM2.5/PM10: 15~80%RH (no dewing)
1004 ** CO2: 0~95%RH
1005 * Power Consumption: 50mA@ 12v.
1006 *1.
1007 *11. Dimension
1008
1009 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1010
1011
1012 1.
1013 11.
1014 111. Pin Mapping
1015
1016 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1017
1018
1019 1.
1020 11.
1021 111. Installation Notice
1022
1023 Do not power on while connect the cables. Double check the wiring before power on.
1024
1025 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1026
1027 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1028
1029
1030
1031
1032
1033
1034 1.
1035 11. Rain/Snow Detect ~-~- WSS-04
1036
1037 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1038
1039
1040 WSS-04 has auto heating feature, this ensures measurement more reliable.
1041
1042
1043 WSS-04 is designed to support the Dragino Weather station solution.
1044
1045 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
1046
1047 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1048
1049
1050
1051 *
1052 *1.
1053 *11. Feature
1054 * RS485 Rain/Snow detect sensor
1055 * Surface heating to dry
1056 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1057
1058 *
1059 *1.
1060 *11. Specification
1061 * Detect if there is rain or snow
1062 * Input Power: DC 12 ~~ 24v
1063 * Interface: RS485
1064 * Working Temperature: -30℃~70℃
1065 * Working Humidity: 10~90%RH
1066 * Power Consumption:
1067 ** No heating: 12mA @ 12v,
1068 ** heating: 94ma @ 12v.
1069
1070 1.
1071 11.
1072 111. Dimension
1073
1074 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1075
1076
1077 1.
1078 11.
1079 111. Pin Mapping
1080
1081 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1082
1083
1084 1.
1085 11.
1086 111. Installation Notice
1087
1088 Do not power on while connect the cables. Double check the wiring before power on.
1089
1090
1091 Install with 15°degree.
1092
1093 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1094
1095 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1096
1097
1098
1099
1100 1.
1101 11.
1102 111. Heating 
1103
1104 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1105
1106
1107
1108
1109
1110 1.
1111 11. Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05
1112
1113 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1114
1115
1116 WSS-05 is designed to support the Dragino Weather station solution.
1117
1118 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1119
1120 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1121
1122
1123 *
1124 *1.
1125 *11. Feature
1126 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1127
1128 *
1129 *1.
1130 *11. Specification
1131 * Input Power: DC 12 ~~ 24v
1132 * Interface: RS485
1133 * Temperature Sensor Spec:
1134 ** Range: -30 ~~ 70℃
1135 ** resolution 0.1℃
1136 ** Accuracy: ±0.5℃
1137 * Humidity Sensor Spec:
1138 ** Range: 0 ~~ 100% RH
1139 ** resolution 0.1 %RH
1140 ** Accuracy: 3% RH
1141 * Pressure Sensor Spec:
1142 ** Range: 10~1100hPa
1143 ** Resolution: 0.1hPa
1144 ** Accuracy: ±0.1hPa
1145 * Illuminate sensor:
1146 ** Range: 0~2/20/200kLux
1147 ** Resolution: 10 Lux
1148 ** Accuracy: ±3%FS
1149 * Working Temperature: -30℃~70℃
1150 * Working Humidity: 10~90%RH
1151 * Power Consumption: 4mA @ 12v
1152
1153
1154 1.
1155 11.
1156 111. Dimension
1157
1158 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1159
1160
1161 1.
1162 11.
1163 111. Pin Mapping
1164
1165 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1166
1167 1.
1168 11.
1169 111. Installation Notice
1170
1171 Do not power on while connect the cables. Double check the wiring before power on.
1172
1173
1174
1175 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1176
1177
1178 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1179
1180
1181 1.
1182 11. Total Solar Radiation sensor ~-~- WSS-06
1183
1184 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1185
1186
1187 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1188
1189
1190 WSS-06 is designed to support the Dragino Weather station solution.
1191
1192
1193 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1194
1195 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1196
1197
1198
1199 *
1200 *1.
1201 *11. Feature
1202 * RS485 Total Solar Radiation sensor
1203 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1204 * Measure Reflected Radiation if sense area towards ground.
1205
1206 *
1207 *1.
1208 *11. Specification
1209 * Input Power: DC 5 ~~ 24v
1210 * Interface: RS485
1211 * Detect spectrum: 0.3~3μm(300~3000nm)
1212 * Measure strength range: 0~2000W/m2
1213 * Resolution: 0.1W/m2
1214 * Accuracy: ±3%
1215 * Yearly Stability: ≤±2%
1216 * Cosine response: ≤7% (@ Sun angle 10°)
1217 * Temperature Effect: ±2%(-10℃~40℃)
1218 * Working Temperature: -40℃~70℃
1219 * Working Humidity: 10~90%RH
1220 * Power Consumption: 4mA @ 12v
1221
1222
1223 1.
1224 11.
1225 111. Dimension
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1228
1229
1230 1.
1231 11.
1232 111. Pin Mapping
1233
1234 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1235
1236
1237 1.
1238 11.
1239 111. Installation Notice
1240
1241 Do not power on while connect the cables. Double check the wiring before power on.
1242
1243 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1244
1245 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1246
1247 1.
1248 11. PAR (Photosynthetically Available Radiation) ~-~- WSS-07
1249
1250 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1251
1252
1253 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1254
1255
1256
1257 WSS-07 is designed to support the Dragino Weather station solution.
1258
1259
1260 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1261
1262 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1263
1264
1265 1.
1266 11.
1267 111. Feature
1268
1269 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1270
1271
1272 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1273
1274
1275 *
1276 *1.
1277 *11. Specification
1278 * Input Power: DC 5 ~~ 24v
1279 * Interface: RS485
1280 * Response Spectrum: 400~700nm
1281 * Measure range: 0~2500μmol/m2•s
1282 * Resolution: 1μmol/m2•s
1283 * Accuracy: ±2%
1284 * Yearly Stability: ≤±2%
1285 * Working Temperature: -30℃~75℃
1286 * Working Humidity: 10~90%RH
1287 * Power Consumption: 3mA @ 12v
1288
1289
1290 1.
1291 11.
1292 111. Dimension
1293
1294 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1295
1296 1.
1297 11.
1298 111. Pin Mapping
1299
1300 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1301
1302
1303 1.
1304 11.
1305 111. Installation Notice
1306
1307 Do not power on while connect the cables. Double check the wiring before power on.
1308
1309
1310 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1311
1312 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1313
1314
1315 = 7. FAQ =
1316
1317 == 7.1 What else do I need to purchase to build Weather Station? ==
1318
1319 Below is the installation photo and structure:
1320
1321 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1322
1323
1324 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1325
1326
1327
1328
1329 == 7.2 How to upgrade firmware for WSC1-L? ==
1330
1331 Firmware Location & Change log:
1332
1333 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1334
1335
1336 Firmware Upgrade instruction:
1337
1338 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1339
1340
1341 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1342
1343 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1344
1345
1346
1347 == 7.4 Can I add my weather sensors? ==
1348
1349 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1350
1351
1352 = 8. Trouble Shooting =
1353
1354
1355
1356
1357
1358
1359 = 9. Order Info =
1360
1361
1362 == 9.1 Main Process Unit ==
1363
1364 Part Number: **WSC1-L-XX**
1365
1366 **XX**: The default frequency band
1367
1368 * **AS923**: LoRaWAN AS923 band
1369 * **AU915**: LoRaWAN AU915 band
1370 * **EU433**: LoRaWAN EU433 band
1371 * **EU868**: LoRaWAN EU868 band
1372 * **KR920**: LoRaWAN KR920 band
1373 * **US915**: LoRaWAN US915 band
1374 * **IN865**: LoRaWAN IN865 band
1375 * **CN470**: LoRaWAN CN470 band
1376
1377 == 9.2 Sensors ==
1378
1379 |**Sensor Model**|**Part Number**
1380 |**Rain Gauge**|WSS-01
1381 |**Rain Gauge installation Bracket for Pole**|WS-K2
1382 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1383 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1384 |**Rain/Snow Detect Sensor**|WSS-04
1385 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1386 |**Total Solar Radiation Sensor**|WSS-06
1387 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1388
1389
1390 = 10. Support =
1391
1392 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1393 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1394
1395 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1396
1397
1398
1399
1400
1401 = 11. Appendix I: Field Installation Photo =
1402
1403
1404 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1405
1406
1407 **Storage Battery**: 12v,12AH li battery
1408
1409
1410 Wind Speed/Direction.
1411
1412 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1413
1414
1415 Total Solar Radiation sensor
1416
1417 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1418
1419
1420
1421 PAR Sensor
1422
1423 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1424
1425
1426 CO2/PM2.5/PM10 3 in 1 sensor
1427
1428 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1429
1430
1431 Rain / Snow Detect:
1432
1433 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1434
1435
1436 Rain Gauge.
1437
1438 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0